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ABSTRACT

In this work, we present the elimination of a saddle-node bifurcation in a basic power system using a PID
controller. In addition, a stability analysis of the rotor angle and its frequency, which are directly related to

voltage collapse problem, is presented.

RESUMEN
En este trabajo se presenta la eliminacién de una bifurcacion de un nodo tipo “Saddle” en un sistemade

potencia basica utilizando un controlador PID. Asimismo se presenta el analisisde edabilidad del angulo del
rotor y de su frecuencia que estan directamente relacionadas con el problema de colapso del voltaje.
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1. INTRODUCTION

Voltage collapse in electric pow er systems has recently received significant attention in the literature. This
has been attributed to increases in demand that result in operation of electric pow er system close to its
stability limits. In several papers, for example [1, 2, 3, 4, 5], voltage collapse is related to a saddle-node
bifurcation of an equilibrium point, w hich occurs w hen the real or reactive pow er demand is quasistaticaly
varied. Some other types of bifurcations present in a voltage collapse are Hopf, period-doubing, and cycic
bold types; furthermore, the system may display even chaotic behavior. Several previous w orks have
proposed some procedures to control these bifurcations [1,7,9]; how ever, they have been focused on
bifurcation control of periodic solutions.

Voltage collapse is a systeminstability that involves many pow er system components and their variables.
This phenomenon often involves the entire pow er system. Indeed, the rotor angle of the machine is the
main variable involved in a voltage collapse. For this reason, there is not difference betw een a voltage
collapse, angle collapse and classical instability.

The main difference betw een a voltage collapse and classical transient stability is that the voltage colapse
focuses on loads and voltage magnitudes, w hereas classical transient stability focuses on generators and
angles. In addition, voltage collapse often includes longer time scale dynamics as w ell as the effects of
discrete events such as line outages.
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A voltage collapse can be seen as a saddle-node bifurcation of equilibrium points. A saddle-node
bifurcation is a disappearance of equilibrium points as a parameter value changes slow ly. The sadde-node
bifurcation of most interest occurs when the equilibrium point w here the pow er system operates
disappears. As a saddle-node bifurcation can produce a voltage collapse, it is useful to study this
phenomenon to understand and avoid it.

In this w ay, the w ork reported in this paper presents the elimination of a saddle-node bifurcationinabasic
pow er system proposed in [6] using a classical PID controller. We found the conditions thatthe systemand
the controller must satisfied such that this elimination can be achieved. Also, w e analyze the stabiity of the
rotor angle and its frequency, w hich are directly related to the voltage collapses. In this way one can expect
that the results obtained here could be extended to more general systems displaying these undesirable
phenomena.

2. APOWER SYSTEM MODEL

The equation that describes the rotor motion of a synchronous generator is

JO=T, Nem, 1)

w here J is the equivalent inertial momentum of all the loads attached to the rotor, @ is the mechanicalange
of the shaft, measured w ith respect to a static framew ork, and T, is the resultant torque driving the axis.
The machine is a generator, so the driven torque T,,is mechanical and the reacting torque is an electric
torque, so that

I =7 -T

a m e’

A positive mechanical torque accelerates the rotor, while a positive reacting torque decelerates the
machine. If w e consider a synchronous rotating reference framew ork moving w ith aconstantspeed wx, the
angle @ can be expressed as

o9=(a)Rt+a)+5m,

w here « is a constant and &, is the angular difference betw een the mechanical angle and the moving
frame. Hence, equation (1) is transformed to

JS =Jom=T -T . (2)

w here wg is the derivative of &,. By multiplying both sides of (2) by wg w e obtain a description in terns of
pow er, that is

o J6 =0 T —-o T -0 T =P —-P, (3)
m m m a m m m e m e
w here Jwg, denoted by M, is called the inertia constant, and P,, and P, are the mechanical and electrical

pow er, respectively.

Let us consider a system composed by tw o simple generators connected as show n infigure (1), the pow er
supplied by the source E./6,,is given by
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P :ﬂsiné R
e X m

w here Xis the load.
1/0

T Ty

X
E@@ (B v/ 0

Figure 1. A basic power system.

If a dissipation component Dw inherent to the machine is added, then the model of this basic pow er system
is given by

5=0
(4)

1 EV
w —{P ——sin(d) - Da)}
M| m X

3. A SADDLE-NODE BIFURCATION

From equation (4), w e see that the equilibrium point is given by

P X
o =0, & =arcsin—2 (5)
0 0 EV

If w e take as parameter the reactance X, it can seen directly from this expression that the systemhas a
saddle-node bifurcation at the points (X,9)=(£1, +7/2).
The Jacobian matrix of (4), evaluated at the equilibrium point (5) is

0 I
A ( .Pij D (6)
arcsin

——CO0S
Ox MX M

w hich has the eigenvalues

(7)

2
P X
/112=£ -1+ 1—4MZEV 1—{ mn J

From Eq. (7) it can be seen that a zero eigenvalue exist w hen X=#EV/P,,; these values are candidates o
be bifurcation points.

