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Abstract: The Vertex Bisection Problem (VBP) consists in partitioning a generic graph into two equally–

sized subgraphs 𝐴 and 𝐵 such that the number of vertices in 𝐴 with at least one adjacent vertex in 𝐵 is 

minimized. This problem is NP–hard with practical applications in the telecommunication industry. In 

this article we propose a new constructive algorithm for VBP based on the Greedy Randomized 

Adaptive Search Procedure (GRASP) methodology. We call our algorithm CVBP. We compare CVBP with 

a previously published GRASP–based constructive algorithm (LIT) in order to assess the performance 

of our algorithm in practice. The results of the experiment showed that CVBP outperformed LIT by 75.83 

% in solution quality. The validation of the experimental evidence was performed by the well–known 

Wilcoxon Signed Rank Sum Test. The test found statistical significance for a confidence level of 99.99 

%. Therefore, we consider that our constructive heuristic is a good alternative to stochastically solve 

the Vertex Bisection Problem. 
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1. Introduction 
 

The Vertex Bisection Problem (VBP) is an NP–hard 

combinatorial optimization problem (Brandes & Fleischer, 

2009). It consists in partitioning the set of vertices of a generic 

graph into two subsets A and B of approximately the same 

cardinality in such a way that the number of vertices in A with 

one or more adjacent vertices in B is minimized. Figure 1 

illustrates the previous definition. 
 

 
 

Figure 1. Example of one particular solution  

for the Vertex Bisection Problem. Vertices a , d  and e  

contributes to the objective value of this solution. 
 

In Figure 1 we show a particular solution for VBP over a 

generic graph with ten vertices and sixteen edges. In this 

solution, the graph is partitioned into the sets 

 and . Notice that in this 

partition both sets  and  have the same cardinality, i.e., 

. The objective value of this solution is 

obtained by computing the number of vertices in the set  

with one or more adjacent vertices in the set . In this 

example, those vertices are ,  and . Vertex  is 

adjacent to vertex ; vertex  is adjacent to vertex 

; and vertex  is adjacent to vertices . 

Thus, the objective value of this partition is . It 

is important to point out that vertices  and  do not have any 

adjacent vertex in the set . Therefore, they do not contribute 

to the objective value. 

The Vertex Bisection Problem has important practical 

applications in the telecommunication industry. In particular, 

VBP is relevant to fault–tolerance, and is closely related to the 

complexity of sending messages to processors in 

interconnection networks via vertex–disjoint paths (Klasing, 

1998). Perhaps, the most representative application of VBP is 

in the gossip technique (Terán–Villanueva et al., 2019). In the 

context of communication networks, the gossip consists in 

dividing the network into two subnetworks in such a way that 

a minimum number of selected devices in the first subnetwork 

must have a connection to the devices of the second 

subnetwork. Thus, when a message must be sent to all 

members of the network, the message is exclusively 

disseminated by the selected devices of the first subnetwork. 

Since the number of selected devices of the first subnetwork is 

minimum, the resources consumption for this task is also 

minimum. 

As stated previously, the Vertex Bisection Problem is 

important and computationally intractable. A significant 

research effort has been made to solve this problem. In the 

literature we can find both exact and approximate solution 

methods. Regarding the exact methods, seven approaches 

have been proposed for VBP, five Integer Linear Programming 

(ILP) formulations (Castillo–García & Hernández, 2019; Fraire 

et al., 2014; Jain, Saran & Srivastava, 2016a) and two branch 

and bound algorithms (Fraire et al., 2014; Jain, Saran, & 

Srivastava, 2016b). In addition, there are three metaheuristic 

algorithms (Herrán, Colmenar, & Duarte, 2019; Jain, Saran & 

2016c; Terán–Villanueva et al., 2019) and one constructive 

algorithm for VBP (González et al., 2015), totalizing four 

approximate solutions. 

The constructive heuristic proposed by González et al. 

