

Journal of Applied Research and Technology

www.jart.icat.unam.mx

Journal of Applied Research and Technology 18 (2020) 187-196

Original

Constructive heuristic for the vertex bisection problem

Norberto Castillo–García Paula Hernández–Hernández*

 Tecnológico Nacional de México/I.T. Altamira. Department of Engineering, Altamira, Mexico

Received 01 25 2020; accepted 05 22 2020

Available online 08 31 2020

Keywords: Vertex Bisection Problem, Constructive algorithm, Heuristic optimization

Abstract: The Vertex Bisection Problem (VBP) consists in partitioning a generic graph into two equally–

sized subgraphs 𝐴 and 𝐵 such that the number of vertices in 𝐴 with at least one adjacent vertex in 𝐵 is

minimized. This problem is NP–hard with practical applications in the telecommunication industry. In

this article we propose a new constructive algorithm for VBP based on the Greedy Randomized

Adaptive Search Procedure (GRASP) methodology. We call our algorithm CVBP. We compare CVBP with

a previously published GRASP–based constructive algorithm (LIT) in order to assess the performance

of our algorithm in practice. The results of the experiment showed that CVBP outperformed LIT by 75.83

% in solution quality. The validation of the experimental evidence was performed by the well–known

Wilcoxon Signed Rank Sum Test. The test found statistical significance for a confidence level of 99.99

%. Therefore, we consider that our constructive heuristic is a good alternative to stochastically solve

the Vertex Bisection Problem.

∗Corresponding author.

E-mail address: paulahdz314@hotmail.com(Paula Hernández–Hernández).

Peer Review under the responsibility of Universidad Nacional Autónoma de México.

http://dx.doi.org/10.1016/j.jart.2017.02.005
1665-6423/© 2017 Universidad Nacional Autónoma de México, Instituto de Ciencias Aplicadas y Tecnología.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
mailto:Xxxxxx@xxxxx.xx
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.unam.mx/

Norberto Castillo–García, Paula Hernández–Hernández / Journal of Applied Research and Technology 187-196

Vol. 18, No. 4, August 2020 188

1. Introduction

The Vertex Bisection Problem (VBP) is an NP–hard

combinatorial optimization problem (Brandes & Fleischer,

2009). It consists in partitioning the set of vertices of a generic

graph into two subsets A and B of approximately the same

cardinality in such a way that the number of vertices in A with

one or more adjacent vertices in B is minimized. Figure 1

illustrates the previous definition.

Figure 1. Example of one particular solution

for the Vertex Bisection Problem. Vertices a , d and e

contributes to the objective value of this solution.

In Figure 1 we show a particular solution for VBP over a

generic graph with ten vertices and sixteen edges. In this

solution, the graph is partitioned into the sets

 and . Notice that in this

partition both sets and have the same cardinality, i.e.,

. The objective value of this solution is

obtained by computing the number of vertices in the set

with one or more adjacent vertices in the set . In this

example, those vertices are , and . Vertex is

adjacent to vertex ; vertex is adjacent to vertex

; and vertex is adjacent to vertices .

Thus, the objective value of this partition is . It

is important to point out that vertices and do not have any

adjacent vertex in the set . Therefore, they do not contribute

to the objective value.

The Vertex Bisection Problem has important practical

applications in the telecommunication industry. In particular,

VBP is relevant to fault–tolerance, and is closely related to the

complexity of sending messages to processors in

interconnection networks via vertex–disjoint paths (Klasing,

1998). Perhaps, the most representative application of VBP is

in the gossip technique (Terán–Villanueva et al., 2019). In the

context of communication networks, the gossip consists in

dividing the network into two subnetworks in such a way that

a minimum number of selected devices in the first subnetwork

must have a connection to the devices of the second

subnetwork. Thus, when a message must be sent to all

members of the network, the message is exclusively

disseminated by the selected devices of the first subnetwork.

Since the number of selected devices of the first subnetwork is

minimum, the resources consumption for this task is also

minimum.

