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Abstract

3D  integrated  circuits  (3D-ICs)  is  an  emerging  technology  with  lots of  potential.  3D-ICs  enjoy  small  footprint  area  and  vertical  interconnections

between  different  dies  which  allow  shorter  wirelength  among  gates. Hence,  they exhibit  both lesser  interconnect  delays  and  power  consumption.

The  design  flow  of 3D  integrated  circuits  consists  of many  steps,  the  first  of  which  is  the  3D  Partitioning  and  Layer  Assignment.  This  step  has

a  significant  importance  as  its  outcome  will influence  the  performance  of subsequent  steps.  Like  other  partitioning  problems  this  one  is  also  an

NP-hard.  The  approach  taken  to  address  this  critical  task  is  the  application  of  iterative  heuristics  (Sait  &  Youssef,  1999),  as  they  have  been  proven

to  be  of  great  value when  it  comes  to  handling  such  problems.  Many  aspects  have  been  taken  into  consideration  when  attempting  to  solve  this

problem.  These  factors  include  layer  assignment,  location  of  I/O  terminals,  TSV  minimization,  and  area balancing.  Tabu  Search  and  Simulated

Annealing  are  employed  and  engineered  to  tackle  this  task.  Results  on well-known  benchmarks  show  that  both these  techniques  produce  high

quality  solutions.  The average  percentage  of the  area  deviation  between  layers  is  around  2.4% and  the  total  number  of  required  TSVs  is  reduced.
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1.  Introduction

The  rapid  advancement  in  technology  allowed  devices  to

become faster  and to  be  fabricated  in  smaller  size.  These  fac-

tors have  helped to  enable  higher integration  densities and

decreased  circuit  delay.  Nonetheless,  this  high  density  on chips

requires  longer  interconnections  which  leads  to  greater  inter-

connect delays.  Consequently,  other related  issues  like signal

integrity and  power  consumption  became  the  bottleneck  of

todays technology.  Fortunately,  3D integrated  circuits  (3D-ICs)

have emerged  as  an  approach  to overcome interconnects  delay

and its  consequences  in  2D-ICs  (Baliga, 2004). 3D-ICs  enjoy  a

smaller footprint  area,  and the  vertical  interconnections  between

different  dies  allow  shorter  wirelength  among gates. More-
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over, 3D-ICs  enhance  system integration  by  either  increasing

functionality or  combining  different  technologies  (Davis  et al.,

2005).

3D-ICs  are  built  up of  an IC  stack  with  short vertical inter-

connections between adjoining  dies  using  through-silicon  vias

(TSVs).  Despite  their  attractiveness  of  mitigated congestion  and

reduced  wirelength,  TSVs  occupy  significant  silicon  area.  In

addition to  increase  in  die area, excessive  use  of  TSVs  will

have a negative impact  on  wirelength  in the  3D design  (Kim,

Mukhopadhyay, &  Lim, 2009). There  are  two  types  of  TSVs:

via-first TSVs  which  reside  within  the  device  layer  only,  and

via-last  TSVs  which  occupy  both  device  and metal  layers,  as

illustrated in  Fig.  1. Both these types have  much  larger  area  foot-

print than  other components  (e.g., wires,  local  vias  and gates)

(Gerousis,  2010), (Beyne  et al.,  2008). Therefore,  usage  of  TSVs

must  be  kept  minimal in  order to  exploit  their advantages and

reduce  their  negative impact.

