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Abstract: In this paper, the estimation of the stress-strength model R = P(Y < X), based on lower 

record values is derived when both X  and  Y are independent and identical random variables with 

geometric distribution. Estimating R with maximum likelihood estimator and Bayes estimator with 

non-informative prior information based on mean square errors and LINIX loss functions for geometric 

distribution are obtained. The confidence intervals of R are constructed by using exact, bootstrap and 

Bayesian methods. Finally, different methods have been used for illustrative purpose by using 

simulation. The main results are obtained and introduced through a set of tables and figures with 

discussions. 
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1. Introduction 
 

The stress-strength model is one of the applied model in 

reliability, which has important practices in many fields 

especially in engineering applications. The statisticians deal 

with this model as X  is strength and Y is a stress and the 

system working if, and only if, at any time the applied stress is 

lower than its strength. This model can be expressed as 

reliability functionR = P(Y < X), where X and Y are 

independent and identical random variables. To estimate the 

reliability values in this model, we should first estimate the 

parameters of stress Y and strength X by using different 

methods of estimations, Hassan, Muhammed, and Saad 

(2015), Nkemnole and Samiyu (2017). 

In geometric distribution, the probability of success is 

assumed to be the same for each trial. In such a sequence of 

trials, the geometric distribution is useful to model the number 

of failures before the first success. The distribution gives the 

probability that there are zero failures before the first success, 

one failure before the first success, two failures before the first 

success, and so on, Pitman (1993), Walck (2007). 

The record values can be classified into lower and upper 

values, where the observer Xi is called lower value if it is 

smaller than all pervious subjects to experience. In other side, 

if Xj is exceed all the subjects to experience, it will call upper 

record. 

Record values have been discussed in the statistical 

literature by many authors who explained how rerecord values 

are important in many fields. Chandler (1952) explained how 

the record values, record times and the inter record times 

based on the record values are obtained and used to form a 

model of extremes sequence of independent and identical 

distributed random variables. The record values and its kinds 

have introduced in Nagaraja (1988), Ahsanullah (1995, 2004 ). 

Many authors have been focused on the stress-strength 

model R and they tried  to apply it in  different cases of studies.  

Birnbaum (1956), Kundu and Gupta (2005, 2006), Razaei, 

Tahmasbi, and Mahmoodi (2010), Hussian, (2013)  studied the 

estimation of R for different distributions. The recorded values 

and more studies about R with different distributions and 

different methods of estimation found in Baklizi (2008, 2014), 

Essam (2012), Tarvirdizade, and Kazemzadeh Garehchobogh 

(2014). 

This paper is organized as follows. In Section 2, maximum 

likelihood estimates and exact confidence interval of R are 

studied. Also, the asymptotic bootstrap confidence interval of 

R is established. In Section 3, the Bayes estimates of R against 

both squared error and LINEX loss functions are studied. Also, 

Bayes confidence interval is obtained. In Section 4, steps of 

simulation study are proposed. Results and discussion are 

shown in Section 5. Finally, conclusions appear in Section 6. 

 

2. Likelihood inferences 
 

In this section, maximum likelihood estimator (MLE) and 

confidence interval of R are derived. Also, the asymptotic 

bootstrap confidence interval of R is obtained. 

 

2.1. Maximum likelihood estimator of R 

According to Mohamed (2015), let Y be stress for the model of 

stress-strength is subjected to X as strength of the model. 

Assume X~P(X, P1) and Y~P(Y, P2) have geometric 

distribution with 𝑥 ∈ {1,2,3, … . } and  0 < 𝑝1 < 1. 

 

𝑝(𝑥) = (1 − 𝑝1)𝑥−1 𝑝1                                                                       (1) 

 

𝐹(𝑥) = 1 − (1 − 𝑝1)𝑥                                                                        (2) 

 

where p(. )  And F(. ) are the probability and cumulative 

density function. 

Then the reliability function 

 

𝑅 =  
𝑃2

𝑝1+ 𝑝2− 𝑝1 𝑝2
                                                                                          (3) 

 
Let  𝑟 = (𝑟0, … … . , 𝑟𝑛) be the first independent set of lower 

record of data with size (𝑛 + 1)from strength with geometric 

distribution with parameter 𝑝1  and 𝑠 = (𝑠0, … … . , 𝑠𝑚) have 

the same features but with size (𝑚 + 1) from stress with 

geometric distribution with parameter  𝑝2.  