(2015) is based on the Greedy Randomized Adaptive Search 

Procedure (GRASP) methodology (Duarte, Pantrigo, & Gallego, 

2007). This algorithm adjusts (in execution time) the value of 

the parameter  by means of a small fuzzy inference system. 

In the context of GRASP,  is used to control the greediness 

level of the algorithm. Throughout this article, we will refer to 

this constructive algorithm as LIT since we will use it as a 

reference from the literature. 

In this article we propose a new constructive algorithm 

based on the GRASP methodology. We call our constructive 

algorithm CVBP. The main difference between CVBP and LIT 

lies in the way in which they compute the objective value. LIT 

computes the objective value according to the traditional 

definition, that is, from the vertices in the set  (see Figure 1). 

Conversely, CVBP uses the redefinition of the objective 

function proposed by Castillo–García and Hernández (2019). 

This means that CVBP computes the objective value from the 

vertices in the set . The formal definition of the traditional 

and the redefined objective functions can be found in 

Equations (1) and (2) of Section 2, respectively. 

We conducted two computational experiments for 

assessing the performance of CVBP in practice. The first 

experiment was designed to fine–tune the parameter  of 

CVBP. Unlike LIT, CVBP does not modify the value of  during 

its execution. The experimental results showed that the best 

value for  is 0.0. This implies that CVBP is completely greedy. 

In the second experiment the best configuration of CVBP 

solved the entire benchmark of VBP consisting of 477 graphs 
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of different classes and sizes (Castillo–García & Hernández, 

2019). We also execute a random algorithm (RND) over the 

whole set of benchmark instances. The experimental data 

clearly showed that CVBP outperformed RND by 73.53 % in the 

quality of solutions found. In addition, we compare the results 

of CVBP and RND with those of LIT explicitly reported by 

González et al. (2015). The experimental evidence strongly 

showed that CVBP outperforms both RND and LIT by 76.19 % 

and 75.83 %, respectively. The superiority of CVBP was 

confirmed by the Wilcoxon Signed Rank Sum Test (Wilcoxon, 

1945). The test found statistical significance between CVBP 

and LIT and between CVBP and RND for a confidence level of 

99.99 %. Moreover, the test does not find statistical 

significance between RND and LIT. 

The remainder of this article is organized as follows. Section 

2 presents the formal definition of the Vertex Bisection 

Problem. Section 3 describes our proposed constructive 

algorithm CVBP in detail. In Section 4 we report the 

computational experiments carried out to assess the 

performance of CVBP in practice. Finally, in Section 5 we 

discuss the main conclusions of this research. 
 

2. Formal Definition of VBP 
 

Let  be a connected, undirected and unweighted 

graph without loops.  and  respectively represent the sets 

of vertices and edges of the graph. These sets are assumed to 

be finite and discrete. Thus, the number of vertices of the 

graph is  and the number of edges is . 

Let  be a partition of the set of vertices into two 

subsets  and  such that , , 

 and . In the context of the Vertex 

Bisection Problem, a partition represents a solution. The 

objective value of partition  is the number of vertices in the 

set  with one or more adjacent vertices in the set . Formally: 

 

                     (1) 

 

Alternatively, the objective value of VBP can be computed 

from the vertices in the set  according to Equation (2) 

(Castillo–García & Hernández, 2019): 

 

                                                        (2) 

 

where  represents the set of all vertices 

adjacent to every vertex in the set  and  

is the set of vertices adjacent to vertex . 

The goal of VBP is to find the partition  such that its 

objective value is the minimum. In mathematical terms: 

 
 

where  stands for the solution space and its cardinality is 

given by the following binomial coefficient: 

 

 
 

3. Constructive algorithm CVBP 

 

Our constructive algorithm CVBP is based on the Greedy 

Randomized Adaptive Search Procedure (GRASP) 

methodology (Duarte et al., 2007). CVBP starts by assigning all 

the vertices to the set  and no vertex to the set , i.e.,  

and . The idea is to iteratively select one vertex to be 

moved from  to  until the number of vertices in  is . 