The existence of the saddle-node bifurcation can be proved analytically w ith Sotomayor’s theorem[8]. This
theorem establishes the follow ing conditions to have this kind of bifurcation,
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a)T[ij #0,
o0

w here v and o are egenvectors corresponding to the zero eigenvalue of matrix A (equation (6) and A’,
respectively), and the subindex 0 denotes the evaluation at the equilibrium point. They are given by

fromw here
2
P
a)T(z\J =M 9
06 VD
and

Therefore, the conditions established by Sotomayor’s theorem are satisfied, and the systemdisplays a
saddle-node bifurcation at the point

PV
~ (B vE
(6()0,50,)(0 )—[0, arcsm[ VTG ],P—]

m

4. CONTROL OF A SADDLE-NODE BIFURCATION USING A PID CONTROLLER

Let us consider that the mechanical pow er is given by P,=P,+v, w here P, is a nominal input and vis an
adjustment w ith control purposes that can be expressed as v=Mu, therefore the system (4) transfoms to

wzi{P —Lsiné' —Da)}+u
0 x m

The controller proposed has the structure show n in figure 2, w here the input control u is given by
t

u:kpe+kde+(_|;edt (9)

w here e=6,¢-6 ,is the error and Jsis a constant reference angle.
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& w }°—m PID | —» Plant -

Figure 2. A block diagram of the closed-loop system.

The system (8) can be reduced to a differential equation given by

m

o v
o —M[P0—751n5m—Da)}+u (10)

| Vo ) . . . ) (11)
6 ==——|-=—06 cos6 -DS |-k 6 -k, 0 +k|O .—-0
m M X m m m p m d m i\ ref m

Now , the system (11) has the new state space form given by

X =, (12)

w here x,=6,, X,=w and x;=@ .
4.1 Equilibrium points
From equation (12) w e see that the equilibrium points are given by

X =5ref’ Xy =O,x3 =0.

From this expression and using the implicit function theorem, it is possible to see that this is the only
equilibrium point; therefore, a saddle-node bifurcation cannot be presented anymore.

5. STABILITY ANALYSIS OF THE CLOSED-LOOP SYSTEM

The Jacobian matrix of the system (12) is given by

0 1 0
A= 0 0 1
Voo 14 D
_ki +Wsm(x1)x2 —{kp +Wcosxl} —{kd +H}

w hich, evaluated at equilibrium point x ;=6 X»=0, Xx3=0, results in
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0 1 0
A=| 0 0 1
vV D
-k. -k + coso |k, +—=
i {p MX f} {d M}

This matrix has the characteristic polynomial

Z3+(k +£J22+(k + v coso .]Z+k.—0.
d M P MX ref i

Let us consider a numerical example given by the values V=1, D=M=0.5 proposed in [6], and k,=k=k;=T1.
This leads to the characteristic polynomial

734272 +(1+%cos5 jz+1 -0.

ref

Using the Routh-Hurw itz criteria and, considering that . is limited to 0 < Jr< 772, the follow ing stability
conditions are obtained

(1+icos5
X

refj>03X¢0&X>—2, (13)

icos5 +0.5>0=>X#0& X > 4. (14)
x e

Because Xis positive, then the conditions (13) and (14) are alw ays satisfied by the closed-loop system

Figures (3) and (4) show the behavior of the last tw o expressions, show ing that the stability of the closed-
loop system does not depend on the parameter values.

at
18 ; '
16 ]
14 ]
12 ]

10 ]

N &= O

\ \

Figure 3. Graph of f = 1 +2/X cos &, (condition (13)).
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1 2 _ 3 4  351050605-113

Figure 4. Graph of f = 0.5 +2/X c0s &, (condition (14)).

Figures (5) and (6) show tw o numerical simulations, for §,./~0 and J./~7/2. We can see that the angle &,
follow s the reference J,; and w—0 as t—»=.
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Figure 5. Response of the controlled system for 6,~0 and X=2.
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Figure 6. Response of the controlled system for d.~7/2 and X=2.
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6. CONCLUSIONS

In this paper w e have analytically proved the existence of saddle-node bifurcations in a sinpified model of
a pow er system. This dynamical phenomenon is related to voltage collapses.

We have also proved that the introduction of a simple classical PID controller can eliminate this type of
bifurcation, eliminating at least partially the possibility of having collapses in the system.

A pow er systemis very complicated, so we can expect that a real process will present many more
complex phenomena, as is indeed the case. The preliminary analysis presented here could be useful,
how ever, to define a systematic way to analyze the conditions to have dangerous behaviors of these
important processes, and to envisage some possible form to avoid, or at least to delay these high-risk
situations.
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