The likelihood function for both r and s are given by Arnold, 

Balakrishnan and Nagaraja (1998): 

 

 𝐿1(𝑝1|𝑟  ) = 𝑝(𝑟𝑛) ∏
𝑝(𝑟𝑖)

𝐹(𝑟𝑖)

𝑛−1
𝑖=0  ,   0 < 𝑟𝑛 < 𝑟𝑛−1 < ⋯ < 𝑟0 < ∞  

                                                                                                                      (4) 

and 

 

 𝐿2(𝑝2|𝑠  ) = 𝑝(𝑟𝑚) ∏
𝑝(𝑠𝑗)

𝐹(𝑠𝑗)

𝑚−1
𝑗=0  ,   0 < 𝑠𝑚 < 𝑠𝑚−1 < ⋯ < 𝑠0 < ∞.  

                                                                                                                      (5) 

 

The likelihood function of the observed record values  r 

and s are: 

 

𝐿1(𝑝1|𝑟  ) = (1 − 𝑝1)𝑟𝑛−1𝑝1
𝑛+1 ∏

(1−𝑝1)𝑟𝑖−1

(1−(1− 𝑝1))𝑟𝑖

𝑛−1
𝑖=0                    (6) 

 

and 

 

𝐿2(𝑝2|𝑠)  = (1 − 𝑃2)𝑆𝑛−1𝑃2
(𝑚+1)

 ∏
(1−𝑝1)

𝑠𝑗−1
 

(1−(1− 𝑝1))
𝑠𝑗

𝑚−1
𝑗=0              (7) 

 
Therefore, the joint log-likelihood function of r and s 

denoted by l is: 
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The maximum likelihood estimators of 𝑝1 and 𝑝2 are �̂�1 and 

�̂�2 according to the observed lower record values are 

obtaining by solving the equations as follow: 

 
𝜕ℓ

𝜕𝑝1
=  

[−(𝑟𝑛−1)− ∑ (𝑟𝑖−1)] 𝑛
𝑖=0  

(1−𝑝̂̂1 )
+  

(𝑛+1) 

𝑝̂̂1
= 0                            (9) 

 

and 

 

∂ℓ

∂p2
=  

[−(sm−1)− ∑ (sj−1)] m
j=0

(1−p̂̂2 )
+  

(m+1) 

p̂̂2

= 0                         (10) 

 

From (9) and (10), P̂1 and P̂2 are obtained as follow: 

 

 �̂̂�
1

=  
(𝑛+1) 

(𝑟𝑛−1)+ (𝑛+1)+∑ (𝑟𝑖−1) 𝑛
𝑖=0

  ,  

                                                                                                                    (11) 

 �̂̂�
2

=  
(𝑚+1) 

(𝑠𝑚−1)+ (𝑚+1)+∑ (𝑠𝑗−1) 𝑚
𝑗=0

  

 

Hence, the maximum likelihood estimator of of R, denoted 

by R̂ML , is given by substitution �̂�1 and �̂�2 in  Eq. 3 as follows: 

 

Ȓ𝑀𝐿 =  
 𝑝̂̂2

 𝑝̂̂1+ 𝑝̂̂2−  𝑝̂̂1 𝑝̂̂2 
                                                                    (12) 

 

2.2. Exact confidence interval of R 

In this subsection, exact confidence interval of R based on the 

asymptotic properties and the general conditions of the MLE 

of  �̂�1 and p̂2 is obtained (Lehmann, 1999). The asymptotic 

distribution of the MLE immediately comes from the Fisher 

information matrix of 𝑝1 and 𝑝2. That is,  

 

As  𝑛, 𝑚 → ∞ and 
𝑛

𝑚
→ 𝑘 , where 0 < 𝑘 < 1 , then [√𝑛(�̂�1 −

𝑝1), √𝑚(�̂�2 − 𝑝2)]
𝐷
→ 𝑁2(0, 𝛿(𝑝)), )  

 

where 

 

𝛿(𝑝) = 𝐼−1(𝑝) = (
𝐼11 𝐼12

𝐼21 𝐼22
)

−1

 

 

and the matrixI(𝑃) is the Fisher information matrix of the 

parameter vector 𝑃 = (𝑝1, 𝑝) . 