The first step of CVBP is to select the vertex  whose 

adjacency degree is the lowest. This is so because all the vertices 

adjacent to  contribute to the objective value of the partition 

, which must be minimized. Once the first vertex is selected, the 

sets  and  must be properly updated, i.e.,  and 

. The next vertices to be moved from set  to set  

are selected by computing the following greedy function: 

 

 
 

Notice that the greedy function  is actually the partial 

objective value of partition  computed by Equation (2) with 

the current members of  and . Once all the vertices in  have 

been evaluated, CVBP selects a subset of candidate vertices 

known as Restricted Candidate List (RCL). The vertices in RCL 

are those whose –value is less than or equal to the threshold 

 

                                                             (3) 

 

where  and  are respectively the lowest and the 

largest –values from the vertices in , and  is a real 

number that governs the greediness level of CVBP. The 

Restricted Candidate List is formally defined as follows: 

 

 
 

The vertex to be moved to set  is selected randomly from 

the vertices in RCL. Like in the first step, sets  and  must be 

updated. CVBP ends its execution when the number of vertices 

in  is . Algorithm 1 shows the high–level pseudocode 

of our proposed constructive algorithm CVBP. 
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4. Computational experiments 

 
In this section we report two computational experiments 

conducted to assess the performance of CVBP in practice. The 

first experiment aims at fine–tuning the parameter  of CVBP. 

This experiment is described in Section 4.2. In the second 

experiment, CVBP solves the entire set of 477 benchmark 

instances for VBP. This benchmark is the one used to evaluate 

the integer linear programming formulations proposed by 

Castillo–García and Hernández (2019) and consists of thirteen 

different kind of graphs. For comparative purposes, we also 

execute a random algorithm (RND) over the entire benchmark. 

The results of this experiment are reported in Section 4.3. In 

addition, in Section 4.4 we compare CVBP with both RND and 

the previously published constructive algorithm from the 

literature (LIT) over a subset of benchmark instances. More 

precisely, we compare the results obtained by CVBP and RND 

in the second experiment with the best results explicitly 

reported by González et al. (2015). Moreover, the comparison 

of CVBP, RND and LIT has been statistically validated through 

the Wilcoxon Signed Rank Sum Test (Wilcoxon, 1945). In the 

following section (Section 4.1) we describe the experimental 

conditions and the set of instances used in the experiments. 

 

4.1. Experimental conditions and test bed 

All the experiments were conducted on a standard computer 

with an Intel(R) Core(TM) i7–7500 CPU at 2.7 GHz and 32 GB of 

RAM. We implement CVBP and RND in Java (JRE 1.8.0_121) 

under the Microsoft Windows 10© operating system. As 

mentioned previously, we use a total number of 477 

benchmark instances for VBP. These instances are grouped by 

classes of graphs in the following 13 datasets (Castillo–García 

& Hernández, 2019): 

1.- Grid: This dataset consists of 52 graphs whose structure 

resembles two–dimensional square meshes. A grid graph can 

be drawn as a square mesh with  columns and  rows. The 

graphs in this dataset have the same number of rows and 

columns, i.e., . The numbers of vertices and edges of 

these graphs range from 9 to 2,916 and from 12 to 5,724, 

respectively. 

2.- Tree: This dataset consists of 50 trees. A tree graph can 

be informally defined as a complete graph without loops. 

Furthermore, a tree with  vertices has exactly  edges. 

The numbers of vertices and edges of the trees in this dataset 

range from 22 to 202 and from 21 to 201, respectively.  

3.- HB: This dataset has 62 graphs obtained from the well–

known Harwell–Boeing Sparse Matrix Collection. In this 

dataset, there is an edge from vertex  to vertex  if entry  

of the corresponding matrix is nonzero, i.e., . The 

numbers of vertices and edges respectively range from 24 to 

960 and from 46 to 7,442. 

4.- 2-dimensional mesh: This dataset contains 29 mesh 

graphs in two dimensions. The graphs in this dataset are the 

cartesian product of two paths: . 