Depending  on the  stacking  style, 3D integration  is catego-

rized into  three  types.  A basic face-to-face  (F2F)  type  which

stacks only  two chips face-to-face.  For  more than  two layers,

http://dx.doi.org/10.1016/j.jart.2015.11.001

1665-6423/All Rights Reserved © 2015 Universidad Nacional Autónoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnológico. This is an open access

item distributed under the Creative Commons CC License BY-NC-ND 4.0.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jart.2015.11.001&domain=pdf
http://www.sciencedirect.com/science/journal/00000000
http://www.jart.ccadet.unam.mx
dx.doi.org/10.1016/j.jart.2015.11.001
mailto:sadiq@kfupm.edu.sa
mailto:foughali@kfupm.edu.sa
mailto:alasli@kfupm.edu.sa
dx.doi.org/10.1016/j.jart.2015.11.001


68 S.M. Sait et  al. /  Journal of  Applied Research and Technology 14 (2016) 67–76

Via-first

TSV

Via-last

TSV

Metal

layer

Epoxy

Device

layer

Fig. 1. 3D structure: via-first and via-last TSVs.

face-to-back  (F2B)  and  back-to-back  (B2B)  process  stacking  is

inevitable. F2B  is the most  commonly  used  multi-chip  stacking

process hence  it  is adopted  in  this  paper.  Although  B2B stacking

is  also  used to stack  multiple chips,  it requires  two TSVs  to  link

two  adjacent  dies  and  leads  to  a  larger  delay.

In this  work, we present a multi-objective  circuit  partitioning

and layer assignment  techniques  that  takes into  consideration

TSV count  minimization  and area  balancing  across  all dies. We

use simulated  annealing  (SA) and  tabu  search  (TS)  iterative  opti-

mization heuristics  to  achieve  these objectives.  The  rest of  this

paper  is  organized as  follows.  Related  work  is  discussed  in  Sec-

tion  2.  Section  3 introduces  the problem  description.  Sections

4 and  5 present  tabu search  and  simulated  annealing  heuristics

and their  implementation.  In  Section  6 experimental  results  are

reported and discussed.  Finally,  Section  7  concludes  this work.

2. Related  work

Much  work  has  been  attempted  and  discussed  in  the litera-

ture regarding all  aspects of  the design  and implementation  of

3D integrated  circuits.  It has been suggested  that  it  is  critical

to perform  circuit  partitioning  as  an  independent  stage  in  the

design flow  of  3D integration  (Chiang  &  Sinha,  2009;  Li  et al.,

2006; Pavlidis  &  Friedman, 2009). The  flow  first  partitions  a

given design  into different layers  and  then  solves  the  remaining

problems of  floorplanning,  placement  and routing  as  shown  in

Fig.  2. Accordingly,  this  approach  effectively  reduces  the com-

plexity of  the  problem  and preserves  the  quality  of results (Li

et al.,  2006;  Pavlidis  & Friedman,  2009).

Li,  Mak,  and Wang  (2012)  proposed  computing  a  tier assign-

ment (i.e.,  circuit  partitioning)  based  on 1-D  placement.  They

first  conduct  a  traditional  1-D  placement  of  the modules  using  a

spectral method  (Hagen  &  Kahng,  1992). The  intuition  behind

this approach  is  that  tightly  connected  modules  are  placed  close

to each  other in the 1-D  placement  and thus  will  be assigned  to

the same  layer.  The  number  of  TSVs  inserted  into  the  ith layer

for connecting  signals  between  the  ith  and the  (i +  1)th  layer  is

determined by  the number  of  nets  crossing  the ith  cut position.

Start

3D Partitioning & layer assignment

3D Floorplanning

3D Placement

3D Routing

End

Fig. 2.  Design flow of 3D integrated circuits.

The  authors  also  imposed  a constraint  on  the total  area  utilized

in each  layer.  Then,  they used a dynamic-programming-based

algorithm  to  determine  the  best  L  −  1 cut positions  on the linear

placement to  obtain an assignment  with  the minimum  number  of

TSVs while  satisfying  the area  constraint.  However,  the authors

did not take  into  consideration  connections  to  I/Os  in  the  1-D

placement which  will  result  in  additional  TSVs  in  all  the layers.

Another  approach  to  solve  the  partitioning  problem  employs

integer linear  programming  (ILP) (Lee,  Jiang,  &  Mei,  2012).

