Journal of Applied Research
and Technology

www.jart.ccadet.unam.mx
Journal of Applied Research and Technology 16 (2018) 466-483

Original

Firefly optimization technique based test scenario generation and

prioritization
Vikas panthi ", Durga Prasad Mohapatra ®

% Deptt. of Computer Science € Engineering, Rajasthan Technical Universily, kota, Rajasthan
b Deptt. of Computer Science € Engineering National Institute of Technology, Rourkela

Received dd mm aaaa; accepted dd mm aaaa
Available online dd mm aaaa

Abstract: Model-based testing shows a significant role-play in the area of software testing. This
paper presents a new automatic test scenarios generation technique using UML state machine
diagram having composite states. The intention of this research is to generate test scenarios for
concurrent and composite states in state machines using the proposed algorithm SMToTSG (State
Machine To Test Scenarios Generation). We have prioritized the test scenarios using Firefly
optimization algorithm. We have used state-based coverage criteria such as state, transition,
transition pair coverage to evaluate the efficiency of the proposed algorithm. The proposed approach
is useful for feasible test scenario generation. Generating exhaustive test scenarios for all concurrent
interdependent sequences is very difficult. In this paper, we generate the important test scenarios in
the presence of concurrency in composite models. After prioritization, we apply Average Percentage
Fault Detection (APFD) metric to calculate the efficiency of the prioritized test scenarios.

Keywords: State Machine Diagram, Test Scenarios Generation, Firefly Optimization Algorithm,
Modeling Language, Software Functional Testing

1. INTRODUCTION

Software testing is the most important part of quality
assurance in SDLC Sommerville (2009), Mathur (2007).
Nowadays, the increasing size of software and complexity
require more manpower and time for testing the software
systems. Manual testing is very much labor-intensive and
error-prone. In the current scenario, all the experts agreed
that manual test case generation is a common cause of
project delays, especially for large projects. Test scenarios
generation contributes major role in minimizing the cost.
Therefore, automatic test scenarios generation has ensured
the software quality and manages software cost. Source
code based test scenarios generation is a very typical task,
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but a substitute approach is to generate test scenarios
based on UML models during the design phase in software
development. UML Michel and Rumbaugh (2005) is a
widely accepted language for designing object-oriented
software. UML diagrams show the behavior of the object or
combination of objects. Test scenarios generation at design
level has several rewards. Model-based test scenario
generation technique can detect sealed categories of faults
Aichernig et al. (2015) that are not easily recognized by
source code based testing. It also allows test cases to be
available much earlier in the software development process,
thus making test planning more efficient, and reducing the
rescue time and usage of resources Michel and Rumbaugh
(2005). Optimal and prioritized test scenarios generation is
still a challenging task. So, we use Firefly optimization
algorithm Surafel and Hong (2012), Yang (2009) for
scenarios.

prioritizing the test Firefly algorithm is

becoming powerful in solving the modern numerical
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optimization problems, in particular for the NP- hard
problem. We can also apply this algorithm on Control Flow
Graph for test scenarios generation which is also an
optimization problem. As compared to PSO and GA
Tilahun, (2012), Firefly
Algorithm (FA) reduces the overall computational effort by
86% and 74%, respectively Yang (2009). The intention of
this research is to generate test scenarios for concurrent

techniques Kassa, and Ong

and composite states in state machines using our proposed
algorithm SMToTSG (State Machine To Test Scenarios
Generation). After test scenarios generation, we apply
Firefly optimization algorithm Surafel and Hong (2012),
Yang (2009) for prioritizing the test scenarios. We consider
composite states in the State Machine Diagram (SMD) to
generate test scenarios and to verify the behavior of
software systems. After prioritization, we apply Average
Percent- age Fault Detection (APFD) metric to determine
the efficiency of the prioritized test scenarios. This paper
generates all feasible test scenarios for the System Under
Test (SUT) and employs Firefly Algorithm to prioritize the
generated test scenarios.

To the best of our knowledge, there exists no such
technique that generates test scenarios by considering the
composite states. In such a scenario, the generated test
scenarios are prioritized. Redundant exploration of the
State Machine Diagram and the iteration over the state
loops are avoided by the construction of the Feasible
Control Flow Graph. The use of Firefly Algorithm, results
in efficient prioritization of the generated test scenarios.
The remaining part of the paper is structured as follows:
Section 2 provides the basic concepts such as the overview
of the state machine diagram, inter- mediate graph, state-
based coverage criterion, Firefly optimization algorithm,
Fault
Detection (APFD) metric. Section 3 presents the proposed

objective function, and Average Percentage
approach for prioritizing the test scenarios generated from
the state machine diagram using FA. Section 4 describes the
working of our approach by taking the case study Bank
ATM system. In Section 5, we discuss the experimental
studies and present the corresponding result analysis.
Section 6 describes the comparison of our work with some
related work. Section 7 concludes the paper and provides

some insight into our future work.

2. BASIC CONCEPTS

In this section, we discuss some basic concepts,
notations, and definitions, which are relevant to our

approach. In rest of the paper we use the terms, test cases,
test scenarios and test sequences interchangeably.

2.1 STATE MACHINE DIAGRAM (SMD)

In modeling language, the behavioral representation of
an object is described by defining a State Machine Diagram
(SMD). The SMD is also documented in a type of diagram
known as state chart in UML 1.x. A SMD describes the
states, transitions, and composite states which are the
main building blocks of the SMD.

Definition A state machine diagram (SMD) is a
tuple SD = {5, S0, E, T, Sf}, where
-S is a finite set of states,
-50 € S is an initial state,
-FE is a finite set of events,
-T'C S x E x Sis a finite set of transitions,
-Sf € S is a finite set of final states.

A state machine, tracks an individual object throughout
its entire lifetime, specifying all the possible sequences of
messages that the object could receive together with its
response to these messages.

States are distinguished by the fact that the object may
respond differently to events in different states. Below, we
discuss some important properties of behavioral states
Priestley (2003).

1. An object has a number of possible states and it is in
exactly one of these states at any given time.

2. An object can change a state and, in general, the states
it is in at a given time will be determined by its history.

Now, we describe the state machine diagram with the case

study CD Player. The state machine diagram for the CD

Player is shown in Fig. 1 and the detailed description of

this case study is given in Priestley (2003).