5.- 2-dimensional toroidal mesh: This dataset contains 29 

toroidal mesh graphs in two dimensions. These graphs are 

obtained by the cartesian product of two cycles: . 

6.- 3-dimensional toroidal mesh: This dataset consists of 18 

toroidal mesh graphs in three dimensions. Like two–

dimensional toroidal graphs, these graphs are the cartesian 

product of three cycles: . 

7.- Complete bipartite: This dataset consists of 32 complete 

bipartite graphs. The structure of a complete bipartite graph (

) is particular. The set of vertices  is partitioned into two 

disjoint sets of sizes  and . Each pair of vertices in the partite 

sets is mutually adjacent. The numbers of vertices and edges 

of this kind of graphs are respectively  and 

. 

8.- Complete split: This dataset has 33 complete split 

graphs. A graph is  complete split ( ) if the set of vertices 

 can be partitioned in a clique of size  ( ) and in an 

independent set of size  ( ). In addition, every vertex 

 must be adjacent to every vertex . 

9.- Harwell–Boeing: This dataset contains 36 graphs derived 

from the public domain SuiteSparse Matrix Collection 

(https://sparse.tamu.edu/). 

10.- Hypercube: This dataset consists of 8 hypercube 

graphs. A –dimensional hypercube graph ( ) has  

vertices and  edges. The connectivity of a hypercube 

is obtained as follows. The vertices must be numbered from 0 

to . Then, the numbers have to be converted to their 

https://sparse.tamu.edu/
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binary representation. Thus, two vertices are joined by an edge 

if and only if their binary representations differ by exactly one 

bit. This verification can be performed by an XOR operation on 

the binary representations and summing the resulting bits. 

The vertices must be joined by an edge if and only if the sum is 

exactly one or, equivalently, if the decimal representation of 

the resulting bits is a power of 2. 

11.- Join of hypercubes: This dataset contains 24 graphs 

resulting from the union of two hypercubes and the addition 

of new edges. Formally, the join of two hypercubes  and  

(denoted by ) is the graph union  and the 

addition of one edge for each pair of vertices  and  such 

that  and . These graphs have  

vertices and  edges. 

12.- Random: This dataset consists of 20 graphs generated 

at random. 

13.- Small: This dataset consists of 84 graphs with a 

relatively small number of vertices and edges. Specifically, the 

numbers of vertices and edges of these graphs range from 16 

to 24 and from 18 to 49, respectively. 

 

4.2. Experiment 1: Fine–tuning CVBP 

As mentioned in Section 3, the parameter  controls 

the greediness level of CVBP. Specifically, CVBP becomes 

greedier when the value of  tends to zero and less greedy 

when  approaches one. The goal of this experiment is to 

empirically determine the best value for . Since the values in 

the interval  are infinite, we must obtain a finite, discrete 

and representative set of values from this interval. Thus, we 

have divided the domain of  into the following set :  

 

 
 

The reason for selecting the values of  is that they are 

uniformly distributed in the interval . We statistically 

tested the values of  in order to determine if their mean and 

variance tend to the expected values for a uniform 

distribution, i.e.,  and , respectively 

(Dunna, Reyes, & Barrón, 2006). The tests confirmed the 

hypotheses that the mean and variance of  actually tend to 

the expected values  and  with a confidence level of 95 %. 

In addition to the previous tests, we have also conducted the 

 test for uniformity. This test aims at determining whether 

or not the values of  are uniformly distributed in .  

 

 

 

The test confirmed that the values of  are uniformly 

distributed with a confidence level of 95 %. 

The experiment consists in executing CVBP with the 

 different –values on a random sample of 30 % of 

the instances, that is, 143 instances. In particular, we are 

interested in observing the effect of the value on: (i) the 

solution quality, (ii) the execution time, and (iii) the size of the 

restricted candidate list (RCL). The results of this experiment 

are summarized in Table 1. This table has eight headings, 

namely, the –value ( ); the average objective value (O. V.); 

the average execution time in CPU seconds (Time); the 

average minimum size of RCL ( ); the average maximum 

size of RCL ( ); the average range of RCL ( ); the 

average mean size of RCL ( ); and the average standard 

deviation of the RCL size ( ). The table has eleven rows, 

one for each –value. 

