

Journal of Applied Research and Technology

www.jart.icat.unam.mx

Journal of Applied Research and Technology 20 (2022) 306-319

Original

A test model for database architectures: an assessment

for job search engine systems

Mary Carlota Bernala* Yeimer Molinab

aUniversidad Simón Bolívar, Facultad de Ingenierías, Cúcuta, Colombia

bUniversidad Nacional Experimental del Táchira,

Laboratorio de Investigación y Desarrollo en Informática, San Cristóbal, Venezuela

Received 08 21 2020; accepted 11 16 2021

Available 06 30 2022

Keywords: Relational database, NoSQL, functionality, efficiency, test model,

 job search engine systems

Abstract: Information systems are increasingly complex structures due to the diversity of processes

involved and the big data generated, hence data management is essential. NoSQL databases adopt

new approaches to data management differing from relational structures. In this study, three

databases were designed, a relational database using PostgreSQL and two NoSQL databases made in

MongoDB applied to operation of a job offer system, with the aim of comparing its operation and

efficiency. A method was proposed for the metric-guided evaluation of database models using

functionality and efficiency criteria according to Systems and Software Standard Quality Requirements

and Evaluation (SQuaRE). Testing cases were created considering the International Software Testing

Qualifications Board (ISTQB) best practices. Relational data model was selected as a pattern, for this

reason, to populate NoSQL databases a reference framework was applied for data migration from one

environment to another, thus the tests were performed under the same hardware, software and data

conditions. This study determined that the SQL schema provides greater functionality, ensuring

transaction support and data integrity. On the other hand, the NoSQL schemas are more efficient in

response to big data processing, although they have a certain level of data duplication, transaction

support fails and some join operations are not support.

∗Corresponding author.

E-mail address: m.bernal@unisimonbolivar.edu.co(Mary Carlota Bernal).
Peer Review under the responsibility of Universidad Nacional Autónoma de México.

http://dx.doi.org/10.1016/j.jart.2017.02.005
1665-6423/© 2017 Universidad Nacional Autónoma de México, Instituto de Ciencias Aplicadas y Tecnología.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://www.icat.unam.mx/
mailto:m.bernal@unisimonbolivar.edu.co
https://www.unam.mx/

Mary Carlota Bernal, Yeimer Molina/ Journal of Applied Research and Technology 306-319

Vol. 20, No. 3, June 2022 307

1. Introduction

Relational databases have played a significant role within

organizations, offering features that allow redundancy

control, consistency, sharing, integrity, security, and

accessibility of data (Marqués, 2011), this complemented with

the regular support of transactions, atomicity and data

independence (Date, 2000) give support and stability to

business operations.

Despite the characteristics above and the popularity that

relational systems have had, (Han et al., 2011) describe that

these are usually insufficient for the constant big data

processing and analysis requirements generated in today's

environments. In attention to the previous situation, the

databases called NoSQL (Not only SQL), work in order to face

some of the situations generated by relational systems taking

advantage of features such as simplified design, horizontal

scalability, and greater control over availability of the data

(Zafar et al., 2017) .

The most recent comparative database studies are focused

on big data systems, in which the characteristics of the

databases are analyzed with the use of unstructured data that

is generated from the various interactions in cloud services

(Kumar & Jayagopal, 2018). However, database management

systems (DBMS) are also essential elements for daily practice

in small and medium-sized companies, in which the current

dynamics have increased the digital transformation of their

processes, requiring new ways of organizing structured data

for its use (Sokolova et al., 2020).

With the massive growth in data volume, many companies

have migrated towards NoSQL database adoption to store

high amounts of data, and both analyzing and managing data.

However, many organizations, based on the nature of their

operations, use relational databases or hybrid data storage

model to manage their processes. Therefore, this situation

leads to new movement from relational and object-relational

databases to NoSQL databases. Even so, the data models are

entirely different between these two types of databases, on

the fact that NoSQL are distributed databases without join

operations and with schemas dynamic (Schreiner et al., 2020).

Consequently, model transformation is fundamental to ease

migration and recognize the advantages and disadvantages of

its implementation.

In this context, this study aims to compare a relational

database with a non-relational database: a document

database (MongoDB), a system that requires easy data

recovery and data consistency. For this paper, a data structure

was developed for a job search system. We selected MongoDB

database management system because it is the most popular

open-source document-oriented database, and it is a suitable

solution for both, distributing data and managing the balance

between instances (Fraczek & Plechawska-Wojcik, 2017). On

the other hand, among the relational databases, we chose

PostgreSQL, another open-source but also commercially

available database.

The main contributions of this paper are outlined as

follows:

• Definition of a relational and non-relational data model for

the operation of a job offer system, based on requirements

oriented to base operations in this kind of system and showing

two-design strategies to know the scope and limitations of

each solution.

• The development of testing strategies for both relational

and non-relational databases, constructing a reference

framework for a migration from one environment to another.

• A metric-guided evaluation for tracking results and

provide recommendations for the different database schemas

implemented.

The rest of this paper is organized as follows. Section 2

presents an overview of relational and NoSQL data models.

Section 3 includes the evaluation method developed in this

work. Section 4 describes both the comparisons and the

metrics obtained and the paper is concluded in Section 5.

2. Job search engine systems

A job search engine is an online platform that helps people to

find opportunities for employment. With the help of job search

systems, persons can create and share their resumes and

search for vacancies, while employers are able to post job

offerings and look for suitable candidates. To achieve this

purpose, these systems must be characterized by:

• Flexibility. The platform should allow different types of job

search and posting. That is, allow employers and recruiters the

ability to do things like post multiple ads and offer users

search tools that include things like the ability to filter results.