As stated previously, the Vertex Bisection Problem is

important and computationally intractable. A significant

research effort has been made to solve this problem. In the

literature we can find both exact and approximate solution

methods. Regarding the exact methods, seven approaches

have been proposed for VBP, five Integer Linear Programming

(ILP) formulations (Castillo–García & Hernández, 2019; Fraire

et al., 2014; Jain, Saran & Srivastava, 2016a) and two branch

and bound algorithms (Fraire et al., 2014; Jain, Saran, &

Srivastava, 2016b). In addition, there are three metaheuristic

algorithms (Herrán, Colmenar, & Duarte, 2019; Jain, Saran &

2016c; Terán–Villanueva et al., 2019) and one constructive

algorithm for VBP (González et al., 2015), totalizing four

approximate solutions.

The constructive heuristic proposed by González et al.

(2015) is based on the Greedy Randomized Adaptive Search

Procedure (GRASP) methodology (Duarte, Pantrigo, & Gallego,

2007). This algorithm adjusts (in execution time) the value of

the parameter by means of a small fuzzy inference system.

In the context of GRASP, is used to control the greediness

level of the algorithm. Throughout this article, we will refer to

this constructive algorithm as LIT since we will use it as a

reference from the literature.

In this article we propose a new constructive algorithm

based on the GRASP methodology. We call our constructive

algorithm CVBP. The main difference between CVBP and LIT

lies in the way in which they compute the objective value. LIT

computes the objective value according to the traditional

definition, that is, from the vertices in the set (see Figure 1).

Conversely, CVBP uses the redefinition of the objective

function proposed by Castillo–García and Hernández (2019).

This means that CVBP computes the objective value from the

vertices in the set . The formal definition of the traditional

and the redefined objective functions can be found in

Equations (1) and (2) of Section 2, respectively.

We conducted two computational experiments for

assessing the performance of CVBP in practice. The first

experiment was designed to fine–tune the parameter of

CVBP. Unlike LIT, CVBP does not modify the value of during

its execution. The experimental results showed that the best

value for is 0.0. This implies that CVBP is completely greedy.

In the second experiment the best configuration of CVBP

solved the entire benchmark of VBP consisting of 477 graphs

Norberto Castillo–García, Paula Hernández–Hernández / Journal of Applied Research and Technology 187-196

Vol. 18, No. 4, August 2020 189

of different classes and sizes (Castillo–García & Hernández,

2019). We also execute a random algorithm (RND) over the

whole set of benchmark instances. The experimental data

clearly showed that CVBP outperformed RND by 73.53 % in the

quality of solutions found. In addition, we compare the results

of CVBP and RND with those of LIT explicitly reported by

González et al. (2015). The experimental evidence strongly

showed that CVBP outperforms both RND and LIT by 76.19 %

and 75.83 %, respectively. The superiority of CVBP was

confirmed by the Wilcoxon Signed Rank Sum Test (Wilcoxon,

1945). The test found statistical significance between CVBP

and LIT and between CVBP and RND for a confidence level of

99.99 %. Moreover, the test does not find statistical

significance between RND and LIT.

The remainder of this article is organized as follows. Section

2 presents the formal definition of the Vertex Bisection

Problem. Section 3 describes our proposed constructive

algorithm CVBP in detail. In Section 4 we report the

computational experiments carried out to assess the

performance of CVBP in practice. Finally, in Section 5 we

discuss the main conclusions of this research.

2. Formal Definition of VBP

Let be a connected, undirected and unweighted

graph without loops. and respectively represent the sets

of vertices and edges of the graph. These sets are assumed to

be finite and discrete. Thus, the number of vertices of the

graph is and the number of edges is .

Let be a partition of the set of vertices into two

subsets and such that , ,

 and . In the context of the Vertex

Bisection Problem, a partition represents a solution. The

objective value of partition is the number of vertices in the

set with one or more adjacent vertices in the set . Formally:

 (1)

Alternatively, the objective value of VBP can be computed

from the vertices in the set according to Equation (2)

(Castillo–García & Hernández, 2019):

 (2)

where represents the set of all vertices

adjacent to every vertex in the set and

is the set of vertices adjacent to vertex .

The goal of VBP is to find the partition such that its

objective value is the minimum. In mathematical terms:

where stands for the solution space and its cardinality is

given by the following binomial coefficient:

3. Constructive algorithm CVBP

Our constructive algorithm CVBP is based on the Greedy

Randomized Adaptive Search Procedure (GRASP)

methodology (Duarte et al., 2007). CVBP starts by assigning all

the vertices to the set and no vertex to the set , i.e.,

and . The idea is to iteratively select one vertex to be

moved from to until the number of vertices in is .