However,  this  can only be  used  for small-size  circuits  since

its  runtime  grows  very fast  with  problem  size. An alternative

method  is introduced as  part  of 3D place  and route for FPGAs

(Ababei,  Mogal, &  Bazargan, 2006;  Siozios,  Sotiriadis,  Pavlidis,

&  Soudris,  2007). The authors  used  a two-step  approach.

First, they applied  the  hMetis partitioning  algorithm  (Karypis,

Aggarwal, Kumar,  &  Shekhar,  1999) to  divide  a design  into

a set  of partitions.  Then,  they associated  each  partition  with a

layer.  A  typical  partitioning  algorithm  gives  similar  weights  to

cuts between  any  two partitions,  while  those  weights  can  have  a

great impact  on the 3D  partitioning  based  on  the distance  among

partitions.

Huang,  Liu,  and  Huang (2011)  proposed  an  iterative  layer-

aware partitioning  algorithm  which  can minimize  the number  of

TSVs and smooth  the distribution of  TSVs  in  3D  structures.  The

proposed  algorithm  is iterative  and gradually  produces the  final

result  layer  by  layer.  The  algorithm  applies layer-aware  parti-

tioning  at each  iteration.  While  the  focus of  the  algorithm  was

on TSV  minimization,  in  this  work there  was no  clear  evidence

on how  the  algorithm  handled  area  balancing  among layers.

In another  work,  Kim, Athikulwongse,  and  Lim  (2013)  stud-

ied  the impact  of  TSVs  on various aspects  of  3D  layouts.

These aspects  include:  maximum  allowable  TSV  count,  trade-

off between wirelength  and TSV  count,  and  wirelength  and die

area  versus  number  of  dies. The  authors  stated  that  although they

could  not draw  a  clear conclusion  on the  relationship  between

wirelength and number  of  TSVs,  using  too many  TSVs  will

eventually increase  the  die area,  which  will  result  in  wirelength

increase.

No non-deterministic  algorithms  have  been attempted  to

solve the problem  of  TSV  minimization  and layer  assignment



S.M. Sait et al. /  Journal of Applied Research and Technology 14 (2016) 67–76 69

thus  far.  Therefore,  an  attempt  to  use Tabu Search  and  Simulated

Annealing  (Sait  &  Youssef,  1994)  is presented  in  this  work.  As

more design  constraints  than  those  reported  in  the literature  are

considered, this  work  can be the  base  for future  work  on the

partitioning step or  the other  subsequent  steps.

3.  Problem  description

3.1.  Motivation

There  are many  critical  aspects  that  must be  considered  when

solving the  partitioning  problem  in  the context  of  3D design  flow.

These aspects  comprise  the following  points:

• Layer assignment:  It is a crucial task  to  be  aware  of  assign-

ing partitions  into  layers. Usually,  different layer  assignments

result in variance  in  TSV  requirements  (Huang et al., 2011).

• Location  of I/O  terminals:  all  external  I/O  terminals  must

be assigned to  the top-most  layer (or the bottom-most  layer).

Failing to  satisfy  this  requirement  will  result  in additional

TSV requirements  in  later stages  of  the  design.

• TSV  minimization:  It is desired  to have  a  design with min-

imal number  of  TSVs  as excessive  use of  them will  increase

the area  of the design and hence  the total  wirelength which

will eventually  degrade  the performance  of  the circuit.

• Area  balancing:  TSVs  have a significant  area  footprint when

compared  to  other  components.  Thus,  an ill-distribution  of

TSVs across  layers  will  eventually  result  in  a design with

imbalanced area.  To  Achieve this  objective, many  factors  have

to be  considered,  namely, area  of  cells  or  blocks,  area  of  TSVs,

and distribution  of  both cells  and TSVs  across  all  dies.

Subject  to  the above  requirements,  we  present in  this  paper

a multi-objective  circuit  partitioning  technique,  using  iterative

non-deterministic  heuristics,  that  takes  into  consideration:  (1)

TSV count  minimization,  and  (2)  balanced area  across  all layers

or dies.