• Accuracy. The platform should allow to develop searches

with precise results according to the registered profiles.

• Relevancy. System information retrieval should allow

search results to be relevant according to characteristics and

profiles to attract and retain users in their different roles

A platform that complies with these specifications requires

an adequate database design that allows the registration and

retrieval of data to satisfy each functionality. Relational and

non-relational approaches can be proposed for this goal. This

study explores and evaluates design alternatives considering

the characteristics of flexibility, accuracy and relevance typical

of a search system and evaluates the behavior of these

databases in terms of functional architecture when they are

the object of basic operations for the normal performance of

this system, considering the structure of the data, the query

pattern and the scale.

Mary Carlota Bernal, Yeimer Molina/ Journal of Applied Research and Technology 306-319

Vol. 20, No. 3, June 2022 308

3. An overview in databases evaluation

3.1. Relational database systems. architecture and

levels of abstraction

A relational database is an organized collection of related data

(Date, 2000), whose relationships form a logical structure,

which contains not only the data but how they are also related.

These structures are called metadata and make the

independence logical-physical data possible (Paredaens et al.,

1989). The basic unit of work in a relational database

environment is the transaction. A database transaction

symbolizes a unit of work performed within a database

management system against a database and is treated

coherently and reliably, independent of other transactions. A

transaction generally represents any change in a database.

(Elmasri Ramez & Navathe Shamkant, 2022). Integrity in the

database is achieved by the guarantee of its ACID properties

(Atomicity, Consistency, Isolation, Durability), where the

atomicity allows operations to develop all or none, denoting

completeness. The consistency ensures that the database

passes from a valid state to another valid one maintaining its

integrity and isolation to maintain the independence and

durability of the operations and therefore guarantee, once the

operation has been developed, persist. Access to registered

information in the relational database is done by the

Structured Query Language -a high-level language- that allows

both, the retrieval and structured data management,

transforming it into information.

These primary characteristics define the functional

architecture in which data is organized and retrieved in this

type of environment, and that combined with the rules to

define what a database administration system requires (Codd,

1971) establishes the operating engine and the levels of

abstraction present in the relational database management

systems. PostgreSQL is an open-source object-relational

database that has earned a strong reputation for reliability,

feature robustness, and performance (The PostgreSQL Global

Development Group, 2013). For this reason, PostgreSQL was

chosen for relational data representation in the present study.

3.2. Non-relational database systems (NoSQL). functional

architecture

The NoSQL approach refers to all those databases or data

warehouses that do not follow the basic principles listed above

and are related to extensive databases that are regularly-

accessed. These characteristics describe a wide diversity of

products and technologies having some relationship with each

other (simplified design, horizontal scalability, and greater

control over data availability) (Imam et al., 2018), but the method

of data storage and manipulation is different. NoSQL databases

do not follow a concept of relationships between records,

therefore, the data is presented in a denormalized form. This

approach contains all the data in the same structure, allowing

them to handle long read and write flows, but frequently affecting

other features of the data (Bugiotti et al., 2014).

NoSQL database architectures are classified according to

the way data store, including categories such as key-values,

document-oriented databases, BigTable implementations,

and graph-oriented databases (Ercan & Lane, 2014). For this

study, the analysis of a document-oriented architecture

was considered.

Document-oriented databases

This NoSQL approach type is based on the fact that any data

or entity can be stored as a document (Hows et al., 2014). The

documents in this type of database refer to the set of key-value

pairs stored, which use JSON (JavaScript Object Notation)

notation to a data record and the architectural structure is a set

of documents called "collection" (Scherzinger et al., 2013). The

main characteristics of this implementation establish that:

•In these databases, the documents use a hierarchical tree

structure implemented through maps, collections, and scalar

values. All documents are stored in the same way, but the

content in each one is different.

•Each document can be read and entirely written in one

transaction.

•The documents are independent, improving the database

performance, and reduce the concurrency effects.

It is important to note that data may require in each

operation, a single document depending on the design

implemented, eliminating joins or transactions between

objects. Thus, the design is essential for modeling information

requirements. In this study, for the NoSQL representation,

MongoDB was used. MongoDB is an agile and scalable NoSQL

database, based on a document-oriented model, whose data

is stored in separate documents within a collection

(www.mongodb.com).

4. Methods

Requirements for a job search system were considered to

structure different data models. These data models were

implemented and populated using a migration strategy in

order to consolidate a useful environment for the test's

development, allowing the evaluation of both functionality and

the efficiency of each data storage. Python was used for: the

work with the MongoDB database through the Pymongo

library, access to PostgreSQL features through the Psycopg

library and development, and execution of test strategies

(www.python.org). Measurement was made according to key

indicators to analyze the performance of the data models.

Figure 1 illustrates this methodological process, starting with

the conception of the model considering the needs of a job

search engine to the evaluation of database environments.

Mary Carlota Bernal, Yeimer Molina/ Journal of Applied Research and Technology 306-319

Vol. 20, No. 3, June 2022 309

4.1. Data model definition

In order to accomplish our objectives, three data schemas

were constructed: The first one was based on relational

systems, and the other two were based on non-relational

systems. The two NoSQL data models development were

made to assess both advantages and disadvantages in models

with the same functionality but different structuration.