The first step of CVBP is to select the vertex whose

adjacency degree is the lowest. This is so because all the vertices

adjacent to contribute to the objective value of the partition

, which must be minimized. Once the first vertex is selected, the

sets and must be properly updated, i.e., and

. The next vertices to be moved from set to set

are selected by computing the following greedy function:

Notice that the greedy function is actually the partial

objective value of partition computed by Equation (2) with

the current members of and . Once all the vertices in have

been evaluated, CVBP selects a subset of candidate vertices

known as Restricted Candidate List (RCL). The vertices in RCL

are those whose –value is less than or equal to the threshold

 (3)

where and are respectively the lowest and the

largest –values from the vertices in , and is a real

number that governs the greediness level of CVBP. The

Restricted Candidate List is formally defined as follows:

The vertex to be moved to set is selected randomly from

the vertices in RCL. Like in the first step, sets and must be

updated. CVBP ends its execution when the number of vertices

in is . Algorithm 1 shows the high–level pseudocode

of our proposed constructive algorithm CVBP.

Norberto Castillo–García, Paula Hernández–Hernández / Journal of Applied Research and Technology 187-196

Vol. 18, No. 4, August 2020 190

4. Computational experiments

In this section we report two computational experiments

conducted to assess the performance of CVBP in practice. The

first experiment aims at fine–tuning the parameter of CVBP.

This experiment is described in Section 4.2. In the second

experiment, CVBP solves the entire set of 477 benchmark

instances for VBP. This benchmark is the one used to evaluate

the integer linear programming formulations proposed by

Castillo–García and Hernández (2019) and consists of thirteen

different kind of graphs. For comparative purposes, we also

execute a random algorithm (RND) over the entire benchmark.

The results of this experiment are reported in Section 4.3. In

addition, in Section 4.4 we compare CVBP with both RND and

the previously published constructive algorithm from the

literature (LIT) over a subset of benchmark instances. More

precisely, we compare the results obtained by CVBP and RND

in the second experiment with the best results explicitly

reported by González et al. (2015). Moreover, the comparison

of CVBP, RND and LIT has been statistically validated through

the Wilcoxon Signed Rank Sum Test (Wilcoxon, 1945). In the

following section (Section 4.1) we describe the experimental

conditions and the set of instances used in the experiments.

4.1. Experimental conditions and test bed

All the experiments were conducted on a standard computer

with an Intel(R) Core(TM) i7–7500 CPU at 2.7 GHz and 32 GB of

RAM. We implement CVBP and RND in Java (JRE 1.8.0_121)

under the Microsoft Windows 10© operating system. As

mentioned previously, we use a total number of 477

benchmark instances for VBP. These instances are grouped by

classes of graphs in the following 13 datasets (Castillo–García

& Hernández, 2019):

1.- Grid: This dataset consists of 52 graphs whose structure

resembles two–dimensional square meshes. A grid graph can

be drawn as a square mesh with columns and rows. The

graphs in this dataset have the same number of rows and

columns, i.e., . The numbers of vertices and edges of

these graphs range from 9 to 2,916 and from 12 to 5,724,

respectively.

2.- Tree: This dataset consists of 50 trees. A tree graph can

be informally defined as a complete graph without loops.

Furthermore, a tree with vertices has exactly edges.

The numbers of vertices and edges of the trees in this dataset

range from 22 to 202 and from 21 to 201, respectively.

3.- HB: This dataset has 62 graphs obtained from the well–

known Harwell–Boeing Sparse Matrix Collection. In this

dataset, there is an edge from vertex to vertex if entry

of the corresponding matrix is nonzero, i.e., . The

numbers of vertices and edges respectively range from 24 to

960 and from 46 to 7,442.

4.- 2-dimensional mesh: This dataset contains 29 mesh

graphs in two dimensions. The graphs in this dataset are the

cartesian product of two paths: .

5.- 2-dimensional toroidal mesh: This dataset contains 29

toroidal mesh graphs in two dimensions. These graphs are

obtained by the cartesian product of two cycles: .