The (ij)th element is defined as the second partial 

derivatives: 

 

𝐼𝑖𝑗 =
𝜕2𝑙(𝑃)

𝜕𝑃1𝜕𝑃2
, 𝑖, 𝑗 = 1,2 

From the asymptotic properties of the MLEs of P1, P2, one 

can easily get 

 

√𝑛(�̂� − 𝑅) = √𝑛 (
 �̂̂�2

 �̂̂�1+ �̂̂�2−  �̂̂�1 �̂̂�2 
−

𝑃2

𝑝1+ 𝑝2− 𝑝1 𝑝2
)

𝐷
→ 𝑁2(0, 𝜎2)  

                                                                                                                    (13) 

where 

 

𝜎2 = 𝐸(
√𝑛 �̂̂�2

 �̂̂�1+ �̂̂�2−  �̂̂�1 �̂̂�2 
−

√𝑛𝑃2

𝑝1+ 𝑝2− 𝑝1 𝑝2
)2                                       (14) 

 
The maximum likelihood (1 − α) 100% confidence interval of 

R is given by:  

 
�̂� ± 𝑍1−

𝛼

2
�̂�                                                                                              (15) 

 
where σ̂ is the asymptotic standard deviation of R. 

 

2.3. Asymptotic bootstrap confidence interval 
In this subsection, the asymptotic bootstrap confidence 

interval of R is derived. Kotz and Pensky (2003) proposed the 

bootstrap method as an alternative way to construct a 

confidence interval.  

The algorithm of the (1 − α) 100% confidence interval for R 

by using bootstrap method is illustrated below:  

 
1- Use the estimators �̂�1 and �̂�2 in inverse of distribution of 

𝑝1 and𝑝2  to estimate the bootstrap sample 𝑋1
∗, … … , 𝑋𝑛

∗  and 

𝑌1
∗, … … , 𝑌𝑚

∗ , then compute the estimated value of R by MLE 

which is shown in Eq. 12.  

 
2- Calculate the bootstrap MSE by: 

 

𝑀𝑆�̂�𝐵 =
1

𝑁
∑ (�̅�𝑗 − �̅�)𝑁

𝑘=1                                                                     (16) 

 
3- The asymptotic (1 − α) 100% confidence interval is 

obtained by: 

 

(�̅� − 𝑍𝛼

2

√𝑀𝑆�̂�𝐵, �̅� + 𝑍𝛼

2

√𝑀𝑆�̂�𝐵)                                                (17) 

 

3. Bayesian inferences   

 
In this section, the Bayes estimator of R is calculated by the 

mean squared error and LINEX loss functions. Also, Bayes 

confidence interval for R is obtained. 

ℓ =  (𝑟𝑛 − 1) 𝑙𝑜𝑔   (1 − 𝑝1) + (𝑛 + 1) 𝑙𝑜𝑔   𝑝1 + (𝑠𝑚 − 1)𝑙𝑜𝑔   (1 − 𝑝2) +  
 

(𝑚 + 1)𝑙𝑜𝑔   𝑝2 + 𝑙𝑜𝑔  ∏ (1 − 𝑝1)𝑟𝑖−1 𝑛−1
𝑖=0  ∏ (1 − 𝑝2)𝑠𝑗−1 𝑚−1

𝑗=0    

                                                                                                                                                                                                                                                     (8) 
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3.1. Bayes estimator of R based on mean square errors 

loss function 

To get the Bayes estimator of  �̂�1 and �̂�2 based on the mean 

square errors, we used the non-informative prior information for 

choosing the prior distributions. The steps to find the Bayesian 

estimator of �̂�1 and �̂�2, respectively, Mohamed (2015).  

The non-informative priors of 𝑝1  and 𝑝2 by using Fisher 

information matrix for P1  and P2 are calculated as follows 

 

𝐼(𝑃1) = −𝐸 (
𝜕2𝑙(𝑃1)

𝜕𝑃1
2 ) , 𝐼(𝑃2) = −𝐸 (

𝜕2𝑙(𝑃2)

𝜕𝑃2
2 )   

 

The prior distributions by non-informative of 𝑝1  and 𝑝2 are 

 

𝜋(𝑝1)  ∝   
1

𝑝1
, 𝜋(𝑝2)  ∝   

1

𝑝2
                                                        (18) 

 

The posterior distributions of 𝑝1  and 𝑝2, denoted by 

𝜋∗(𝑝1) and 𝜋∗(𝑝2), are obtained by combining Eq. 6, Eq. 7 and 

Eq. 18 as follows 

 