From Table 1 we can observe that the best value for the 

parameter  is 0.0. As mentioned previously, when  

CVBP becomes completely greedy. This means that, with this 

configuration, the RCL only contains those vertices whose 

greedy value is the minimum. The results also show that as the 

value of  increases, the quality of the solutions found by 

CVBP decreases considerably. The experimental results also 

show that the average execution time of the configurations is 

very similar to each other except for the last configuration (

). In fact, the differences observed are so small that 

we conclude that the –value does not have any significant 

effect on the execution time. Finally, the results also reveal that 

the size of the restricted candidate list is affected by the value 

of . According to the data, small values of  require small 

RCLs while large values of  require big RCLs. Notice that this 

tendency is similar to that observed in the average objective 

value. In order for the reader to observe this similarity clearly, 

we plot the average objective value and the average RCL size 

for each value of  in Figure 2. Specifically, Figure 2a exhibits 

the rising tendency of the average objective value ( –axis) as 

the value of  augments ( –axis). Similarly, Figure 2b depicts 

a series of 11 box plots that represent the sizes of the RCL with 

respect to the –values. At this point it is evident that the best 

value for  is 0.0. This is so because it leads to a better solution 

quality and a small–sized restricted candidate list, on average. 

Therefore, we will use  in the remaining experiment.  

Furthermore, since the best value for  is 0.0, Equation (3) and 

line 8 of Algorithm 1 can be reduced to . 
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4.3. Experiment 2: Solving the benchmark instances 

The goal of this experiment is to assess the performance of the 

best configuration of CVBP in practice. The experiment 

consists in executing CVBP with  over the whole set of 

477 benchmark instances and measuring the efficiency 

(execution time) and effectiveness (solution quality). For 

comparative purposes, we also execute a random algorithm 

(RND) to solve the same instances. RND randomly selects one 

vertex of the graph until . It does not have any 

criterion whatsoever to select a vertex. The results of this 

experiment are reported in Table 2. This table shows two 

statistics: the average objective value (O. V.) and the average 

execution time in CPU seconds (Time). 

 

As can be observed, CVBP obtained the best average 

objective value. Specifically, CVBP outperformed RND by 73.54 

% in the O. V. statistic. This means that the solution quality 

found by CVBP is approximately 3.78 times better than that 

found by RND. Figure 3 plots the results of this experiment 

for CVBP and RND. The red line represents CVBP while the 

blue line represents RND. The –axis shows the 477 

instances evaluated in this experiment. These instances 

are sorted by number of vertices  in ascending order. The 

–axis presents the objective value found for the 

instances. This axis is logarithmically scaled in order to clearly 

observe the differences between CVBP and RND in solution 

quality. 

Table 1. Experimental results for different values of the  

parameter 𝛼 over 143 instances selected at random. 

 

    RCL size statistics 

𝛼 O.V. Time  𝑚𝑖𝑛 𝑚𝑎𝑥 𝑟𝑎𝑛𝑔𝑒 𝑚𝑒𝑎𝑛 𝑠𝑡𝑑 𝑑𝑒𝑣 

0.0 31.70 2.27  2.94 41.08 38.15 8.71 7.56 

0.1 38.53 2.34  12.45 64.17 51.73 30.14 13.90 

0.2 42.68 2.33  17.37 70.63 53.26 38.88 14.59 

0.3 50.80 2.29  23.77 81.53 57.76 50.70 16.03 

0.4 60.01 2.27  31.74 94.02 62.28 63.92 16.97 

0.5 66.94 2.35  36.91 108.10 71.19 74.44 19.34 

0.6 88.70 2.29  41.13 141.07 99.94 99.40 27.57 

0.7 91.76 2.44  48.41 150.29 101.87 108.06 27.18 

0.8 117.56 2.35  65.97 188.48 122.52 145.70 31.87 

0.9 117.10 2.36  67.90 192.63 124.73 148.20 32.97 

1.0 149.32 3.32  159.87 316.43 156.55 237.65 45.49 

 