2.1.1 State

The states of a state machine diagram are represented
by a discrete type called state variable. State machine
A state is an
Sets of

values and links are grouped together into a state according

diagram has a set of possible states.
abstraction of the values and links of an object.

to the gross behaviour of the object Michel and Rumbaugh
(2005), Priestley (2003). For example, the state of a bank
could be either solvent or insolvent, depending on whether
its assets exceed its liabilities. It is generally represented by
a rectangle with rounded corners.

A state may be subdivided into multiple compartments,
which are separated from each other by horizontal lines.
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Fig. 1. State machine diagram for CD player Priestley (2003).

The different compartments of a state are as follows:

1. Name compartment (optional) which holds the name of
the state as a string.

2. Internal activities compartment contains a list of
internal actions or state activities that are performed while
the element is in the state.

3. Internal transitions compartment contains a list of
internal transitions. An internal transition executes
without exiting or re-entering the state in which it is
defined.

The possible states of an object are as follows:

e [nitial state A transition starting from an initial
event, shows the state where an object is created or
initialized. This state is known as initial state and
is represented by a small black disk. A state
machine diagram has only one initial state.

e Final state It represents the state when an object is
destroyed, stopped or switched off corresponding to
some event. It is represented by small black disk
inside a large circle. A state machine diagram can
have more than one final state.

e Activity state An activity state represents a period
of time during which an object is performing some
internal processing. As such it is shown as a normal
state that contains only an activity. For example in
a vending machine, as soon as the customer’s input
to a transaction is complete, the activity state
becomes active, corresponding to whether the

vending machine is capable of returning the change

required, to complete the transaction.

e Fvent An event is caused by the inputs to a

composite state machine. In response to an event, a
composite state machine may take an action and
make a transition to a new state. In any particular
state, some events will cause associated transitions
to new states, while other events will not cause
transitions. An event is also an occurrence at a point
of time. Events often correspond to verbs in the past
tense (e.g. power turned on, alarm set etc.) or to
the honest of some condition (e.g. paper tray
becomes empty, temperature becomes lower than
freezing etc.).

Action In state machine diagram, every state and
event may be associated with action. An action may
include a transition to a new state, but may also
result in an output from the state machine diagram.
Transitions Transition is a behavior transformation
from one state to another state. A transition is an
event triggered at a particular state. In reaction to
the event, a transition is transformed from one state
(current state before the transition), to another
state (the new state after a transition) in state
machine diagram. When an event occurs, then a
guarded transition fires. A guard condition is
checked only once, at the time the event occurs. The
transition fires if the condition is true. For example,
when a called phone is answered, the phone tran-
sitions from the ringing state to the connected state.
The UML syntax for a transition is: event-name
argument-list [guardpredicate]/action-expression.
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o  Guard Condition A guard condition is a condition
that has to be met in order to enable the transition
to which it belongs, e.g.

play| CDpresent] (1)

Guard conditions can be used to document the
event, depending on the condition, which may lead
to different transitions.

o  Composite State If composite state machines are to
be usable in practice for complex systems, some
method of simplifying the diagram is required. One
such technique is provided by allowing a state to
contain a number of substates. The substates are
grouped together in the enclosing state because they
share certain properties, which can more concisely be
represented as properties of a single ‘superstate’.
One property that states can share with other states
is their behaviour or, in other words, the transitions
that they participate for example in Fig. 1, when the
CD player is in the open or closed state, its response
to a play event with a CD in the drawer is the same,
namely to move into the playing state and to play
the CD. This may or may not involve a change of
state, depending on whether the drawer was

originally open or closed, but the net effect of the

event is the same. Fig. 1 shows a composite state
machine for the CD player that uses a super state
to factor out the common behaviour. A new state
called ‘Not Playing’ has been introduced and the
open and closed states now appear as sub states of

this new state. The not playing state is known as a

composite state consisting of the two nested sub-

states open and closed Michel and Rumbaugh

(2005), Priestley (2003).

2.2 INTERMEDIATE GRAPH

Behavioral relationship between objects can be
represented by state machine diagram. It can be converted
to a graph Michel and Rumbaugh (2005), Swain, Panthi,
Behera, and Mohapatra (2012). So, we investigate the
comprehensive control flow of a state machine diagram and
store all the extracted information in a link list Yang (2009).
This link list is used for mapping a state machine diagram
to a Composite Control Flow Graph (CCFG), which is
defined below:

Definition An CCFG is a tuple I = {So, T, S, Ca,
Cen, Su} where,

® 50 is an #nitial node representing the beginning of
CCFG.
e Tis a set of transitions in CCFG, where, T € ;.
e Sis a set of states in CCFG.
e (sp is a start node in the composite state of
CCFG.
® (len is the set of end nodes in the composite state
of the CCFG.
® Sp is the set of end nodes in CCFG.
Fig 5a represents the CCFG of the state machine diagram
of the Bank ATM system given in Fig 4.

2.3 STATE-BASED COVERAGE
CRITERION

State-based system testing is a significant application

of MBT, in which, state coverage, transition coverage and
transition pair coverage are the important test coverage
criteria Michel and Rumbaugh (2005), Swain et al. (2012),
Priestley (2003) for system testing. These coverage criteria
are discussed below:
State Coverage: State coverage can be defined on the
basis of test scenario as follows: Given, a finite set of
states S = {stl1, st2, .., stn} and finite set of test
scenarios T = {1, 12, .., tq }. A test scenario can achieve
state coverage, iff for each st; S, there exists a test
scenario ¢j T, such that execution of ¢j causes state st;
to be reached. In this case, we say that the test case ¢j
covers the state sj. Thus, a test suite is said to achieve
state of the
corresponding state chart diagram Priestley (2003).

state coverage, iff it covers every
Transition Coverage: The problem of designing a test
suite that achieves transition coverage can be defined as
follows: Given a set of transitions T'={t¢1, 2, .., tm}, a
test suite TS = {ts1, ts2, .., tsq } achieves transition
coverage, iff for each ts7 TS, there exists a ¢j T that
causes tsi to be executed. In this case, we say the test
case ts47 covers the transition tsj. Thus, a test suite is
said to achieve transition coverage, if it covers every
transition of the corresponding state machine diagram
Priestley (2003).