𝜋∗(𝑝1) =   
(1− 𝑝1)𝑟𝑛−1𝑝1

𝑛 ∏
(1−𝑝1)𝑟𝑖−1

(1−(1− 𝑝1))𝑟𝑖
𝑛−1
𝑖=0  

∫ (1− 𝑝1)𝑟𝑛−1𝑝1
𝑛 ∏

(1−𝑝1)𝑟𝑖−1

(1−(1− 𝑝1))𝑟𝑖
𝑛−1
𝑖=0

1

0
𝑑𝑝1

,                 (19) 

 

𝜋∗(𝑝2) =   
(1− 𝑃2)𝑆𝑛−1𝑃2

𝑚  ∏
(1−𝑝1)

𝑠𝑗−1
 

(1−(1− 𝑝1))
𝑠𝑗

𝑚−1
𝑗=0

∫ (1− 𝑃2)𝑆𝑛−1𝑃2
𝑚  ∏

(1−𝑝1)
𝑠𝑗−1

 

(1−(1− 𝑝1))
𝑠𝑗

𝑚−1
𝑗=0

1

0
𝑑𝑝2

.              (20) 

 

The Bayes estimates of 𝑝1  and 𝑝2, , under mean squared 

error loss function, denoted by �̂�1𝑀𝑆 and �̂�2𝑀𝑆, are calculated 

as follows 

 

�̂�1𝑀𝑆 = ∫ 𝑃1
1

0
𝜋∗(𝑝1)𝑑𝑝1 =

∫
(1− 𝑝1)𝑟𝑛−1𝑝1

𝑛+1 ∏
(1−𝑝1)𝑟𝑖−1

(1−(1− 𝑝1))𝑟𝑖
𝑛−1
𝑖=0  

∫ (1− 𝑝1)𝑟𝑛−1𝑝1
𝑛 ∏

(1−𝑝1)𝑟𝑖−1

(1−(1− 𝑝1))𝑟𝑖
𝑛−1
𝑖=0

1
0 𝑑𝑝1

𝑑
1

0
𝑝1,                                  (21) 

 
and 

 

�̂�2𝑀𝑆 = ∫ 𝑝2𝜋∗(𝑝2)𝑑
1

0
𝑝2 =

∫
(1− 𝑃2)𝑆𝑛−1𝑃2

𝑚+1  ∏
(1−𝑝1)

𝑠𝑗−1
 

(1−(1− 𝑝1))
𝑠𝑗

𝑚−1
𝑗=0

∫ (1− 𝑃2)𝑆𝑛−1𝑃2
𝑚  ∏

(1−𝑝1)
𝑠𝑗−1

 

(1−(1− 𝑝1))
𝑠𝑗

𝑚−1
𝑗=0

1
0 𝑑𝑝2

1

0
𝑑𝑝2.                                (22) 

 
The mean square errors loss function of R  based on the 

lower records data for X and Y denoted as R̂MS, can be 

obtained by substituting Eq. 21 and Eq. 22 in Eq. 3. 

 

�̂�𝑀𝑆 =  
�̂�1𝑀𝑆

�̂�1𝑀𝑆 + �̂�2𝑀𝑆 − �̂�1𝑀𝑆�̂�2𝑀𝑆

 

 

3.2. Bayes estimator of R based on LINEX loss function 

In this subsection, the Bayes estimator of R  under LINEX loss 

function, denoted by �̂�𝐿𝐿 is obtained. �̂�𝐿𝐿 is calculated as 

follows 

 

�̂�𝐿𝐿 = −
1

𝑎
𝑙𝑛𝐸(𝑒−𝑎𝑅)  

=
1

𝑛
𝑙𝑛 ∫ ∫ 𝑒−𝑎𝑅1

0

1

0
𝜋∗(𝑝1)𝜋∗(𝑝2)𝑑𝑝1𝑑𝑝2        

 

According to Lindley (1980) and after some calculations, the 

approximate Bayes estimator of R is  

 

  �̂�𝐿𝐿 = −
1

𝑎
𝑙𝑛 [𝑒−𝑎Ȓ𝑀𝐿 +

1

2
[𝑅11𝜎11 + 𝑅22𝜎22 + 𝐿111𝑅1𝜎11

2 

+𝐿222𝑅2𝜎22
2]]                                                                                     (23) 

 

where 
 

𝑎 > 0, 𝜎11 =
𝑃1

2

𝑛
, 𝜎22 =

𝑃2
2

𝑚
, 𝑅11 =  

2(1−𝑃2)2

(𝑃1+𝑃2−𝑃1𝑃2)2 ,  𝑅22 =

 
2𝑃1(1−𝑃1)

(𝑃1+𝑃2−𝑃1𝑃2)2 ,  𝐿111 =
𝜕3ℓ

𝜕𝑃1
3 and 𝐿222 =

𝜕3ℓ

𝜕𝑃2
3.     