6.- 3-dimensional toroidal mesh: This dataset consists of 18

toroidal mesh graphs in three dimensions. Like two–

dimensional toroidal graphs, these graphs are the cartesian

product of three cycles: .

7.- Complete bipartite: This dataset consists of 32 complete

bipartite graphs. The structure of a complete bipartite graph (

) is particular. The set of vertices is partitioned into two

disjoint sets of sizes and . Each pair of vertices in the partite

sets is mutually adjacent. The numbers of vertices and edges

of this kind of graphs are respectively and

.

8.- Complete split: This dataset has 33 complete split

graphs. A graph is complete split () if the set of vertices

 can be partitioned in a clique of size () and in an

independent set of size (). In addition, every vertex

 must be adjacent to every vertex .

9.- Harwell–Boeing: This dataset contains 36 graphs derived

from the public domain SuiteSparse Matrix Collection

(https://sparse.tamu.edu/).

10.- Hypercube: This dataset consists of 8 hypercube

graphs. A –dimensional hypercube graph () has

vertices and edges. The connectivity of a hypercube

is obtained as follows. The vertices must be numbered from 0

to . Then, the numbers have to be converted to their

https://sparse.tamu.edu/

Norberto Castillo–García, Paula Hernández–Hernández / Journal of Applied Research and Technology 187-196

Vol. 18, No. 4, August 2020 191

binary representation. Thus, two vertices are joined by an edge

if and only if their binary representations differ by exactly one

bit. This verification can be performed by an XOR operation on

the binary representations and summing the resulting bits.

The vertices must be joined by an edge if and only if the sum is

exactly one or, equivalently, if the decimal representation of

the resulting bits is a power of 2.

11.- Join of hypercubes: This dataset contains 24 graphs

resulting from the union of two hypercubes and the addition

of new edges. Formally, the join of two hypercubes and

(denoted by) is the graph union and the

addition of one edge for each pair of vertices and such

that and . These graphs have

vertices and edges.

12.- Random: This dataset consists of 20 graphs generated

at random.

13.- Small: This dataset consists of 84 graphs with a

relatively small number of vertices and edges. Specifically, the

numbers of vertices and edges of these graphs range from 16

to 24 and from 18 to 49, respectively.

4.2. Experiment 1: Fine–tuning CVBP

As mentioned in Section 3, the parameter controls

the greediness level of CVBP. Specifically, CVBP becomes

greedier when the value of tends to zero and less greedy

when approaches one. The goal of this experiment is to

empirically determine the best value for . Since the values in

the interval are infinite, we must obtain a finite, discrete

and representative set of values from this interval. Thus, we

have divided the domain of into the following set :

The reason for selecting the values of is that they are

uniformly distributed in the interval . We statistically

tested the values of in order to determine if their mean and

variance tend to the expected values for a uniform

distribution, i.e., and , respectively

(Dunna, Reyes, & Barrón, 2006). The tests confirmed the

hypotheses that the mean and variance of actually tend to

the expected values and with a confidence level of 95 %.

In addition to the previous tests, we have also conducted the

 test for uniformity. This test aims at determining whether

or not the values of are uniformly distributed in .

The test confirmed that the values of are uniformly

distributed with a confidence level of 95 %.

The experiment consists in executing CVBP with the

 different –values on a random sample of 30 % of

the instances, that is, 143 instances. In particular, we are

interested in observing the effect of the value on: (i) the

solution quality, (ii) the execution time, and (iii) the size of the

restricted candidate list (RCL). The results of this experiment

are summarized in Table 1. This table has eight headings,

namely, the –value (); the average objective value (O. V.);

the average execution time in CPU seconds (Time); the

average minimum size of RCL (); the average maximum

size of RCL (); the average range of RCL (); the

average mean size of RCL (); and the average standard

deviation of the RCL size (). The table has eleven rows,

one for each –value.