Transition Pair Coverage Criterion: The problem
of designing a test suite that achieves transition pair
coverage can be defined as follows: Given a set of test
scenarios T={t1, 2, .., tq }, and a set of transitions
T={t1, t2, .., tm }, a test suite TS = {ts1, ts2, ..., tsq}

is said to achieve transition pair coverage, if T contains
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each reachable test scenario of length up to 2, where, we
cover every pair of two transitions Priestley (2003).

2.4 FIREFLY ALGORITHM

Firefly is a bio-inspired meta-heuristic algorithm
introduced by Surafel and Hong (2012) and is used to solve
optimization problems. According to Surafel and Hong
(2012), Yang (2009) there are three important assumptions
in Firefly algorithm:

1. All fireflies are unisex, which means any firefly can be
attracted to any other brighter one.

2. Attractiveness is proportional to their brightness, thus
for any two flashing fireflies, the less bright one will move
towards the brighter one. The attractiveness is propor-
tional to the brightness and they both decrease as their
distance increases.

3. The firefly will move towards the brighter one, and if
there is no brighter one, it will move randomly.

Based on these three rules, the Firefly Algorithm (FA)
can be summarized into two basic concepts: variation of
light intensity and formulation of the attractiveness. For
simplicity, this paper assumes that the attractiveness of a
firefly is determined by its brightness. The intensity of light
is inversely proportional to the square of the distance, say
d, from the source. Thus, the intensity I at distance d

_ 1Is

varies according to the inverse square law, i.e. I(d) o

where [s is the intensity at source point.

In the simplest format, the brightness on intensity I of
a firefly at a particular location x can be expressed as I(z)
f(z), where f{z) is an objective function for the current
node. When light passes through a medium with light
absorption coefficient A, the light intensity I, varies with
distance d as given below Surafel and Hong (2012):

I(d) =1, e (2)

where I, = Intensity at the origin point.

The approximation of the Gaussian form in Eq. 2
obtained by using the combined effect of inverse square law
and absorption law is given below:

1(a)- e (3)

1+ld2
For a shorter distance Eq.2 and Eq. 3 are essentially the

same. The series expansions is given in Eq. 4 and Eq. 5.

e~ M = 1o 0d? +2 2244 + . (4)
2

1
1+ Ad?

= 1- Ad? 45 Nd* + (5)

Similarly, the attractiveness of a firefly can be defined
as follows:

A (6)

144’

where A, is the attractiveness at d = 0, and A(d) is
the node at a distance d. The
movement of a firefly ¢, that is attracted to another more

the attractiveness of

attractive (brighter) firefly is determined by using Eq. 6
and is given below:

—Ad2. 1
m=x + A (xix)) + a (rand + ) (7)

n 2
i=bexl = D Guend’ (@)

Here, xix

Where

is the kth component of the spatial
coordinate x; of the ith firefly. In 2D form, we have

dj = \/(Xl - ;) (- 3’;)2 9)

In Eq. 5 the second term corresponds to the attraction
and the third term is for randomization with a being the
randomization parameter and 0 < o < 1. Rand is a random

number generated between [0, 1].

2.5 OBJECTIVE FUNCTION

Minimizing the problem according to objective design
variables in the search space are called objective function.
The objective function guides an evolutionary algorithm to
produce decisional test scenarios for guard conditions and
decision points. A well formulated objective function can
help to produce correct results. It also reduces the effort in
searching algorithm.

In Firefly algorithm, variations in brightness and light
intensity play an important role in deriving the objective
In this paper,
intensity of light are the important factors for traversing

function. cyclomatic complexity and

the graph. So, on the basis of these factors, we have
formulated the objective function. We use the following
objective function in our proposed approach.

F L) = —
C0) = @+ rand () (10)
where, 7 is the current node, j is the next connected
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node of i, A, = cyclomatic complexity of current node i,

i

and rand() is a random function.

2.6 AVERAGE PERCENTAGE FAULT
DETECTION (APFD) METRIC

Test case prioritization schedules the test -cases
according to their priorities. The test cases with highest
priorities are executed earlier in the regression testing
process than the test cases with lower priorities Bernhard
et al. (2014), Kim, Clark, and McDermid (2001),
Rothermel, Untch, Chu, and Harrold (2001), Srivastava
(2008). Test case prioritization techniques arrange test
cases on the basis of coverage criterion. The main aim of
this technique is to improve the efficiency of test cases for
ex- haustive testing. Test case prioritization problem can
be formulated as follows:

Definition: Given T , a test suite; PT , the set of
permutations of T ;.f , a function from PT to the real
numbers.

Proplem: Find T "~ € PT such that (VT )
(T e PT)T 1 =T = f(T ).

Here, PT represents the set of all possible orderings of
T , and f is a function which is applied to any such
ordering.

There are many possible ways for prioritization using
the test suite for detecting the faults during test case
execution Bernhard et al. (2014), Rothermel et al. (2001),
Rothermel and Elbaum (2003), Srivastava (2008). Let T
be a test suite which contains n test cases, and let F' be
a set of m faults captured by Ts. Let TF; be the first
test case  in scheduling T " of T that detects the fault
i. According to Rothermel et al. (2001), the Average
Percentage Fault Detection (APFD) for test suite T
is given by Eq. 11:

TFy+ TFy+-+TFpy 1
nm 2n

APFD =1 — (11)
APFD value ranges from 0 to 100. An ordered test
suite with higher APFD value has faster (better) fault
detection rate than those with lower APFD wvalues

Rothermel et al. (2001), Srivastava (2008).
Test case prioritization technique can address many

important objectives including the followings:

e To increase the average percentage of faults
detection, that is useful for revealing faults earlier

for the execution of regression tests.

e To increase the high-risk fault detection rate in the
testing process.

e To increase the probability of revealing regression
errors related to mutation fault detection
techniques.

e To increase the percentage of code coverage in the
SUT at a faster rate.

e To increase the percentage of confidence in the

reliability of the SUT at a faster rate.
3. PROPOSED APPROACH

Now, we discuss our proposed approach for automatic test
scenarios generation and prioritization using Firefly
optimization algorithm. The proposed architecture of our
approach is given in Fig. 2 and the step wise procedure is
given below.