Relational data schema development: Schema design

The software requirements were determined for the

relational model, and then, it was structured in entities,

attributes, and relationships through a logical design. In the

last step, the relational data fields mapping was developed,

completing all aspects of the physical implementation for

PostgreSQL.

The relational model sets the data type of each column, the

foreign keys, and the business rules implemented using

constraints. This data model was selected as a pattern for the

subsequent models. Figure 2 shows the relational model

obtained for the job search application implementation.

For the relational model, we created three databases: DB0,

DB1 and DB2. For this, a script was developed that contains

the SQL statements for the creation of each table, constraints

and necessary business rules. These databases were

populated through data insertion scripts, subsequently the

data in each table was counted and the size of the tables in

each database was recorded. The summary of this information

is shown in Table 1.

4.2. Mapping strategies
Both relational and document-oriented MongoDB are

heterogeneous databases supported by different technologies.

For this reason, a rules transformation between these two

environments (PostgreSQL and MongoDB) is necessary (Fouad

& Mohamed, 2019). A first approach was made considering the

relational model developed and the system requirements

(availability, consistency, scalability) as a whole,

CRUD operations, entities and the number of records

possible to process (Imam et al., 2019).

Development of NoSQL data schemas.

The NoSQL data scheme was made through data

conversion from a traditional relational database to

MongoDB (Mearaj et al., 2019). For NoSQL structure design,

document-oriented approach was conducted, with

MongoDB system, representing all the relationships

through references and embedded documents. Two

functionality strategies were defined to evaluate

performance considering two design alternatives:

Strategy 1. Three different collections

For this data schema, the information was modeled in three

different collections, as shown in Figure 3.

• JOBSEEKER Collection. A collection where all the

information with respect to users is stored for those who are

looking for job offers. Education, work experience, skills, and

applications are structured as an array of embedded-

Figure 1. Development methodology.

Mary Carlota Bernal, Yeimer Molina/ Journal of Applied Research and Technology 306-319

Vol. 20, No. 3, June 2022 310

documents because the number of the maximum element

possible to contain is between 10 and 20.

• COMPANY Collection. This collection stores information

regarding companies. The job identifiers created by the

company are included. Each element within the array is

referenced by the _id field of the JOB collection.

• JOB Collection. This collection stores information

regarding all job offers created by companies.

For this data schema, we model the information in two

collections named JOBSEEKER and COMPANY. Documents

structure in both collections is similar to those presented in

strategy 1, but documents stored in JOB collection are

embedded in the COMPANY collection in this new data

schema, as seen in Figure 4.

4.3. The Evaluation method

In order to achieve our goals, the next step was to compare

models. We started with selecting the tools and database

engines. Then, we prepared data sets and test use cases.

Finally, we analyzed the results of the executed tests.

4.3.1. Tools and database engines

All implementations were tested in the same run configuration

to obtain the most adequate comparison. The machine

employed in the tests had:

• Intel i7-3630QM 2.4 Ghz quad-core processor,

• 8 GB RAM,

• 1 TB of solid-state storage,

• Ubuntu 14.04 LTS

The test uses the following databases:

• PostgreSQL 9.3

• MongoDB 3.2.0

Utilities:

• Programming language: Python 2.7

• PostgreSQL connection driver: Psycopg 2.4.5

• MongoDB connection driver: Pymongo 3.1.1

4.3.2. Test preparation

The objective of the tests was to evaluate the presence of

conditions and necessary elements in the three database

designs and to verify their performance. To do this, we

considered the following database options:

• Use of database indexes. An index is a database structure that

can be used to improve the performance of database activity.

• Query Development and Derived Structures. A query is a

request for data or information from a database. Here we

evaluate the possibility of information retrieval with the use of

various structures and operators.

Figure 2. Relational data model.

Mary Carlota Bernal, Yeimer Molina/ Journal of Applied Research and Technology 306-319

Vol. 20, No. 3, June 2022 311

• Design of scalable databases. Scalability is the ability of a

database to handle growth in the amount of data and users. To

do this, structural tests are handled, evaluating the different

design options.

Figure 3. NoSQL1 schema.

Figure 4. NoSQL2 schema.

Three Database tests were developed: structural tests,

functional tests, and non-functional tests. For the relational

model, the evaluation strategy was oriented to the data

organization in order to develop standard tasks for a job search

engine: 1) loading of job offers, 2) loading of candidate data, 3)

offers search, and 4) candidates search. SQL clauses provided

the benchmark for relational and non-relational environments

testing. The non-functional tests were concentrated around

adequacy, precision and efficiency metrics (Tziatzios, 2019).

Besides, for the NoSQL models, four points were

emphasized:

• Technology knowledge on how data was stored

(Document)

• Understanding about different file formats used (JSON)

• How the data can be accessed (collections)

•.Test strategy in terms of both data conversions and

comparisons

For this last step, is required to populate the NoSQL

database; for this reason, a migration strategy was developed.

Data migration is the process of data transfer among data

storage systems, data formats, or computer systems (Ghotiya

et al., 2017). In a NoSQL database, data migration not only

includes data transfers from one database to another but also

requires adaptation of structures and models that fit the final

database without affecting data accuracy and integrity (Wijaya

& Akhmadarman, 2018).

For data migration strategy, the following procedure were

developed:

I.Planning. In this step, it was determined how to develop

the migration process, for this, the entity–relationship

model and the NoSQL database schemas proposed in each

strategy were used. Python scripts were built to fill each

collection.