 

3.3. Bayes confidence interval of R 

In this subsection, Bayes confidence interval for R is obtained. 

To derive the distribution of stress-strength 𝑅 function based 

on Bayesian inferences, the posterior distributions of 𝑝1and 𝑝2 

must be found. the conjugate prior density functions of  𝑝1 

and 𝑝2is proportional with beta distribution as follows 
 

𝜋(𝑝1) ~𝐵(𝛼1, 𝛽1)  , 𝜋(𝑝2) ~𝐵(𝛼2, 𝛽2)                                       (24) 
 

After some calculations, the posterior distributions of  𝑝1 is 
 

𝜋∗(𝑝1) =  
1

𝐵(𝑎1,𝑏1)
  𝑝1

𝑎1−1  (1 − 𝑝1)𝑏1−1                                   (25) 

 

where  𝑎1 = 𝑟𝑛 + 𝑛 + 𝛼1, 𝑏1 = 𝑟𝑛 + (𝑘1 + 1) ∑ 𝑟𝑖 + 𝑛 −𝑛−1
𝑖=0

1 , 𝑘1 = 0,1,2, …         
 

And the posterior distribution for 𝑝2 is 
 

𝜋∗(𝑝2) =  
1

𝐵(𝑎2,𝑏2)
  𝑝2

𝑎2−1  (1 − 𝑝2)𝑏2−1                                  (26) 

 

where  𝑎2 = 𝑠𝑚 + 𝑚 + 𝛼2, 𝑏2 = 𝑠𝑚 + (𝑘2 + 1) ∑ 𝑠𝑗 +𝑚−1
𝑗=0

𝑚 − 1 , 𝑘2 = 0,1,2, … 
 

The Bayesian (1 − α) 100% confidence interval of R for   𝑝1 

and   𝑝2, are   
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𝑃(𝐿1 ≤   𝑝1 ≤ 𝑈1|𝑑𝑎𝑡𝑎) = 1 − 𝛼, (𝐿2 ≤   𝑝2 ≤ 𝑈2|𝑑𝑎𝑡𝑎) 

= 1 − 𝛼                                                                                                   (27) 

 

Using Eq. 25, 26 and 27, the Bayesian confidence intervals 

(𝐿1, 𝑈1) and (𝐿2, 𝑈2)  for   𝑝1 and   𝑝2 can be derived by solving 

the followings equations 

 

∫
1

𝐵(𝑎1,𝑏1)
  𝑝1

𝑎1−1  (1 − 𝑝1)𝑏1−1𝑑
𝐿1

0
𝑝1 =

𝛼

2
 ,                             (28) 

 

∫
1

𝐵(𝑎1,𝑏1)
  𝑝1

𝑎1−1  (1 − 𝑝1)𝑏1−1𝑑
0

𝑈1
𝑝1 =

𝛼

2
                                (29) 

 

∫
1

𝐵(𝑎2,𝑏2)
  𝑝2

𝑎2−1  (1 − 𝑝2)𝑏2−1𝑑
𝐿2

0
𝑝2 =

𝛼

2
,                             (30) 

 

and 

 

∫
1

𝐵(𝑎2,𝑏2)
  𝑝2

𝑎2−1  (1 − 𝑝2)𝑏2−1𝑑
0

𝑈2
𝑝2 =

𝛼

2
                               (31) 

 

Therefore, Bayes confidence interval for 𝑅 is constructed by 

substitute Eq. 28, 29, 30 and 31 in Eq. 3. 