Step 1: Construct the State Machine diagram for
the given system and export it into XMI
representation.

Step 2: Convert the XMI representation of the
State Machine Di- agram to Composite Control
Flow Graph (CCFG) and Adjacency matrix.

Step 3: Generate test scenarios using our proposed
algorithm SM- ToTSG on the adjacency matrix
and transform the test scenarios into independent
paths.

Step 4: Prioritize the generated test scenarios by
identifying the model faults present in the state
machine diagram.

Step 5: Find the APFD values for the prioritized
test scenarios.

We illustrate each step with a running example of Bank
ATM System given in Fig. 4 is Section 4.

According to this approach, first we construct the State
Machine Diagram (SMD) for a module or the entire system
using the design tool IBM RSA (Rational Software
Architecture). Then, we export the SMD into XMI
document using IBM RSA tool. Our approach takes XMI
file as an input for our developed parser for generating
Composite Control Flow Graph (CCFG). In CCFG, there
exists some feasible paths in loops. For removing these
loops, we transform the CCFG into FCFG (Feasible
Control Flow Graph).

After generating the CCFG in Step 2, we convert the
CCFG into FCFG. There are many loops present in
CCFG. Due to the existence of loops, there exists many

infeasible test paths in CCFG. In this step, we have
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Fig. 2. Schematic procedure of the proposed approach.

considered simple CCFG (as shown in Fig. 3a) for
transforming to FCFG.

In Fig. 3a, there exists one infeasible path, i.e. (A0 — Al
— A2 — A4 — A2), due to the presence of a loop. In this
path, A2 and A4 may repeat many times. So, this is also
one type of fault due to loop existence. Here, we are aiming
at removing the infeasible paths using an intermediate
graph, called FCFG. In the FCFG, we have created one
extra node e.g. A2E, which is a sub-node of A2. This
process can remove all existing loops present in CCFG.

D,

After converting the CCFG into FCFG, there are now two
feasible path i.e. (A0— Al — A2 — A4 — A2E) and
(A0 — Al — A2 — A3).

Then, we calculate the cyclomatic complexity for every
We proposed have SMToTSG algorithm for
test using FCFG. After
generating the FCFG, we choose randomly fireflies at each

node.
generating the scenarios
node. We have transmitted hundred fireflies at every node
as inputs. According to the fireflies, we calculate the
optimal results for our proposed approach.

6 -0

«®
R

Fig. 3. Feasible Control Flow Graph of Composite Control Flow Graph (CCFG) for a Simple Example.
(a) A simple CCFG. (b) Converted FCFG from CCFG given in Fig. 3a.
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The objective function of an optimization problem
defines the objective to be maximized or minimized in the
search space and domain of design variables Bradley,
Brabazon, and O'Neill (2010), Srivatsava, Mallikarjun,
and Yang (2013), Yang (2009).

Here, the
attractiveness/brightness of firefly’s in a state or a node of

objective  function determines the
a graph, where each state or node’s objective function value
can be different, derivations of objective function should use
key proper- ties of a State Machine Diagram (SMD) or a
Control Flow Graph (CFG). In the standard Firefly
algorithm, light intensity and variations in brightness play
a crucial role in encoding the objective function, while
designing a good objective function is important to a good
problem formulation to be solved by any algorithm. In this
work, the proposed algorithm can adapt and extend the
above two entities by considering cyclometic complexity
Bradley et al. (2010), Srivatsava et al. (2013), Yang (2009),
and graph traversal. We will apply the proposed algorithm
into software testing domain. In addition, the intensity
factor can be determined by using cyclometic complexity of
the graph’s nodes and variation of attractiveness can be
implemented by having the absorption coefficient at every
edge of CFG. Therefore, our algorithm uses two important
entities for formulating the objective function: (1)
Cyclomatic Complexity (2) Random Function. Here, a
random function or a randomization function is a vector
with random variables defined according to the dimensions
in which the algorithm is used. Randomization along with
scaling parameters is employed to differentiate the
dimensions they travel. We use the following objective
function in this approach Srivatsava et al. (2013).

10
F () = Gomanaoy (12)
where, 7 is the current node, j is the firefly at current
node, A; = cyclomatic complexity of current node i, and
rand() is a random function.

Here the constant 10 is a scaling factor to maintain
brightness values above zero, to avoid purely random
search. Random values of a node are used to generate
fireflies with different values of brightness at a particular
node.

After generating the test scenarios, we apply Firefly
optimization algorithm on the generated test scenario for
calculating the mean of brightness. Then, we calculate the
mean of brightness for every generated test scenario using

an objective function. Finally, we prioritize the test
scenarios according to the mean of brightness. Finally, we
apply Average Percentage Fault Detection Metric (APFD)
to measure the efficiency of the prioritized test scenarios.
Now, we explain our proposed algorithm SMToTSG, which
is given in Algorithm 1. In this algorithm, we have taken
FCFG (Feasible Control Flow Graph) as the input. The
output of our algorithm is a Set of Test Scenarios (STS).
We store all the Nodes of FCFG in a link list. First, we
initialize Cp to store the current node of FCFG. Next, we
set T'S; = ¢, and then update it to store all the generated
test scenarios. Then, we trace all the nodes of FCFG till
END node is found. If we found (Cn = END), then we
store all the pre-conditions and post-conditions with input
output in T'S;. We mark every node which is traversed. If
any node is repeated, then we unmarked the node. Finally,
we store the generated test scenarios in STS and display
them.

3.1 CORRECTNESS PROOF OF SMToTSG
ALGORITHM

In this section, we sketch the proof of correctness of our
SMToTSG algorithm.

Theorem 1. SMToTSG algorithm generates test
scenarios correctly.

Proof. In this algorithm, we have taken CCFG (Composite
Control Flow Graph) as the input in adjacency matrix
format. The output of this algorithm is the test scenarios.
There are three loops in this proposed algorithm, in which
two while loops are subparts (inner loops) of for loop. In
this algorithm, the for loop is executed for 7 = 0 to r-1
times, where r is the number of rows. The for loop
terminates at ¢ = r-1. while loops are initialized at line
number 4 and 10, and terminated at line number 9 and 14.
We assume that all the statements work correctly in this
algorithm. By varying the value of ¢ from 0 to r 1, we get
all possible test scenarios. So, our proposed algorithm

SMToSG correctly generates all the test scenarios.
O

3.1.1 Complexity Analysis

In this section, we discuss the space and time
complexity of the SMToTSG (State Machine based to
Test Scenario Generation) Algorithm.