From Table 1 we can observe that the best value for the

parameter is 0.0. As mentioned previously, when

CVBP becomes completely greedy. This means that, with this

configuration, the RCL only contains those vertices whose

greedy value is the minimum. The results also show that as the

value of increases, the quality of the solutions found by

CVBP decreases considerably. The experimental results also

show that the average execution time of the configurations is

very similar to each other except for the last configuration (

). In fact, the differences observed are so small that

we conclude that the –value does not have any significant

effect on the execution time. Finally, the results also reveal that

the size of the restricted candidate list is affected by the value

of . According to the data, small values of require small

RCLs while large values of require big RCLs. Notice that this

tendency is similar to that observed in the average objective

value. In order for the reader to observe this similarity clearly,

we plot the average objective value and the average RCL size

for each value of in Figure 2. Specifically, Figure 2a exhibits

the rising tendency of the average objective value (–axis) as

the value of augments (–axis). Similarly, Figure 2b depicts

a series of 11 box plots that represent the sizes of the RCL with

respect to the –values. At this point it is evident that the best

value for is 0.0. This is so because it leads to a better solution

quality and a small–sized restricted candidate list, on average.

Therefore, we will use in the remaining experiment.

Furthermore, since the best value for is 0.0, Equation (3) and

line 8 of Algorithm 1 can be reduced to .

Norberto Castillo–García, Paula Hernández–Hernández / Journal of Applied Research and Technology 187-196

Vol. 18, No. 4, August 2020 192

4.3. Experiment 2: Solving the benchmark instances

The goal of this experiment is to assess the performance of the

best configuration of CVBP in practice. The experiment

consists in executing CVBP with over the whole set of

477 benchmark instances and measuring the efficiency

(execution time) and effectiveness (solution quality). For

comparative purposes, we also execute a random algorithm

(RND) to solve the same instances. RND randomly selects one

vertex of the graph until . It does not have any

criterion whatsoever to select a vertex. The results of this

experiment are reported in Table 2. This table shows two

statistics: the average objective value (O. V.) and the average

execution time in CPU seconds (Time).

As can be observed, CVBP obtained the best average

objective value. Specifically, CVBP outperformed RND by 73.54

% in the O. V. statistic. This means that the solution quality

found by CVBP is approximately 3.78 times better than that

found by RND. Figure 3 plots the results of this experiment

for CVBP and RND. The red line represents CVBP while the

blue line represents RND. The –axis shows the 477

instances evaluated in this experiment. These instances

are sorted by number of vertices in ascending order. The

–axis presents the objective value found for the

instances. This axis is logarithmically scaled in order to clearly

observe the differences between CVBP and RND in solution

quality.

Table 1. Experimental results for different values of the

parameter 𝛼 over 143 instances selected at random.

 RCL size statistics

𝛼 O.V. Time 𝑚𝑖𝑛 𝑚𝑎𝑥 𝑟𝑎𝑛𝑔𝑒 𝑚𝑒𝑎𝑛 𝑠𝑡𝑑 𝑑𝑒𝑣

0.0 31.70 2.27 2.94 41.08 38.15 8.71 7.56

0.1 38.53 2.34 12.45 64.17 51.73 30.14 13.90

0.2 42.68 2.33 17.37 70.63 53.26 38.88 14.59

0.3 50.80 2.29 23.77 81.53 57.76 50.70 16.03

0.4 60.01 2.27 31.74 94.02 62.28 63.92 16.97

0.5 66.94 2.35 36.91 108.10 71.19 74.44 19.34

0.6 88.70 2.29 41.13 141.07 99.94 99.40 27.57

0.7 91.76 2.44 48.41 150.29 101.87 108.06 27.18

0.8 117.56 2.35 65.97 188.48 122.52 145.70 31.87

0.9 117.10 2.36 67.90 192.63 124.73 148.20 32.97

1.0 149.32 3.32 159.87 316.43 156.55 237.65 45.49

Figure 2. Experimental results for selecting

the best value for 𝛼 in the set 𝑆 .

Norberto Castillo–García, Paula Hernández–Hernández / Journal of Applied Research and Technology 187-196

Vol. 18, No. 4, August 2020 193

As expected, RND was the fastest algorithm in this

experiment. Its average computing time is about 7

milliseconds per instance. The average computing time of

CVBP was 5.21 seconds. This difference can be partially

explained by the fact that CVBP is much more sophisticated

than RND. This means that CVBP must perform significantly

more computations than RND. Thus, the experimental

evidence suggests that the best option to solve VBP is CVBP

regardless of the execution time.