 

4. Simulation study 

 
In this section a simulation study is studied to compare the 

performance of MLE and Bayes estimates (under squared error 

and LINEX loss functions). The exact values of 𝑅 are 0.714 and 

0.95. The estimates of R through MLE and Bayes methods 

under lower record values are calculated for different sample 

sizes. Three different methods for confidence intervals are 

computed.  The simulation study is performance according to 

the following steps: 

1. Generate 10000 samples fromuniform(0,1), then 

find the 300 random sample according to geometric 

distribution through the transformation technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. From each vector the first (𝑛 + 1) of lower record 

values 𝑟0, … … . , 𝑟𝑛 for the values of strength random 

variables X be selected, 

3. Repeat the previous two steps to generate 5000 

random samples of size 300 from geometric distribution 

and select from each vector the first (𝑚 + 1) of lower 

record values 𝑠0, … … . , 𝑠𝑚 for the values of stress random 

variable Y. 

4. The MLE of 𝑝1, 𝑝2 are obtained from Eq. 11, then the 

MLE of 𝑅 is obtained by substitute 𝑝1 and 𝑝2 in Eq. 12. The 

maximum likelihood confidence intervals of 𝑝1 and  𝑝2 are 

calculated with confidence level at α = 0.05 by using Eq. 15. 

The bootstrap confidence intervals are obtained from Eq. 

17. Bayesian confidence intervals are obtained from Eq. 3, 

28 and 29. 

5. Compute Bayes estimator of  𝑅  under mean squared 

error and LINEX loss functions.  

 

5. Results and discussion 

 
Simulation results are tabulated in Tables (1:6). We can 

observe the following results: 

 

1. The coverage percentage of MLE is better than that of the 

Bayesian estimator at 𝑅 =0.714 and 0.985 according to 

Tables (1,2). 

2. The coverage percentage of Bayes LINEX loss function is 

better than that of Bayes under MSE at  𝑅 =0.714 and 

0.985 according to Tables (3,4). 

3. The average length of the exact confidence intervals is 

shorter than the bootstrap and Bayes methods 

according to Tables (5,6). 

4. When n and m increase, the coverage percentages 

decrease for different estimators at different values of 

𝑝1, 𝑝2 according to Tables (1,6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Simulation results for maximum likelihood estimator  

and Bayes estimators under mean square errors 

 at   𝑝 = 0.1, 𝑝2 = 0.2  and 𝑅=0.714. 

 

n m      MLE                       BAYES  

  R̂ML MSE Converge R̂MS MSE Converge 

2 2 0.67 0.06 0.938 0.445 0.073 0.623 

3 2 0.642 0.052 0.899 0.544 0.053 0.762 

3 0.658 0.025 0.922 0.599 0.101 0.839 

4 

 

2 0.636 0.0047 0.891 0.345 0.342 0.483 

3 0.602 0.013 0.843 0.268 0.435 0.375 

5 3 0.637 0.0061 0.892 0.222 0.222 0.311 

4   0.6 0.03 0.84 0.677 0.814 0.948 

6 4 0.607 0.012 0.85 0.558 0.353 0.782 

5 0.6674 0.02 0.935 0.454 0.111 0.636 
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Table 2. Simulation results for maximum likelihood estimator 

 and Bayes estimators under mean square errors  

at   𝑝1 = 0.01, 𝑝2 = 0.16 and 𝑅=0.95. 

 
n m  MLE                    BAYES  

  �̂�𝑀𝐿  MSE Converge �̂�𝑀𝑆  MSE Converge 

2 2 0.87 0.0145 0.916 0.179 0.818 0.188 

3 2 0.829 0.0103 0.873 0.171 0.005 0.18 

 3 0.867 0.0147 0.913 0.934 0.548 0.983 

4 2 0.835 0.099 0.879 0.747 0.546 0.786 

 3 0.894 0.0127 0.941 0.341 0.852 0.359 

5 3 0.831 0.0102 0.875 0.946 0.681 0.996 

 4 
0.884 0.0134 0.931 0.074 0.004 0.078 

 

6 4 0.901 0.0116 0.948 0.861 0.707 0.906 

5 0.871 0.0143 0.917 0.334 0.012 0.352 

 
Table 3. Simulation results for Bayes estimators under mean  

square errors and LINEX loss function at 

   𝑝1 = 0.1, 𝑝2 = 0.2  and 𝑅=0.714. 

 
n m        BAYES with MSE BAYES with LINEX loss function 

  R̂MS MSE Converge R̂LL MSE Converge 

2 2 0.445 0.073 0.623 0.697 0.569 0.976 

3 2 0.544 0.053 0.762 0.566 0.288 0.793 

 3 0.599 0.101 0.639 0.493 0.42 0.69 

4 2 0.345 0.342 0.453 0.333 0.525 0.466 

 3 0.268 0.435 0.375 0.465 0.453 0.651 

5 3 0.677 0.814 0.648 0.54 0.791 0.756 

 4 0.222 0.222 0.311 0.208 0.289 0.391 

6 4 0.558 0.353 0.782 0.21 0.246 0.294 

5 0.454 0.111 0.636 0.697 0.249 0.976 

 
Table 4. Simulation results for Bayes estimators under mean  

square errors and LINEX loss function at 

 𝑝1 = 0.01, 𝑝2 = 0.16 and 𝑅=0.95. 