Space Complexity: We have considered two type of
graphs (CCFG and FCFG) for this approach. If the
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number of state nodes in CCFG is n and the number of
transitions is e, then the space complexity of storing the
graph is of order O(ne). So, that is the overall space
complexity O(ne).

Algorithm 1 SMToTSG Algorithm

Input: Feasible Control Flow Graph (FCFG)
Output: Set of test scenarios (STS)

1: SMToTSG (FCFit, Nin) //Nim=initial node of FCFG
2: repeat
3 Create Stack T'S; := ¢
4 SetV Visited nodes N := faise; //N = Total number of nodes in
FCFG
5: PUSHTS, Nin
6  while (TS = ¢) do
7: PUSH TS, N;
8: jt U
9: TS; =T5S;  info(Cyp) /finfo gives information extracted form
Nsuch as Pre-cond, Post-cond, I/P, O/P}
10: if (Cr. == visited) then
11 All nodes of TS; are checked frue
12 end if
13 if N; of Nis not visited then
14: For Each unvisited node N;
15: TS = TS; v info(Cn) /finfo gives information extracted
form N such as {Pre-cond, Post-cond, I/P, O/P}
16: if (Cn == visited) then
17 All nodes of TS; are checked true
18: if (C, == END)AND(C,—N, = END) then /Iwhere
Cp—N, = Next node of C,,
19: Exit
20: else
21: GOTO Step 6
22 end if
23 end if
24: SIS = I;l TS; /[ STS = Set of Test Scenarios // k=
Total number of test scenarios
25: end if
26: setTS; = ¢

27: end while
28: until all nodes are visited
29: Exit

algorithm SMToTSG
traverses every node and edges of FCFG. When all the

Time Complexity: Proposed

nodes and edges are covered than our loop exit from main
loop. In this algorithm, we have considered node as a n
and edges as an e. So, the overall execution time of our
algorithm is O(ne).

4. WORKING OF OUR PROPOSED APPROACH
WITH BANK ATM CASE STUDY

We consider the case study of Bank ATM 1 system to
explain our proposed approach. In Bank ATM system,
there are many use cases such as check balance, withdraw

cash, change PIN, transfer funds, maintenance, repair, etc.
ATM system is very large and complex. So, we consider
only one use case i.e. Maintenance use case of ATM system,
whose state machine diagram (SMD) is shown in Fig.4.
Below, we describe the state machine diagram of Bank
ATM case study.

Initially, ATM is in Turned off state. When the power
is turned on, ATM performs startup action through turn
on transition and enters into Self Test state. If turned on
state calls turn off transition, then, it performs shut Down
action and enters into out of service state. According to
trigger, off state may be entered into Idle state through
shut Down action. In Idle state, ATM waits for customer
interaction. When the customer inserts ATM debit card in
the card reader slot, the ATM state changes from Idle to
serving Customer state. Serving customer state is a
composite state with sequential sub-states customer
authentication, selecting transaction and performing
transaction. Customer authentication state can verify the
authenticity of a customer by the use of personal
information and PIN number which are stored in the ATM
debit card. Selecting transaction state gives the options
for customer transaction. Performing transaction state
the transaction which is

performs selected by the

customer.  Selecting  transaction and  performing

transaction states depend on the customer interaction.
The indicated with hidden
decomposition icons. Serving customer state is completed

composite states are
when end state is called in composite state. If Serving
customer state has performed action ejectCard, then, ATM
releases customer’s card on leaving the state. On entering
the serving customer state the entry action is performed,
and read card transition is called. The serving customer
state, backs to the Idle state, and triggers cancel called by
a customer at any time. If any problem happens in Idle
state, then service transition is called and the system
enters into Maintenance state. Finally if any problem
happens, failure transition is called and the system will

be entered into out of service state.2.

First, we generate an XML document from the State
Machine Diagram. Then, we parse the XML file and
calculate the number of states, transitions and cyclomatic

1http: //www.uml-diagrams.org/bank-atm-UML-state-machine-diagram-
example.html

2http://vvvvw.111111.()rg/


http://www.uml-diagrams.org/bank-atm-UML-state-machine-diagram-example.html
http://www.uml-diagrams.org/bank-atm-UML-state-machine-diagram-example.html
http://www.uml.org/
http://www.uml.org/
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Fig. 4. State machine Diagram of Bank ATM System.

complexity for every node and generate composite control
flow graph (CCFG). The CCFG of the SMD given in Fig.
4 is shown in Fig. 5a. After calculating all the elements,
we convert the CCFG to a Feasible Control Flow Graph
(FCFG). The FCFG is used for generating test scenarios.
The generated test scenarios are completely feasible and
optimal. In FCFG, every node is associated with a number
of fireflies.
After
randomly fireflies at each node.

generating the test scenarios, we choose
We have transmitted hundred fireflies at every node
as input. According to the fireflies, we calculate the
optimal results for our proposed approach. The complexity
of calculation can also be minimized using fireflies.
For every test scenario, hundred fireflies are transmitted
at every node as inputs by using Eq. 13.

Ao

Ald) =~ (13)

we have taken, Ay = 10
d= [0.9, .., 1.0] to [0,
between two nodes.

., 0.1] in which d is a distance

A =Cyclomatic complexity at node of CCFG.

We present the prioritized test scenarios for our state
machine Bank ATM system, based on the brightness
values.