3.2.  Problem  formulation

Any  design  can be  represented  as a hypergraph H =  (V,E),

where V  is  a  set  of  vertices  that  include  the set  of  blocks or  cells

B and  the  set  of  I/O terminals  I. E  is the  set  of  hyperedges that

connect vertices from  the set  V,  which  in  terms  corresponds  to the

netlist  of  a  given design. Therefore,  the  problem  can be  mapped

into hypergraph partitioning  problem  to  N +  1  total  partitions

P = {P0,  P1, .  .  .,  PN},  where  the  ith  layer (partition)  belongs  to

the range  0 �  i  �  N.  As  all  I/O  terminals  must reside  in  the  top-

most  layer,  all  vertices  in  the set  I are assigned  to  the first  partition

P0. All  other  vertices in  the  set V are assigned  to  N disjoint

partitions  {P1, P2,  .  .  ., PN}  such  that  P1 ∩ P2 ∩  .  .  .  ∩ PN = ϕ.

For each  vertex  v  ∈ V ,  area(v)  denotes  the  area  occupied  by v.

TSVarea denotes the area  cost  of  a TSV.

For each  net j  in  the  design  (i.e.,  hyperedge e  in  H)  that  spans

across two layers,  we  assume  that  only  one  TSV  is  used  to  con-

nect the subnet  in the  first  layer  to  the one in the  other  layer.

In general,  if  net  j spans  across  different  layers  where  u  is the

upper  layer and  l  is the  lower  layer,  the number  of  TSVs  which

is required  to  connect  all subnets  of  j  equals  to  TSV(j)  =  u − l.

Thus, the total  number  of  required TSVs  in  the design  can be

calculated  as  TSVtotal =
∑

∀j ∈  netlist

TSV (j).

Given a 3D  design  and a  target  N +  1 of  total  partitions,  our

technique maps  the problem  into  hypergraph H partitioning

problem. It  partitions  the  design  into  N +  1  disjoint  partitions

such that  all  I/O terminals  reside  in  the  first  partition  (layer)  P0.

The technique  has an  objective  of  minimizing  the total  number  of

required TSVs  (TSVtotal). It also  handles  area  balancing  among

the different  layers  by minimizing  the  standard  deviation  of  area

across  all  layers,  while  taking into  consideration  area  of  blocks

or cells, number  of  TSVs  in  each  layer,  and the area  occupied  by

these TSVs.  Thus,  it will result  in  area-balanced  TSV-minimized

layer-assigned  partitions  that  respect  the  I/O constraints.

The problem  can  therefore be  formulated  as:

Minimize  TSVtotal =
∑

∀j ∈  netlist

TSV  (j)

Minimize  σarea

Subject  to:

∀v  ∈  I  ⇒ v ∈  P0

P1 ∩  P2 ∩ .  . .  ∩ PN =  ϕ

∃Pi, i ∈ {1,  N} |∀v  ∈  (V  −  I) ⇒ v  ∈ Pi

4.  Tabu  Search  and  its implementation

Tabu Search  is  a  general  iterative  metaheuristic  for  solving

combinatorial optimization  problems.  TS  progresses  by making

iterative  perturbations  while  preventing  cycling  to  certain  num-

ber of  recently  visited points  in  the search  space.  TS procedure

starts from  an  initial  feasible  solution  S  (current  solution) in the

search space �.  A neighborhood  ℵ(S)  is defined  for  each  S.  A

sample  of  neighbor solutions  V* ⊂  ℵ  (S)  is generated  called  trial

solutions  (n =
∣

∣V∗
∣

∣ ≪ |ℵ(S)|),  and  comprises  what is  known

as the  candidate  list. From this  generated  set  of  trial  solutions,

the best  solution,  say S* ∈  V∗ is  chosen  for  consideration  as

the next  solution.  A  solution  S* ∈  ℵ (S) can be reached  from S

by an  operation  called  a move  to  S*.  The  move  to  S*  is con-

sidered  even  if S*  is worse than  S,  that  is,  Cost(S*) >  Cost(S).