II.Records counter. The records that required to be migrated

were counted from the SQL database and it was chosen in what

collection should be stored inside the NoSQL database.

II.Data type mapping. All SQL schema fields were formatted

into a valid data type, to be later migrated into non-relational

schemas.

IV.Implementation. Migrated-scripts execution in Python.

V.Monitoring. Verification in the information subject to

migration. The number of records in the SQL databases was

compared with the number of records migrated. Also, the

records in both systems were consulted to study whether the

information returned was the same.

Additionally, a workload-based approach was employed

(Beach et al., 2020), by a set of predefined queries, representative

of the tasks performed in the job-seeking systems.

4.3.3. Workloads

Once each data model was designed, an implementation

process was developed for each database technologies

respectively. To compare the characteristics that are the object

of study, three data repositories were created for each model;

each database was differently according their number of

records stored. For each PostgreSQL database, all the

information was migrated to the schemas created in MongoDB

(Antaño et al., 2014). Table 1 shows data distribution in the

relational databases.

For the implementation of the non-relational schemas, we

created three databases for each NoSQL data model in

MongoDB. To populate the databases in MongoDB, the process

of migrating data from SQL systems to NoSQL described above

was performed. Table 2 shows data distribution in the non-

relational databases after migration.

For models comparative analysis, a test plan was designed

according to the method for software testing proposed by the

Software Testing Qualifications International Board

(ISTQB® International Software Testing Qualifications

Board, 2019). The procedure followed to develop the tests

is described in Figure 5.

Mary Carlota Bernal, Yeimer Molina/ Journal of Applied Research and Technology 306-319

Vol. 20, No. 3, June 2022 312

Figure 5. Testing procedure.

In this procedure, each test case is selected and run. In

case of problems in its execution, the failure is documented

and corrected. The procedure also included the document

verification process in terms of quantity and structure, to

assess the integrity of the data returned in both architectures.

4.3.4. Metrics

Testing cases were oriented for both functionality and efficiency

criteria established by the Systems and software Standard

Quality Requirements and Evaluation (SQuaRE) (ISO, 2014):

• Functionality defined as the satisfaction of need

expression and measured by the adequacy and accuracy.

• Efficiency, associated with the response time exhibited by

the different data models

The test cases were built using the operations allowed in the

structured query language. Table 3 lists the scope of the test

plan established for the study and shows the implementation

used to evaluate each functionality in every single data model.

In each test case it was verified:

• The application stores the transaction information in the

application database and displays them correctly to the user.

Table 1. Data distribution in relational databases.

Table name
DB0 DB1 DB2

Records Mb # Records Mb # Records Mb

Job seeker 50.000 14 500.000 138 1.500.000 422

Job seeker profile 50.000 27 500.000 266 1.500.000 798

Education 100.261 34 850.380 284 2.349.904 785

Work experience 99.487 33 675.467 226 1.675.350 560

Skill 150.267 45 1.000.088 301 2.999.892 902

Application 100.964 10.9 635.467 63 3.051.520 309

Company 10.000 3.2 200.031 64 725.058 234

Company profile 10.000 4.7 200.031 91 725.058 329

Testimonial 19.854 6.6 299.629 97 1.087.813 350

Job 50.268 19 1.000.000 419 3.000.000 1258

Job type 5 0.031 11 0.031 11 0.031

Industria 62 0.031 5062 0.56 5062 0.56

Table 2. Data records distribution in NoSQL databases.

Collections nosql#1-0 nosql#1-1 nosql#1-2 nosql#2-0 nosql#2-1 nosql#2-2

Job seeker 50.000 500.000 1.500.000 50.000 500.000 1.500.000

Company 10.000 200.031 725.058 10.000 200.031 725.058

Job 50.268 1.000.000 3.000.000

Mary Carlota Bernal, Yeimer Molina/ Journal of Applied Research and Technology 306-319

Vol. 20, No. 3, June 2022 313

• No information was lost in the process.

•Neither partially-performed nor aborted operation

information was saved by the application.

For this reason, the pass / fail criteria applied to test cases were:

• Functionality tests:

◌ Step: The number of records returned in the queries

made by each used data schema, match. In the case of non-

coincidence, a check of the results set of records was

developed, verifying the returned information is the same.

◌Failure: If the number of elements returned in the

schemas differ or the information returned is not the same.

• Efficiency tests:

◌ Step: If the query executed is successful.

◌ Failure: If the query executed has some error.

5. Results

When cases test execution ran, metrics were performed as key

performance indicators for both model evaluation and

comparison. Table 4 shows the formal specification of the

metric. We presented the goal, the method followed for its

measurement and the calculation formula.

After measuring, we obtained the following results:

• Adequacy, 95% of the evaluated functionalities comply

with the NoSQL schemas concerning the SQL schema, and

there are certain limitations regarding joins, specifically in

inner joins between collections. Table 5 shows the results.

In Table 5, (A) represents the number of cases that failed out of the

number of possible cases (B). We can see that MongoDB presented

limitations in the union operations. This limitation was related to the

design strategy that handles more than one collection.

◌ Results accuracy measured with the AC1 metric. In Table

6 and Table 7, (A) represents the number of test cases where

the number of records does not match and (B) the number of

test cases developed.