T7 /76

(a) (b)

Fig. 5. Composite Control Flow Graph and Feasible Graph
structure of Composite Control Flow Graph of Bank ATM
system. (a) Composite Control Flow Graph of Bank ATM
system. (b) Feasible Control Flow Graph of Composite Control
Flow Graph (CCFG).
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Now, we show the cyclomatic complexity for every
node in Table 1 using Eq. 14
cc=e—-n+2 (14)
where cc = cyclomatic complexity of graph, e = #£ of
edges in CCFG, n = #£ of nodes in CCFG. A mean can
be determined for grouped data, or data that is placed in
intervals. Unlike listed data, the individual values for
grouped data are not available, and we would not be able
to calculate their sum. To calculate the mean of grouped
data, the first step is to determine the midpoint of each
interval, or class. These midpoints must then be multiplied
by the frequencies of the corresponding classes. The sum of
the products divided by the total number of values will be
the value of the mean. The formula for mean of brightness
is shown in Eq. 15

- AjyAgy..t A
Tpol 4, = furfzeetin (15)
where B, = Arithmetic mean of brightness, n = The
number of fireflies at single node/state, A1 = The

brightness value of single firefly at node. After calculating
the mean of brightness of every test scenario, we prioritize
the test scenarios according to their mean brightness. We
have given highest priority to that test scenarios, which has
highest mean brightness i.e. Highest priority a Highest
Brightness Mean.

Table 1. Cyclomatic Complexity List for every node
(state) of CCFG.

S.No. State Cyclomatic
Complexity
1 S0 8
2 S1 8
3 S92 7
4 S3 5
5 S4 4
6 S5 3
7 S6 3
8 S61 3
9 S62 3
10 S63 10

In this approach, we have considered State coverage,
Transition coverage, and Transition pair coverage. The
above coverages for the Bank ATM system case study
using the prioritized test scenarios are shown in Fig 6.

Let the system contains nine faults, which are detected
by the generated test scenarios. The faults are incorrect
initial state, incorrect final state, interchanged state,
missing states,

interchanged  diagram, corrupted

attribute, corrupted initial value, missing composite
state, missing transition. The alias symbol and faults
name are given in Table 3.

Test scenarios prioritization includes scheduling the test
scenarios in sequential manner to improve the performance
of regression testing. We can find the critical test scenario
of the system by using our proposed technique i.e. firefly
based test scenarios prioritization approach. In the proposed
approach, hundred fireflies are used at each node and they
traverse for each feasible test scenario by using firefly
optimization algorithm.

Below, we present the prioritized optimal test scenarios
for our state ma- chine of Bank ATM system, based on the
brightness values. In this paper, Fig. 7 shows the prioritized
test scenarios with means of brightness at every path of
Bank ATM System.

TS3—TS4—TS7—TSg—>TSs—TS—TS1

After the calculation of all means of brightness for all
test scenarios, the test scenario with the highest mean value
is prioritized according to composite states in state machine
diagram. In this paper, the prioritized test scenarios, which
have a higher number of composite states, is assigned with
high priority as shown in Table 2.

After prioritizing the test scenarios, we apply APFD
metric to calculate the APFD values. These values are used
to determine the efficiency of the prioritized test scenarios.

Scheduling the test scenarios in execution order
according to some coverage criterion is called test case
prioritization. The criteria may be to record test cases in
an execution order that achieves maximum code coverage
at the fastest rate. Test sequence prioritization is a

regression testing approach. It aims  at sorting and
executing test cases in the order of their potential abilities
to achieve certain testing objective. Rothermel et al. (2001)
first introduced the prioritization problem as a flexible

method of regression testing. In their technique, they
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selected test cases according to the modified code coverage
and prioritized them. Now, let us apply Eq. 11 to the
prioritized test scenarios to compute the value of APFD.
It is observed from Table 4 and Table 5 that, m = number
of faults = 9, n = number of test sequences = 7 and
Tr, number of faults detected. Putting the values of m, n,
Tr, (The position of the first test scenario in the ordering
T’ of T that exposes fault i) in Eq. 11, we get,

APFD = 1- ((1 +2 + 1 + 1+ 2 + 1 + 2
+ 3 4+ 1)/(7 * 9)) + 1/(2 * 7) = 0.84920

Similarly, the APFD value for the non-prioritized set
of test scenarios (i.e. nn-prioritized test scenarios) can be
calculated as follows:

APFD = 1-(3+ 1+ 3+ 2+ 4+ 3 + 4 +
2 +1)/(7 * 9)) +1/(2 * 7) = 0.700635

APFD for the given prioritized test scenarios is
calculated to be 0.8492. The APFD value for the non-
prioritized test scenarios is to found to be 0.7006. Fig. 8
shows the APFD values for the prioritized and non-
prioritized test scenarios.

We observed that the APFD value obtained for the
prioritized scenarios (using our approach) is more than that
of the non-prioritized test scenarios.

Hence, for the given Bank ATM system, our approach
APFD value than the
approaches. So, our approach increases the effectiveness of

achieves higher randomized

the generated test scenarios.

Table 2. Generated Feasible Test Scenarios for ATM case study.

Test Scenarios ID Feasible Test scenario Brightness Value Priority
TS1 S0—S51—52—53—S1F 40.8087 VII
152 S0— 51— 52—53 —S4[ 55.5104 VI
753 50— 5152933565 —561— 562— 963—S6 227.9286 I
T4 50— 51 —52—93—56.5 —561—962—563— 5617 — S5 17 224.3156 I
TS5 50— S1— 52— 55— S1 [ 62.5211 v
756 50— 51— 52— 85— 54— 2 I 77.3287 v
TS7 50— S1— 52— S5— 54— S5 12 100.8452 I
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Table 3. Alias symbol for faults name.

S.No. Faults Symbol Faults Name
1 1 incorrect initial state
2 F incorrect final state
3 I interchanged state
4 Fyq missing states
5 Fs interchanged diagram
6 Ig corrupted attribute
7 Fy corrupted initial value
8 Fg missing composite state
9 F9 missing transition

Table 4. Prioritized test scenarios with the detected faults.
Test Sequences / Faults F1 F F3 F4 F5 F F7 F8 F9
TS5 X X X X X
TSy X X X X
TS X
TSe X
TSs X X X
TS> X X
TS, X X

Table 5. Non-Prioritized test scenarios with the detected faults.
Test Sequences / Faults F1 F2 F3 F4 Fs5 F¢ F7 F8 Fo9

TS1 X X
TS2 X X

TS3 X X X X X
1S4 X X

TS5 X X X

TS6 X

TS7 X
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] S
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} Test Scenarios Order: TS3-T54-TS7-TS6-TS5-TS2-TS1

1 2 3 4 5 6 7

Test Scenario

Percentage of Fault Detected

Test Scenarios Order: TS1-TS2-TS3-TS4-TS5-TS6-TS7-TS8

Test Scenario

(a)

(b)

Fig. 8. APFD measure for the prioritized and non-prioritized test sequences. (a) APFD measure for the Prioritized Test

scenarios of Bank ATM system (b) APFD measure for the Non-Prioritized Test scenarios of Bank ATM system.