4.4. Comparison of CVBP, LIT and RND

In this section we compare CVBP with both the random

algorithm of the previous experiment (RND) and the GRASP–

based constructive algorithm from the literature proposed by

González et al. (2015) (LIT). The comparison is conducted on a

subset of 46 benchmark instances from the HB and Harwell–

Boeing datasets. Table 3 reports the objective values found by

RND, LIT and CVBP. This table has two main sections and each

section has the following five columns: the instance name

(Instance), the number of vertices (), the objective value

obtained by RND (RND), the best objective value obtained by

LIT (LIT) and the objective value obtained by our heuristic

(CVBP). It is important to mention that González et al. (2015)

report three results for each instance. Thus, in order for this

comparison to be as fair as possible, we assign LIT the best

(minimum) result reported.

As can be observed in Table 3, CVBP consistently obtained

the best results for all the instances. The average objective

values of CVBP, LIT and RND are respectively 24.00, 99.28 and

100.80. This means that CVBP outperformed LIT by 75.83 %

and RND by 76.19 %. The data also reveal that the

performance of RND and LIT in terms of average solution

quality is similar. This tendency can be observed in Figure 4. In

this figure the red line represents LIT, the blue line represents

RND and the black line represents CVBP. The –axis presents

the instances sorted by number of vertices in ascending order.

The –axis shows the objective values obtained for each

instance. This axis is logarithmically scaled in order to observe

the tendencies clearly.

Table 2. Experimental results for CVBP and RND over the 477 benchmark instances.

Algorithm O.V. Time

CVBP 27.07 5.210

RND 102.29 0.007

Figure 3. Experimental results for CVBP and RND over the benchmark instances.

Norberto Castillo–García, Paula Hernández–Hernández / Journal of Applied Research and Technology 187-196

Vol. 18, No. 4, August 2020 194

 Table 3. Comparison of RND, LIT and CVBP over 46 benchmark instances.

Instance

RND LIT CVBP Instance

RND LIT CVBP

494_BUS 494 161 154 26 dwt234 117 43 31 9

662_BUS 662 213 226 58 DWT__245 245 84 97 21

685_BUS 685 249 257 54 DWT__310 310 115 138 8

arc_130 130 65 29 8 DWT__361 361 161 162 14

ash_85 85 40 33 9 DWT__419 419 192 196 24

BCSPWR01 39 13 7 5 DWT__503 503 236 240 53

BCSPWR02 49 14 10 3 DWT__592 592 252 276 29

BCSPWR03 118 43 36 8 gent113 104 50 43 21

BCSPWR04 274 114 99 32 gre_115 115 51 43 22

BCSPWR05 443 152 148 33 gre_185 185 92 82 24

BCSSTK01 48 24 20 12 impcol_b 59 26 24 19

BCSSTK02 66 33 33 33 impcol_c 137 64 52 22

BCSSTK04 132 66 66 24 lns_131 123 50 40 16

BCSSTK05 153 61 73 17 NOS4 100 40 38 10

BCSSTK06 420 202 197 68 NOS5 468 208 229 56

bcsstk_22 110 50 37 6 NOS6 675 244 279 27

CAN__144 144 71 59 6 PLAT362 362 181 174 44

CAN__161 161 76 71 16 steam03 80 40 36 4

CAN__292 292 114 124 27 west0132 132 65 52 26

CAN__445 445 188 206 53 west0156 156 76 65 30

curtis_54 54 27 17 7 west0167 167 82 71 19

DWT__209 209 88 91 27 will_57 57 23 17 5

DWT__221 221 103 98 7 will199 199 95 91 62

Figure 4. Comparison of CVBP, RND and LIT

(González et al., 2015) over 46 benchmark instances.

Norberto Castillo–García, Paula Hernández–Hernández / Journal of Applied Research and Technology 187-196

Vol. 18, No. 4, August 2020 195

We conduct the Wilcoxon Signed Rank Sum Test (Wilcoxon,

1945) in order to determine whether or not the differences

observed in solution quality are statistically significant. We use

the statistical software R for conducting the test automatically.

The results of the Wilcoxon test are reported in Table 4.

Table 4. Results of the Wilcoxon test over

the solution quality of CVBP, LIT and RND.

 –value confidence

level

significant?

CVBP vs LIT

99.99 % YES

CVBP vs RND 99.99% YES

LIT vs RND 0.08404 91.59 % NO

As we can observe, the test found a significant difference

between CVBP and LIT with a confidence level of 99.99 %.