Results in Table 6 and Table 7 shows that:

◌ Schema-based in three collections (NoSQL #1): there was

a difference in the unions, observing that 33% of returned

records was the same concerning the SQL schema. These

results were achieved with $lookup operator, which, together

with the operator $match, recreate an inner join between

collections. The missing percentage, 66.7%, is due to: a)

absence of records when performing a left join between

collections and b) an inner join was simulated when

performing two independent queries.

◌ Schema-based on two collections (NoSQL #2): only in the

unions, the number of returned records does not match those

returned by SQL schema (according to the queries executed in

the test cases), and it was observed the consulted records are

returned in a single document due to their modeling form.

◌ For both schemas, in terms of record aggregation, row

modification, logical and comparison operators, the number

of returned records is the same for SQL schema.

• Accuracy measured through AC2 metric (returned records)

are shown in Table 8:

◌ In the case of combine rows from two or more tables,

based on a related column between them (joins) for the three-

collection schema (NoSQL #1), 66.7% of the records match

those returned by the SQL schema. The remaining 33.3% was

due to the returned records differed in the left join between

collections.

Table 3. Test plan scope.

Category SQL statements and operators MongoDB implementation

Logical operators And, or, not $and, $or, $not

Record aggregation Group by, having, count, avg $group, count, $sum, $avg, $match

Comparison operators Between, >,<,>=,>=, in, not in, like $gte, $lte, $gt, $eq, $in, $nin, $regex

Unions Inner join, left join
Two independent consultations |

operators $lookup y $match

Record modification Lower, upper, trunc $toLower, $toUpper, $trunc

DML statements Insert, update, delete
Insert, update, update_many, Delete,

delete_many

Record ordering Order by $sort

Restrictions Constraints Document validation

Database indexes Database indexes

Row selection Projection

Mary Carlota Bernal, Yeimer Molina/ Journal of Applied Research and Technology 306-319

Vol. 20, No. 3, June 2022 314

◌ On the other hand, the two-collection schema (NoSQL #2)

exhibited a 100% match with the SQL-schema results because

NoSQL#2 structure makes a collection's joint an unnecessary

step since information is returned as a single document.

• In terms of efficiency:

◌ In the relational database, different response times can be

obtained depending on the number of fields returned in the

query. When compared to the NoSQL # 1 model, this behavior

did not happen; that is, the differences between the response

times are minimal.

◌ The insertion of records in the NoSQL # 2 schema is faster

compared to the relational schema and NoSQL # 1; this is

because all the information is inserted in a single document

◌ To sort the fetched data, must be specified a limit of records

to return or define an index on the field on which sort is being

performed

◌ The response times obtained during the sorting of records in

the NoSQL schemas are considerably shorter compared to

those obtained in the relational model.

◌ In the relational model, response times when grouping

records can vary considerably depending on the number of

returned records grouped and the number of fields by which

they are grouped. When records exceed 50k, the processing

time decreases considerably between SQL schema and

NoSQL.

Results from test cases are summarized in Table 9.

We did an analysis of the database transactions through the

atomicity, consistency, isolation and durability properties, we

found that MongoDB guarantees these properties when

applications tend to handle all the information within a single

document. When it comes to transactions involving multiple

documents and multiple collections, MongoDB does not fully

secure ACID properties. NoSQL databases follow BASE

(Basically Available, Soft State, Eventual consistency)

principles. This fact means that, in the event of a failure, two

scenarios can occur: in the middle of some writing operation,

the changes applied up to the point of failure cannot be

reversed, and the users who are doing reading operations can

obtain a certain degree of inconsistency in the results they are

displaying. This behavior was evidenced in the three-

collections strategy model because the information of the

companies and the job offers are in different collections.

Table 4. Metrics specification.

Goal Method Test metric

Adequacy (AD): Verify how

complete is the functionality

provided by each database

system.

Count the number of missing

operators in the evaluation and

compare with the operators specified

in the test case

1 ≤ 𝑛 ≤ 12 𝑛 =
|𝑆|

2
 𝑦 𝑆 ⊆ C

C={and, or, not, =, >= , <= ,<, >,, group by, avg,

having, order by, in, like, lower, upper, trunc,

inner join, left join, insert, update, delete,

index, constraints}

Accuracy (AC1): Verify that the

number of records returned are

the same in each data model

Count the number of test cases where

the number of returned records do

not match and compare with the

number of test cases performed

𝑋 = (1 −
𝐴

𝐵
) ∗ 100

X= Percentage of test cases where the

number of returned records is the same.

A= number of test cases where the number of

records do not match

B= number of test cases developed

Accuracy (AC2) Verify that the

returned records are the same

in each data model

Count the number of test cases where

the returned records do not match

and compare with the number of test

cases performed

𝑋 = (1 −
𝐴

𝐵
) ∗ 100

X= Percentage of test cases where the

returned records are the same.

A= number of test cases where the records do

not match.

B= number of test cases developed

Efficiency (EF): Obtain response

times by testing certain

functionalities under some

conditions

T = Time calculated in microseconds
Direct metric

Mary Carlota Bernal, Yeimer Molina/ Journal of Applied Research and Technology 306-319

Vol. 20, No. 3, June 2022 315

Table 5. Adequacy results.

Functionality PostgreSQL MongoDB

A B X A B X

Logical

operators

0 3 100% 0 3 100%

Comparison

operators

0 5 100% 0 5 100%

Aggregation

functions

0 4 100% 0 4 100%

Records

modification

0 3 100% 0 3 100%

Unions 0 2 100% 1 2 50%

Constraints 0 1 100% 0 1 100%

DML

sentences

0 3 100% 0 3 100%

Database

indexes

0 1 100% 0 1 100%

Total 0 22 100% 1 22 95%

Table 6. Accuracy (AC1) metric results SQL Schema

 and NoSQL #1 schema.