5. IMPLEMENTATION AND EXPERIMENTAL
RESULTS

In this section, we explain the implementation of our
proposed approach for generating test scenarios using a
proposed SMToTSG
the transformation of behavior

state machine diagram. The

algorithm identifies
between states in the state machine diagram. We apply
SMToTSG algorithm to generate all the feasible test
scenarios. We have developed a prototype tool named
SM2TSG (State Machine to Test Scenario Generator)? for
generating test scenarios using the state machine diagram
in XMI format. We implemented SM2TSG in Java
language (Java 2) using Netbeans IDE 7.0.1% Input to
SM2TSG is the XMI representation of UML 2.0 state
machine diagram. We used IBM RSA 7.0 (IBM Rational
Software Architeture) to draw the state machine diagram
diagram to XMI
representation. SM2TSG visualizes the Composite Control
Flow Graph (CCFG) and Feasible Control Flow Graph
(FCFG) as the output. SM2TSG consists of two main
components: CEFGImplementation and CFGuisualization.

and subsequently exported this

CFEGImplementation first parses the XMI of state machine
diagram and then converts it into CCFG and then
transforms it into FCFG (Feasible Control Flow Graph).
Taking FCFG as the input, CFGuisualization transforms it
into the DOT language format ® and produces an image to
visualize the FCFG (Feasible Control Flow Graph). After
that, we calculate the cyclomatic complexity of every node
in CCFG. Then, we apply SMToTSG Algorithm on FCFG
and generate the feasible test scenarios. Finally, we
calculate the mean of brightness for every test scenario
using firefly optimization algorithm and prioritized them

according to the mean of brightness values. The prioritized
test scenarios for our Bank ATM case study are shown in
Fig. 4.

To further validate our proposed approach, we have
considered more different case studies i.e. Cashier, Cruise
Control, Elevator System, TCP (Transfer Control
Protocol), Vending Machine, Automated Teller Machine
(ATM), traffic signal, and SIP User agent client system.
The characteristics of all the case studies are given in
Table 6.

We have computed the computational time and the
Average Percentage of Fault Detection (APFD) values for
prioritized as well as non-prioritized test scenarios for all
the case studies and shown them in Table 7 and Fig. 9.
From Table 7 and Fig. 9, we observe that the APFD values
of the prioritized test scenarios using our proposed firefly
based approach are greater than that of the non-prioritized
test scenarios using the randomized approach. This shows
that our proposed firefly based approach has better fault
detection capability than the randomized approach.

5.1 THREATS TO VALIDITY

The proposed approach has the following threats to
validity:
o Here, we have considered only functional test
requirements of software in System Under Test
(SUT). We have not considered non-functional

requirements.

3http: / /stackoverflow.com/questions /11715367 /java-dom-parser-xmi-
inline-tag

4https: / /netbeans.org/features/index.html
5http: //www.graphviz.org/Home.php


http://stackoverflow.com/questions/11715367/java-dom-parser-xmi-inline-tag
http://stackoverflow.com/questions/11715367/java-dom-parser-xmi-inline-tag
http://www.graphviz.org/Home.php
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e Here, we have considered only nine types of faults.
There may exist more number of faults such as
message and dependency faults etc. in combine
state machine diagram.

e An automated system is desired to collect the

unbiased and clear Observation Data (OD).

In this approach, we have considered moderate si-
zed academic case study projects only, for our im-
plementation.However,in industries the case study
projects may differ and produce different results.

Table 6. Characteristics of the case studies.

Sl. no. Case Study No. of States No. of Transitions No. of Composite
states
1. Cashier 12 21 1
2. Cruise Control 5 17 1
3. Elevator System 6 12 1
4. TCP 12 56 3
5. Vending Machine 7 28 1
6. ATM 10 17 1
7. Traffic Signal 4 4 1
8. SIP User Agent Client System 14 14 3

Table 7. Experimental Results.

Sl. No. Case Study NT APTS ANPTS CTP (in ms)
1. Cashier 11 0.7359 0.7284 3423.21
2. Cruise Control 15 0.7283 0.6948 3758.14
3. Elevator System 7 0.8187 0.6835 1923.41
4. TCP 43 0.6825 0.6784 8947.24
5. Vending Machine 22 0.6741 0.6485 5174.54
6. ATM 7 0.8492 0.7006 2133.821
7. Traffic Signal System 2 0.6388 0.6388 1437.52
8. SIP User Agent Client System 6 0.7129 0.6203 1958.87

NTS: #£ of Test scenarios for the different case studies, APTS: APFD values for prioritized Test Scenarios, ANPTS: APFD values
for Non-prioritized Test Scenarios, CTP: Computational Time for Prioritization (in Milli Second).
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Fig. 9. APFD values for prioritized and Non-Prioritized Test Sequences.
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6. COMPARISON WITH RELATED WORK

In this section, we present some related research work
in the area of state chart based testing and prioritization
techniques. Among all UML diagrams, most of the work on
UML-based testing focuses on state chart diagrams Chen
(2011), and Rivepiboon (2003),
Latella, and Massink (2004), Kim, Hong, Bae, and Cha
(1999), Kalaji, Hierons, and Swift, (2009), Srivastava,
Baby, and Raghurama (2009), Srivatsava et al. (2013),
Swain, Mohapatra, and Mall (2010).

Chen (2011)
specification coverage to generate properties as well as

Kansomkeat Gnesi,

proposed an approach that uses

design model to enable directed test generation using model
checking. In our method, the number of test scenarios is
reduced and the maximum number of test sequences is
bounded by the number of predicates in a composite state
machine.