Similarly, the difference between CVBP and RND is also

significant with a confidence level of 99.99 %. This means that

the statistical test validates that CVBP outperformed both LIT

and RND in effectiveness. The Wilcoxon test also determine

that the difference between LIT and RND is not significant. This

is so because the –value found was greater than the

standard threshold used in scientific research, i.e.,

. This implies a confidence level of

 for this test. Clearly, this

confidence level is less than the minimum required in science

(95 %).

5. Conclusions

In this article we have faced the Vertex Bisection Problem

(VBP). The problem asks for a partition of the set of vertices of

a generic graph into two subsets (and) with approximately

the same cardinality. The goal is to minimize the number of

vertices in with one or more adjacent vertices in . In

particular, we have proposed a new constructive algorithm

(CVBP) based on the Greedy Randomized Adaptive Search

Procedure (GRASP) methodology. We conducted two

computational experiments to assess the performance of

CVBP in practice. The first experiment was designed to fine–

tune the parameter of CVBP by solving a representative

sample of the benchmark instances. The experimental data

clearly indicate that the best value for the parameter is 0.0.

Thus, Equation (3) and line 8 of Algorithm 1 can be reduced to

, which indicates that CVBP is completely greedy.

In the second experiment we solve the entire set of 477

benchmark instances and compare CVBP with a random

algorithm (RND). RND is a constructive algorithm that

iteratively selects one vertex without any kind of criterion at all.

The experimental results clearly suggest that CVBP is the best

option in terms of solution quality. Specifically, CVBP

outperformed RND by 73.53 % in average objective value. In

addition, we compare the results of CVBP and RND with a

previously proposed constructive algorithm (LIT) (González et

al., 2015). The data showed that CVBP outperforms both RND

and LIT by 76.19 % and 75.83 %, respectively. This fact was

confirmed by the Wilcoxon Signed Rank Sum Test (Wilcoxon,

1945). The test found statistical significance between CVBP

and LIT for a confidence level of 99.99 %. Likewise, the

difference between CVBP and RND is significant for a

confidence level of 99.99 %. Although LIT slightly

outperformed RND by 1.51 %, the difference is not statistically

significant to conclude that LIT is superior to RND.

Therefore, taking into account the experimental evidence

and the statistical validation, we conclude that CVBP is a good

alternative to stochastically solve the Vertex Bisection

Problem. Moreover, CVBP can be coupled with a local search

or embedded in a larger framework (e.g., a metaheuristic

algorithm) in order to obtain better results for the problem.

Acknowledgments

The authors would like to thank Tecnológico Nacional de

México for its support in this research through the project No.

7002.19–P. The authors also thank the Mexican Council for

Science and Technology (CONACYT) for its support through

the Mexican National System of Researchers (Grant Nos. 70157

and 72282). Our deeply grateful thanks to the anonymous

reviewer for his/her valuable suggestions that considerably

improve the quality of the article.

References

Brandes, U., & Fleischer, D. (2009). Vertex bisection is hard, too.

Journal of Graph Algorithms and Applications, 13(2), 119-131.

Castillo-García, N., & Hernández, P. H. (2019). Two new integer

linear programming formulations for the vertex bisection

problem. Computational Optimization and Applications, 74(3),

895-918.

https://doi.org/10.1007/s10589-019-00119-4

Duarte, A., Pantrigo, J. J., & Gallego, M. (2007). Metaheurísticas.

Madrid: Dykinson.

https://kops.uni-konstanz.de/bitstream/handle/123456789/2971/Brandes_opus-104018.pdf?sequence=1
https://kops.uni-konstanz.de/bitstream/handle/123456789/2971/Brandes_opus-104018.pdf?sequence=1
https://doi.org/10.1007/s10589-019-00119-4
https://www.dykinson.com/libros/metaheuristicas/9788498490169/
https://www.dykinson.com/libros/metaheuristicas/9788498490169/

Norberto Castillo–García, Paula Hernández–Hernández / Journal of Applied Research and Technology 187-196

Vol. 18, No. 4, August 2020 196

Dunna, E. G., Reyes, H. G., & Barrón, L. E. C. (2006). Simulación

y análisis de sistemas con ProModel. Pearson Educación.