 
 

Figure 2. Experimental results for selecting 

the best value for 𝛼  in the set 𝑆 . 
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As expected, RND was the fastest algorithm in this 

experiment. Its average computing time is about 7 

milliseconds per instance. The average computing time of 

CVBP was 5.21 seconds. This difference can be partially 

explained by the fact that CVBP is much more sophisticated 

than RND. This means that CVBP must perform significantly 

more computations than RND. Thus, the experimental 

evidence suggests that the best option to solve VBP is CVBP 

regardless of the execution time.  
 

4.4. Comparison of CVBP, LIT and RND 

In this section we compare CVBP with both the random 

algorithm of the previous experiment (RND) and the GRASP–

based constructive algorithm from the literature proposed by 

González et al. (2015) (LIT). The comparison is conducted on a 

subset of 46 benchmark instances from the HB and Harwell–

Boeing datasets. Table 3 reports the objective values found by 

RND, LIT and CVBP. This table has two main sections and each 

section has the following five columns: the instance name 

(Instance), the number of vertices ( ), the objective value  

 

 

 

 

 

obtained by RND (RND), the best objective value obtained by 

LIT (LIT) and the objective value obtained by our heuristic 

(CVBP). It is important to mention that González et al. (2015) 

report three results for each instance. Thus, in order for this 

comparison to be as fair as possible, we assign LIT the best 

(minimum) result reported. 
 

As can be observed in Table 3, CVBP consistently obtained 

the best results for all the instances. The average objective 

values of CVBP, LIT and RND are respectively 24.00, 99.28 and 

100.80. This means that CVBP outperformed LIT by 75.83 % 

and RND by 76.19 %. The data also reveal that the 

performance of RND and LIT in terms of average solution 

quality is similar. This tendency can be observed in Figure 4. In 

this figure the red line represents LIT, the blue line represents 

RND and the black line represents CVBP. The –axis presents 

the instances sorted by number of vertices in ascending order. 

The –axis shows the objective values obtained for each 

instance. This axis is logarithmically scaled in order to observe 

the tendencies clearly. 
 
 

 

 

 

Table 2. Experimental results for CVBP and RND over the 477 benchmark instances. 

 

Algorithm O.V. Time 

CVBP 27.07 5.210 

RND 102.29 0.007 

 

 
 

Figure 3. Experimental results for CVBP and RND over the benchmark instances. 
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 Table 3. Comparison of RND, LIT and CVBP over 46 benchmark instances. 

 

Instance 
 

RND LIT CVBP  Instance 
 

RND LIT CVBP 

494_BUS 494 161 154 26  dwt234 117 43 31 9 

662_BUS 662 213 226 58  DWT__245 245 84 97 21 

685_BUS 685 249 257 54  DWT__310 310 115 138 8 

arc_130 130 65 29 8  DWT__361 361 161 162 14 

ash_85 85 40 33 9  DWT__419 419 192 196 24 

BCSPWR01 39 13 7 5  DWT__503 503 236 240 53 

BCSPWR02 49 14 10 3  DWT__592 592 252 276 29 

BCSPWR03 118 43 36 8  gent113 104 50 43 21 

BCSPWR04 274 114 99 32  gre_115 115 51 43 22 

BCSPWR05 443 152 148 33  gre_185 185 92 82 24 

BCSSTK01 48 24 20 12  impcol_b 59 26 24 19 

BCSSTK02 66 33 33 33  impcol_c 137 64 52 22 

BCSSTK04 132 66 66 24  lns_131 123 50 40 16 

BCSSTK05 153 61 73 17  NOS4 100 40 38 10 

BCSSTK06 420 202 197 68  NOS5 468 208 229 56 

bcsstk_22 110 50 37 6  NOS6 675 244 279 27 

CAN__144 144 71 59 6  PLAT362 362 181 174 44 

CAN__161 161 76 71 16  steam03 80 40 36 4 

CAN__292 292 114 124 27  west0132 132 65 52 26 

CAN__445 445 188 206 53  west0156 156 76 65 30 

curtis_54 54 27 17 7  west0167 167 82 71 19 

DWT__209 209 88 91 27  will_57 57 23 17 5 

DWT__221 221 103 98 7  will199 199 95 91 62 

 