 

n m  BAYES with MSE BAYES with LINEX loss function 

  R̂MS MSE Converge R̂LL MSE Converge 

2 2 0.179 0.818 0.188 0.772 0.229 0.813 

3 2 0.171 0.005 0.18 0.442 0.319 0.465 

 3 0.934 0.548 0.563 0.54 0.044 0.568 

4 2 0.747 0.546 0.786 0.811 0.256 0.854 

 3 0.341 0.852 0.359 0.805 0.365 0.847 

5 3 0.946 0.681 0.996 0.579 0.855 0.609 

 4 0.074 0.004 0.078 0.27 0.068 0.284 

6 4 0.861 0.707 0.606 0.727 0.423 0.765 

5 0.334 0.012 0.352 0.601 0.031 0.633 
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6. Conclusion 
 

In this paper, the MLE and Bayesian estimators are derived for 

R when the stress and strength variables are independently 

geometric distributions based on lower record values. The 

exact, bootstrap and Bayesian confidence intervals are 

investigated.  

Generally, the coverage percentage of MLE is better than 

coverage percentage of the Bayes estimator. 

Regarding, the number of records n and m for stress- 

strength modelvaribles.it is observed that the coverage 

percentage is increase as n and m increase and vice versa. 

 

 

 

 

 

 

 

The estimate values of MLE is better than coverage 

percentage of the Bayes estimator at R = 0.714 and 0.95.  

The average confidence interval lengths of the exact method 

are shorter than the corresponding average confidence interval 

lengths of the bootstrap and Bayes method . 

The MSEs of the Bayesian estimator under MSE loss 

function are less than the LINEX loss function.  

 

 
 

 

 

 

 

 

 
Table 5. Simulation results for exact, bootstrap and 

 Bayes confidence interval at 𝑝1 = 0.01, 𝑝2 = 0.16 and 𝑅=0.714. 

 
n m 95% CI of the 

length of Exact  

CI 

95% CI of the 

length of 

Bootstrap CI 

95% CI of the 

length of Bayes  

CI 

2 2 1.765*10^-5 0.224 1.660*10^-4 

3 2 2.823*10^-5 0.479 2.623*10^-4 

3 4.741*10^-5 0.201 4.657*10^-3 

4 

 

2 1.043*10^-3 0.431 1.232*10^-5 

3 4.899*10^-6 0.692 3.099*10^-5 

5 

 

3 2.839*10^-5 0.235 3.222*10^-4 

4 2.419*10^-6 0.459 2.543*10^-6 

6 

 

4 2.86*10^-7 1.397 2.543*10^-6 

5 7.696*10^-7 0.425 6.777*10^-7 

6 3.775*10^-7 0.302 4.723*10^-7 

 
Table 6. Simulation results for exact, bootstrap and  

Bayes confidence interval at  

p1 = 0.01, p = 0.16 and 𝑅=0.95. 

 
n m 95% CI of the 

length of Exact  

CI 

95% CI of the 

length of 

Bootstrap CI 

95% CI of the 

length of Bayes 

 CI 

2 2 3.025*10^-4 0.119 2.111*10^-3 

3 2 6.603*10^-5 0.149 5.344*10^-4 

 3 5.720*10^-7 0.137 7.502*10^-6 

4 

 

2 1.31*10^-6 0.147 2.222*10^-6 

3 5.637*10^-6 0.277 8.324*10^-6 

5 

 

3 4.127*10^-8 0.116 5.1322*10^-7 

4 1.291*10^-7 0.159 3.2657*10^-7 

6 

 

4 6.213*10^-8 0.186 5.121*10^-6 

5 1.917*10^-8 0.216 3.777*10^-8 

6 2.415*10^-8 0.115 1.400*10^-8 
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