Fraire, H., Terán-Villanueva, J. D., García, N. C., Barbosa, J. J. G.,

del Angel, E. R., & Rojas, Y. G. (2014). Exact methods for the

vertex bisection problem. In Recent Advances on Hybrid

Approaches for Designing Intelligent Systems (pp. 567-577).

Springer, Cham.

https://doi.org/10.1007/978-3-319-05170-3_40

González, J. A. R., Villanueva, J. D. T., Huacuja, H. J. F., Barbosa,

J. J. G., Flores, J. A. M., Valdez, G. C., & Ramírez-Saldivar, A.

(2015). Control difuso del parámetro β de una heurística

constructiva tipo GRASP para el problema de la bisección de

vértices de un grafo. Research Computing Science, 92, 49-58.

Herrán, A., Colmenar, J. M., & Duarte, A. (2019). A variable

neighborhood search approach for the vertex bisection

problem. Information Sciences, 476, 1-18.

https://doi.org/10.1016/j.ins.2018.09.063

Jain, P., Saran, G., & Srivastava, K. (2016a). A new integer linear

programming and quadratically constrained quadratic

programming formulation for vertex bisection minimization

problem. Journal of Automation Mobile Robotics and Intelligent

Systems, 10.

Jain, P., Saran, G., & Srivastava, K. (2016b). Branch and bound

algorithm for vertex bisection minimization problem. In

Advanced Computing and Communication Technologies (pp.

17-23). Springer, Singapore.

https://doi.org/10.1007/978-981-10-1023-1_2

Jain, P., Saran, G., & Srivastava, K. (2016c). On minimizing

vertex bisection using a memetic algorithm. Information

Sciences, 369, 765-787.

https://doi.org/10.1016/j.ins.2016.07.055

Klasing, R. (1998). The relationship between the gossip

complexity in vertex-disjoint paths mode and the vertex

bisection width. Discrete Applied Mathematics, 83(1-3), 229-246.

https://doi.org/10.1016/S0166-218X(97)00112-1

Terán-Villanueva, J. D., Fraire-Huacuja, H. J., Martínez, S. I.,

Cruz-Reyes, L., Rocha, J. A. C., Santillán, C. G., & Menchaca, J. L.

(2019). Cellular processing algorithm for the vertex bisection

problem: Detailed analysis and new component design.

Information Sciences, 478, 62-82.

https://doi.org/10.1016/j.ins.2018.11.020

Wilcoxon, F. (1945). Individual comparisons by ranking

methods. Biom Bull 1: 80–83.

https://doi.org/10.2307/3001968

https://www.pearsoneducacion.net/colombia/Inicio/pemx-9786073215015
https://www.pearsoneducacion.net/colombia/Inicio/pemx-9786073215015
https://doi.org/10.1007/978-3-319-05170-3_40
https://www.rcs.cic.ipn.mx/2015_92/Control%20difuso%20del%20parametro%20_%20de%20una%20heuristica%20constructiva%20tipo%20GRASP%20para%20el%20problema%20de.pdf
https://www.rcs.cic.ipn.mx/2015_92/Control%20difuso%20del%20parametro%20_%20de%20una%20heuristica%20constructiva%20tipo%20GRASP%20para%20el%20problema%20de.pdf
https://www.rcs.cic.ipn.mx/2015_92/Control%20difuso%20del%20parametro%20_%20de%20una%20heuristica%20constructiva%20tipo%20GRASP%20para%20el%20problema%20de.pdf
https://doi.org/10.1016/j.ins.2018.09.063
https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-c8ca9a23-8724-4fc1-950b-10b2301d9b35
https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-c8ca9a23-8724-4fc1-950b-10b2301d9b35
https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-c8ca9a23-8724-4fc1-950b-10b2301d9b35
https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-c8ca9a23-8724-4fc1-950b-10b2301d9b35
https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-c8ca9a23-8724-4fc1-950b-10b2301d9b35
https://doi.org/10.1007/978-981-10-1023-1_2
https://doi.org/10.1016/j.ins.2016.07.055
https://doi.org/10.1016/S0166-218X(97)00112-1
https://doi.org/10.1016/j.ins.2018.11.020
https://www.jstor.org/stable/3001968?origin=crossref&seq=1