Kansomkeat and Rivepiboon (2003) presented test
sequence generation using UML state machine diagram.
They transformed the state machine diagram into a
flattened structure of states called Testing Flow Graph
(TFG). They covered every possible event sequences in
state chart diagram. In their approach, they have taken
event sequences as test sequences.

Finally, they covered state based coverage criterion on
the basis of state chart diagram.

Srivatsava et al. (2013) presented an algorithm for
generating optimal discrete and independent paths for
software testing. They have generated minimized test cases
using firefly optimization algorithm.

Gnesi et al. (2004) presented a mathematical approach
for conformance testing and test case generation using state
chart diagram. They developed formal conformance testing
relation for input-enabled transition system with
transformations labeled by input/output-pairs (IOLTS).
IOLTS shows a suitable semantic model for a state chart
diagram. They also proposed an algorithm for test suite
generation using state chart diagram.

Swain et al. (2010) proposed an object-oriented
program based testing technique. Their approach is based
on combination of state chart and activity diagram. They
developed State-Activity-Diagram (SAD) model. Their
technique could detect seeded integration testing faults.

Kansomkeat, Thiket, and Offutt (2010) presented a test
sequence generation method from activity diagram which
used condition classification tree method. Kim et al. (1999)

presented the test case generation method based on IOAD.
Kalaji et al. (2009) proposed an approach in which an
EFSM contained states, variables and transitions among
the states. EFSM of a class have an object state consisting
of values assigned to data members. A transition has some
guard conditions and actions associated with the variables.
A transition in the class diagram occurs as an external
input. The transition takes place when the guard condition
is slaked and the associated actions are executed. A CFG
in UML state diagrams is identified in terms of the paths
in the resulting EFSMs. A significant advantage of our
approach over the work Kalaji et al. (2009), Kim et al.
(1999) 1is that, our approach generates optimal test
scenarios by using composite state machine and covers all
independent scenarios without redundancy.

Recently, Ant Colony Optimization (ACO) is being
applied in software testing and Li and Lam (2005).
Srivastava et al. (2009) described an approach involving
ACO and a Markov Software Usage model for deriving a
set of test paths for a software system, and Li and Lam
(2005) reported some interesting results on the application
of ACO to find sequences of transitional statements in
generating test data for evolutionary testing. However, the
results obtained so far are preliminary, the associated test
data generation procedures are difficult to be automated,
and none of the reported results directly addresses
specification-based software testing.

We use composite states in state machine diagram to
generate test scenarios to verify the behavior of models. In
this approach, we proposed an algorithm called SMToTSG
algorithm. After generating test scenarios, we apply
Firefly algorithm for prioritizing the generated test
scenarios. Our proposed approach is used to generate all
feasible valid prioritized test scenarios for the System
Under Test (SUT). Our technique considered some
important coverage criteria like state coverage, transition
coverage, and transition pair coverage. Our approach can
handle transitions with guard conditions. We also applied
Average Percentage Fault Detection (APFD) metric to
calculate the efficiency of the prioritized test scenarios.
Table 8 shows the comparison of our approach with some
related approach.

7. CONCLUSION AND FUTURE WORK

This paper presented a model based test scenarios
generation and prioritization approach. In this paper, we
applied our proposed algorithm named SMToTSG on State
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Table 8. Comparison between our approach with others related works.

S.No. Approaches Case Study Generated Test Scenarios
1 Gnesi et al. (2004) Cashier 14
2 Kalaji et al. (2009) Cashier 12
3 Kansomkeat and Rivepiboon (2003) Cashier 12
4 Srivastava et al. (2009) Cashier 13
5 Our Approach Cashier 11
6 Gnesi et al. (2004) Cruise Control 18
7 Kalaji et al. (2009) Cruise Control 16
8 Kansomkeat and Rivepiboon (2003) Cruise Control 16
9 Srivastava et al. (2009) Cruise Control 18
10 Our Approach Cruise Control 15
11 Gnesi et al. (2004) Elevator System 9
12 Kalaji et al. (2009) Elevator System 7
13 Kansomkeat and Rivepiboon (2003) Elevator System 11
14 Srivastava et al. (2009) Elevator System 9
15 Our Approach Elevator System 7
16 Guesi et al. (2004) TCP 41
17 Kalaji et al. (2009) TCP 44
18 Kansomkeat and Rivepiboon (2003) TCP 48
19 Srivastava et al. (2009) TCP 50
20 Our Approach TCP 43
21 Guesi et al. (2004) Vending Machine 25
22 Kalaji et al. (2009) Vending Machine 23
23 Kansomkeat and Rivepiboon (2003) Vending Machine 25
24 Srivastava et al. (2009) Vending Machine 28
25 Our Approach Vending Machine 22
26 Guesi et al. (2004) ATM 9
27 Kalaji et al. (2009) ATM 9
28 Kansomkeat and Rivepiboon (2003) ATM 10
29 Srivastava et al. (2009) ATM 9
30 Our Approach ATM 7
31 Gnesi et al. (2004) Traffic Signal System 3
32 Kalaji et al. (2009) Traffic Signal System 3
33 Kansomkeat and Rivepiboon (2003) Traffic Signal System 2
34 Srivastava et al. (2009) Traffic Signal System 2
35 Our Approach Traffic Signal System 2
36 Gnesi et al. (2004) SIP User Agent Client 7
37 Kalaji et al. (2009) SIP User Agent Client 10
38 Kansomkeat and Rivepiboon (2003) SIP User Agent Client 9
39 Srivastava et al. (2009) SIP User Agent Client 10
40 Our Approach SIP User Agent Client 6

Machine Diagram for test scenarios generation. After
generating the test scenarios, we apply Firefly algorithm to
prioritize the generated test scenarios. Our proposed
approach is used to generate all feasible valid prioritized
test scenarios for the System Under Test (SUT). Our
technique considered some important coverage criteria like
state coverage, transition coverage, transition pair coverage
etc. Our approach can handle transitions with guard
conditions. Finally, we applied Average Percentage Fault
Detection (APFD) metric to determine the efficiency of the
prioritized test scenarios. We have implemented our
framework semi-automatically. In future, we will focus on
prioritizing the test scenarios by adopting some heuristic
algorithms and compare the obtained results. We will also

try to optimize the test scenarios using evolutionary
techniques such as firefly algorithm PSO ect.
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