Functionality

SQL Schema NoSQL #2

schema

A B X A B X

Logical operators 0 1 100% 0 1 100%

Comparison

operators

0 4 100% 0 1 100%

Aggregation

functions

0 4 100% 0 3 100%

Records

modification

0 2 100% 0 1 100%

Inner Joins 0 3 100% 1 1 0%

Total 0 14 100% 1 7 85.7%

Table 7. Accuracy (AC1) metric results SQL Schema

 and NoSQL #1 schema.

Functionality
SQL Schema NoSQL #1 schema

A B X A B X

Logical

operators

0 1 100% 0 1 100%

Comparison

operators

0 4 100% 0 4 100%

Aggregation

functions

0 4 100% 0 4 100%

Records

modification

0 2 100% 0 2 100%

Inner Joins 0 3 100% 2 3 33.3%

Total 0 14 100% 2 14 85.7%

Mary Carlota Bernal, Yeimer Molina/ Journal of Applied Research and Technology 306-319

Vol. 20, No. 3, June 2022 316

Table 8. Accuracy (AC2) metric results.

Functionality SQL Schema NoSQL #1 schema NoSQL #2 schema

A B X A B X A B X

Logical operators 0 1 100% 0 1 100% 0 1 100%

Comparison operators 0 4 100% 0 4 100% 0 1 100%

Aggregation functions 0 4 100% 0 4 100% 0 3 100%

Records modification 0 2 100% 0 2 100% 0 1 100%

Inner joins 0 3 100% 1 3 66.7% 0 1 100%

Total 0 14 100% 1 14 92.8% 0 7 100%

Table 9. Results efficiency test cases.

Functionality
Number of

records returned

Time SQL

schema

Time NoSQL #1

schema

Time NoSQL #2

schema

AND, OR , NOT
22.857 1.17 2.52 5.25

69.219 3.39 8.02 15.65

>=, <=, >, <
659.756 11.48 7.75 15.02

1.978.208 35.83 24.89 53.16

IN
94.455 1.59 2.04

Not Apply
281.299 4.34 6.13

LIKE
99.550 4.82 14.34

Not Apply
300.182 5.61 19.92

AVG, GROUP BY 1 variable
155 0.56 0.92 3.56

155 1.47 2.83 10.54

AVG, GROUP BY 2 variables
55.682 32.75 2.07 4.58

55.682 112.33 6.39 13.12

HAVING
258 0.56 2.62

Not Apply
8.332 2.32 5.56

ORDER BY
327.319 17.42

error Not Apply
1.057.029 63.70

ORDER BY
1000 5.58 1.12

Not Apply
1000 21.00 3.36

SELECT all columns
1000 1.60 1.23

Not Apply
1000 6.07 3.53

SELECT de 7 columns
1000 0.75 1.15

Not Apply
1000 2.00 3.75

INSERT de 50k records Not Apply 48.53 47.18 28.80

Mary Carlota Bernal, Yeimer Molina/ Journal of Applied Research and Technology 306-319

Vol. 20, No. 3, June 2022 317

6. Conclusions

In this study, we present a test model for database

architectures. To do this, we create relational and non-

relational database designs applied to an employment-

oriented online service. We use a structured method in four

phases: modeling (data schema development), population

(data schema implementation), development of a test plan

and metric evaluation. Our main contributions are in the

development of each phase.

Regard the data modeling strategy, initially we show a

relational design considering the requirements for the basic

operations of such a system. Then, two document-oriented

design strategies were proposed to know the scope and

limitations of each solution. For the relational data schema

was defined tables, attributes, relationships and constraints to

avoid redundancy and guarantee data integrity. In the case of

NoSQL schema, there is some flexibility in data modeling,

since it is not mandatory to have a predefined schema and

each document can have a different structure. However, to

improve its performance, it was important to define aspects

such as number of collections, unions between collections,

frequency of read and write operations on documents, data

duplication and advantages and disadvantages of embedded

documents.

For the development of test strategies for both relational

and non-relational databases, we use a framework for

migration from one environment to another. The migration

strategy for populating the NoSQL databases used Python

scripts to populate each collection. Monitoring was developed

through a record counter and a verification of the migrated

information.

Finally, we have conducted a metric-guided evaluation to

track results and provide recommendations for the different

database schemas implemented. In this evaluation, the

performance metrics used verify consistent transactions,

consistent data retrieval operators and flexibility in schema

design. The most important findings show that the queries

executed in NoSQL data schemas can have a different

structure and can depend on several factors: operators that

are implemented, modeling of each data schema, information

that the user wants to return in each query, the need or not to

link between collections to get the required records.

As a result of testing, the SQL schema provides increased

functionality by ensuring transaction compliance and data

integrity.

Regard the NoSQL schema structured in three collections,

certain limitations appear when making union between

collections and transaction limitations. However, in response

to bigdata processing, response times were very favorable,

although this model also has some level of data duplication.

The NoSQL schema based on two collections avoids the

need to perform join operations to get the result record set. As

all the information is practically in a single document, it is

possible to comply any transaction. Additionally, the inserts in

this model are fastest than the other designs.