 
 

Figure 4. Comparison of CVBP, RND and LIT 

(González et al., 2015) over 46 benchmark instances. 
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We conduct the Wilcoxon Signed Rank Sum Test (Wilcoxon, 

1945) in order to determine whether or not the differences 

observed in solution quality are statistically significant. We use 

the statistical software R for conducting the test automatically. 

The results of the Wilcoxon test are reported in Table 4. 

 
Table 4. Results of the Wilcoxon test over 

the solution quality of CVBP, LIT and RND. 

 

 –value confidence 

level 

significant? 

CVBP vs LIT 
 

99.99 % YES 

CVBP vs RND   99.99% YES 

LIT vs RND 0.08404 91.59 % NO 

 

As we can observe, the test found a significant difference 

between CVBP and LIT with a confidence level of 99.99 %. 

Similarly, the difference between CVBP and RND is also 

significant with a confidence level of 99.99 %. This means that 

the statistical test validates that CVBP outperformed both LIT 

and RND in effectiveness. The Wilcoxon test also determine 

that the difference between LIT and RND is not significant. This 

is so because the –value found was greater than the 

standard threshold used in scientific research, i.e., 

. This implies a confidence level of 

 for this test. Clearly, this 

confidence level is less than the minimum required in science 

(95 %). 

 

5. Conclusions  
 

In this article we have faced the Vertex Bisection Problem 

(VBP). The problem asks for a partition of the set of vertices of 

a generic graph into two subsets (  and ) with approximately 

the same cardinality. The goal is to minimize the number of 

vertices in  with one or more adjacent vertices in . In 

particular, we have proposed a new constructive algorithm 

(CVBP) based on the Greedy Randomized Adaptive Search 

Procedure (GRASP) methodology. We conducted two 

computational experiments to assess the performance of 

CVBP in practice. The first experiment was designed to fine–

tune the parameter  of CVBP by solving a representative 

sample of the benchmark instances. The experimental data 

clearly indicate that the best value for the parameter  is 0.0. 

Thus, Equation (3) and line 8 of Algorithm 1 can be reduced to 

, which indicates that CVBP is completely greedy. 

 

In the second experiment we solve the entire set of 477 

benchmark instances and compare CVBP with a random 

algorithm (RND). RND is a constructive algorithm that 

iteratively selects one vertex without any kind of criterion at all. 

The experimental results clearly suggest that CVBP is the best 

option in terms of solution quality. Specifically, CVBP 

outperformed RND by 73.53 % in average objective value. In 

addition, we compare the results of CVBP and RND with a 

previously proposed constructive algorithm (LIT) (González et 

al., 2015). The data showed that CVBP outperforms both RND 

and LIT by 76.19 % and 75.83 %, respectively. This fact was 

confirmed by the Wilcoxon Signed Rank Sum Test (Wilcoxon, 

1945). The test found statistical significance between CVBP 

and LIT for a confidence level of 99.99 %. Likewise, the 

difference between CVBP and RND is significant for a 

confidence level of 99.99 %. Although LIT slightly 

outperformed RND by 1.51 %, the difference is not statistically 

significant to conclude that LIT is superior to RND. 

Therefore, taking into account the experimental evidence 

and the statistical validation, we conclude that CVBP is a good 

alternative to stochastically solve the Vertex Bisection 

Problem. Moreover, CVBP can be coupled with a local search 

or embedded in a larger framework (e.g., a metaheuristic 

algorithm) in order to obtain better results for the problem. 
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