The choice of the model that best suits the job-oriented

online service proposed for this study depends on the existing

needs, in case transactions and data integrity are essential

and response time can be sacrificed in some degree, it is

recommended to use the SQL schema. . If response times are

a fundamental part of the application, transactions are not

100% essential and data duplication is accepted, it is

recommended to use any of the NoSQL schemes, considering

the differences that exist between them. Another strategy

suggests migrating to a hybrid model that combines SQL and

NoSQL databases. According to (Sokolova et al., 2020), this

approach adds flexibility, mobility and efficiency to the

exposed data management system.

Conflict of interest

The authors have no conflict of interest to declare.

Financing

The authors received no specific funding for this work.

References

Antaño, A. C. M., Castro, J. M. M., & Valencia, R. E. C. (2014).

Migración de Bases de Datos SQL a NoSQL. Tlamati, Especial

3, 144-148. CICOM.

Beach, P. M., Langhals, B. T., Grimaila, M. R., Hodson, D. D., &

Engle, R. D. L. (2020). A Methodology to Identify Alternative

Suitable NoSQL Data Models via Observation of Relational

Database Interactions. Theses and Dissertations. 4339.

Bugiotti, F., Cabibbo, L., Atzeni, P., & Torlone, R. (2014). Database

design for NoSQL systems. Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 8824, 223–231.

https://doi.org/10.1007/978-3-319-12206-9_18

Codd, E. F. (1971). A data base sublanguage founded on the

relational calculus. In Proceedings of the 1971 ACM SIGFIDET

(now SIGMOD) workshop on data description, access and

control (pp. 35-68).

https://doi.org/10.1145/1734714.1734718

https://www.researchgate.net/profile/Rene-Cuevas-Valencia/publication/272482056_Migracion_de_Bases_de_Datos_SQL_a_NoSQL/links/54e543390cf276cec173c2b5/Migracion-de-Bases-de-Datos-SQL-a-NoSQL.pdf
https://www.researchgate.net/profile/Rene-Cuevas-Valencia/publication/272482056_Migracion_de_Bases_de_Datos_SQL_a_NoSQL/links/54e543390cf276cec173c2b5/Migracion-de-Bases-de-Datos-SQL-a-NoSQL.pdf
https://scholar.afit.edu/etd/4339/
https://scholar.afit.edu/etd/4339/
https://scholar.afit.edu/etd/4339/
https://doi.org/10.1007/978-3-319-12206-9_18
https://doi.org/10.1145/1734714.1734718

Mary Carlota Bernal, Yeimer Molina/ Journal of Applied Research and Technology 306-319

Vol. 20, No. 3, June 2022 318

Date, C. J. (2000). An Introduction to Database Systems:

eBook Addison-Wesley Longman Publishing Co., Inc. (7th Ed.).

Ercan, M. Z., & Lane, M. (2014). An evaluation of NoSQL

databases for EHR systems. In Proceedings of the 25th

Australasian Conference on Information Systems. Auckland

University of Technology, School of Business Information

Systems.

Fouad, T., & Mohamed, B. (2019). Model Transformation From

Object Relational Database to NoSQL Document Database.

In Proceedings of the 2nd International Conference on

Networking, Information Systems & Security (pp. 1-5).

https://doi.org/10.1145/3320326.3320381

Fraczek, K., & Plechawska-Wojcik, M. (2017). Comparative

analysis of relational and non-relational databases in the

context of performance in web applications. In International

Conference: Beyond Databases, Architectures and

Structures 716, 153-164.

https://doi.org/10.1007/978-3-319-58274-0_13

Ghotiya, S., Mandal, J., & Kandasamy, S. (2017). Migration from

relational to NoSQL database. In IOP Conference Series:

Materials Science and Engineering, 263(4), 042055.

https://doi.org/10.1088/1757-899X/263/4/042055

Han, J., Haihong, E., Le, G., & Du, J. (2011). Survey on NoSQL

database. In 2011 6th International Conference on Pervasive

Computing and Applications. 363-366. IEEE.

https://doi.org/10.1109/ICPCA.2011.6106531

Hows, D., Membrey, P., & Plugge, E. (2014). MongoDB Basics. In

MongoDB Basics. Apress.

https://doi.org/10.1007/978-1-4842-0895-3

Imam, A. A., Basri, S., Ahmad, R., & González-Aparicio, M. T.

(2019). Schema proposition model for NoSQL applications.

Advances in Intelligent Systems and Computing, 843, 30–39.

https://doi.org/10.1007/978-3-319-99007-1_3

Imam, A. A., Basri, S., Ahmad, R., Watada, J., & González-

Aparicio, M. T. (2018). Automatic schema suggestion model for

NoSQL document-stores databases. Journal of Big Data, 5(1),

46. https://doi.org/10.1186/s40537-018-0156-1

ISO. (2014). ISO/IEC. Systems and software engineering —

Systems and software Quality Requirements and Evaluation

(SQuaRE) — Guide to SQuaRE.

https://www.iso.org/obp/ui/#iso:std:iso-iec:25000:ed-2:v1:en

ISTQB® International Software Testing Qualifications Board.

(2019). Downloads - ISTQB® International Software Testing

Qualifications Board. https://www.istqb.org/downloads.html

Kumar, M. S., & . Jayagopal, P.. (2018). Comparison of

NoSQL Database and Traditional Database-An emphatic

analysis. JOIV : International Journal on Informatics

Visualization, 2(2), 51.

https://doi.org/10.30630/joiv.2.2.58

Marqués, M. (2011). Bases de datos (Publicacions de la

Universitat Jaume I. Servei de Comunicació i Publicacions

(Ed.); Primera edición).

Mearaj, I., Maheshwari, P., & Kaur, M. J. (2019). Data conversion

from Traditional Relational Database to MongoDB using

XAMPP and NoSQL. In 2018 Fifth HCT Information Technology

Trends (ITT) (pp. 94-98). IEEE.

https://doi.org/10.1109/CTIT.2018.8649513

Elmasri Ramez, & Navathe Shamkant (2022). Fundamentals of

Database Systems. eBook. In S. Dissano (Ed.), USA (7th ed.).

Pearson.

Paredaens, J., De Bra, P., Gyssens, M., & Van Gucht, D. (1989).

Relational Database Model. In The Structure of the Relational

Database Model. EATCS Monographs on Theoretical Computer

Science, vol 17.

https://doi.org/10.1007/978-3-642-69956-6_1

Scherzinger, S., Klettke, M., & Störl, U. (2013). Managing

schema evolution in NoSQL data stores.

https://doi.org/10.48550/arxiv.1308.0514

Schreiner, G. A., Duarte, D., & dos Santos Mello, R. (2020).

Bringing SQL databases to key-based NoSQL databases: a

canonical approach. Computing, 102(1), 221-246.

https://doi.org/10.1007/s00607-019-00736-1

Sokolova, M. V., Gómez, F. J., & Borisoglebskaya, L. N. (2020).

Migration from an SQL to a hybrid SQL/NoSQL data model.

Journal of Management Analytics, 7(1), 1–11.

https://doi.org/10.1080/23270012.2019.1700401

The PostgreSQL Global Development Group (2013).

The world’s most advanced open source database.

 https://www.postgresql.org/

Tziatzios, D. (2019). Model-based Testing for SQL Databases.

http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-269424

https://www.amazon.com/-/es/Ramez-Elmasri-ebook-dp-B09RTFSBRF/dp/B09RTFSBRF/ref=mt_other?_encoding=UTF8&me=&qid=
https://www.amazon.com/-/es/Ramez-Elmasri-ebook-dp-B09RTFSBRF/dp/B09RTFSBRF/ref=mt_other?_encoding=UTF8&me=&qid=
https://eprints.usq.edu.au/26225/7/Ercan_Lane_ACIS2014_PV.pdf
https://eprints.usq.edu.au/26225/7/Ercan_Lane_ACIS2014_PV.pdf
https://eprints.usq.edu.au/26225/7/Ercan_Lane_ACIS2014_PV.pdf
https://eprints.usq.edu.au/26225/7/Ercan_Lane_ACIS2014_PV.pdf
https://eprints.usq.edu.au/26225/7/Ercan_Lane_ACIS2014_PV.pdf
https://doi.org/10.1145/3320326.3320381
https://doi.org/10.1007/978-3-319-58274-0_13
https://doi.org/10.1088/1757-899X/263/4/042055
https://doi.org/10.1109/ICPCA.2011.6106531
https://doi.org/10.1007/978-1-4842-0895-3
https://doi.org/10.1007/978-3-319-99007-1_3
https://doi.org/10.1186/s40537-018-0156-1
https://www.iso.org/obp/ui/%23iso:std:iso-iec:25000:ed-2:v1:en
https://www.istqb.org/downloads.html
https://doi.org/10.30630/joiv.2.2.58
https://www.uji.es/serveis/scp/base/publ/proser/cataleg/sapientia/
https://www.uji.es/serveis/scp/base/publ/proser/cataleg/sapientia/
https://www.uji.es/serveis/scp/base/publ/proser/cataleg/sapientia/
https://doi.org/10.1109/CTIT.2018.8649513
https://www.amazon.com/-/es/Ramez-Elmasri-ebook-dp-B09RTFSBRF/dp/B09RTFSBRF/ref=mt_other?_encoding=UTF8&me=&qid=
https://www.amazon.com/-/es/Ramez-Elmasri-ebook-dp-B09RTFSBRF/dp/B09RTFSBRF/ref=mt_other?_encoding=UTF8&me=&qid=
https://www.amazon.com/-/es/Ramez-Elmasri-ebook-dp-B09RTFSBRF/dp/B09RTFSBRF/ref=mt_other?_encoding=UTF8&me=&qid=
https://doi.org/10.1007/978-3-642-69956-6_1
https://doi.org/10.48550/arxiv.1308.0514
https://doi.org/10.1007/s00607-019-00736-1
https://doi.org/10.1080/23270012.2019.1700401
https://www.postgresql.org/
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-269424

Mary Carlota Bernal, Yeimer Molina/ Journal of Applied Research and Technology 306-319

Vol. 20, No. 3, June 2022 319

Wijaya, Y. S., & Arman, A. A. (2018). A framework for data

migration between different datastore of NoSQL database.

In 2018 International Conference on ICT for Smart Society

(ICISS) (pp. 1-6). IEEE.

https://doi.org/10.1109/ICTSS.2018.8549944

Zafar, R., Yafi, E., Zuhairi, M. F., & Dao, H. (2016, May). Big data:

the NoSQL and RDBMS review. In 2016 International

Conference on Information and Communication Technology

(ICICTM) (pp. 120-126). IEEE.

https://doi.org/10.1109/ICICTM.2016.7890788

https://doi.org/10.1109/ICTSS.2018.8549944
https://doi.org/10.1109/ICICTM.2016.7890788