Selecting  the  best  move  in  V*  is  based  on  the  supposition  that

good moves  are  more  likely to  reach the optimal  or  near-optimal

solutions. The  best  candidate  solution  S* ∈  V∗ may or  may  not

improve  the  current  solution,  but  is still considered.  It is this  fea-

ture  that  enables  escaping from local  optima.  However,  with  this

strategy, it is  possible  to  reach the local  optimum,  since  moves

with Cost(S*)  >  Cost(S)  are accepted,  and  then  in  a later  iteration

return back to  local optimum.

In order  to  block  returning  to  previously  visited solutions  a

memory or  list T,  known as  tabu list, is maintained.  This list

contains information  that  to some  extent  forbids the  search  from

returning to  a previously  visited solution. Whenever  a  move  is

accepted,  its  attributes  are introduced  into  the  tabu  list T. Move
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reversal  are  prevented  for  next  k  =  |T| iterations  because  they

might lead back  to  a  previously  visited solution. The  tabu list

can be visualized  as  a window  on  accepted  moves  as  shown in

Fig.  3; moves  which  tend  to  undo previous moves  within  this

window are  forbidden.

In  some  cases, it is necessary  to  overrule  the tabu  status  since

only move  attributes (not  complete  solutions)  are stored in tabu

lists. These  tabu moves  may  also  prevent the  consideration  of

some  solutions  which  were  not  visited  earlier. This  is  done  with

help of  the  notion  of  aspiration  criterion.  Aspiration  criterion

is a device  used  to  override  the  tabu status  of  moves  whenever

appropriate. Aspiration  criterion  must  make  sure  that  the  reverse

of a  recently  made  move  leads  the  search  to  an  unvisited  solu-

tion, generally  a better  one (Sait  &  Youssef,  1999).  A flow  chart

illustrating the basic  short-term  memory  tabu  search  algorithm

is given  in  Fig.  4.  Intermediate-term  and long-term  memory  pro-

cesses  are  used  to  intensify  and diversify  the  search respectively

(Sait  &  Youssef,  1999).

One of the  Tabu  Search  algorithm  parameters  is  the  size  of

the tabu  list.  A  small  tabu  list  size  is preferred  for exploring  the

solution near  a  local  optimum,  and a larger  tabu  list size  is prefer-

able for breaking  free  of  the vicinity  of  local minimum.  List  sizes

varying between  5  and 12  have been  used  in  many  applications
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Fig. 4. Flow-chart of tabu search algorithm.

Ω :  Set of feasible solutions (i.e., partitions).
S :  Current solution.

:  Best admissible solution.S*

:  Neighborhood of S ∈ Ω.ℵ(S )
:  Sample of neighborhood solutions.V*
:  Tabu list.T
:  Aspiration Level.AL

Begin
1.          Start with an initial feasible solution (partitions) S ∈ Ω.

2.          Initialize tabu list and aspiration level.
3.          For   fixed number of iterations Do
4.                    Generate neighbor solutions V* ⊂ ℵ(S ).

(Each solution results from swap/move of cell(s)).
5.                    Find best S* ∈ V*.
6.                    If move S to S*  is not in T Then
7.                               Accept move & update best solution.
8.                               Update tabu list (Store swap/move attributes).
9.                               Update aspiration level.

(AL = Cost of best solution seen so far).
10.                             Increment iteration number.
11.                  Else
12.                             If  Cost(S* ) < AL Then
13.                                     Accept move - update best solution.
14.                                     Update tabu list & aspiration level.
15.                                     Increment iteration number.
16.                             EndIf
17.                  EndIf
18.        EndFor

End.

:  Objective function (Reduce # of TSVs & Std. deviation of area).Cost

Fig. 5. Algorithmic description of short-term tabu search (TS).

(Sait  &  Youssef,  1999). Any  aspect  (feature  or component  of

a solution)  that  changes  as  a  result  of  a move  from  S to  Strial

can  be  an  attribute  of that  move.  A single  move  can  have  several

attributes. The  duration  for which  a  move  containing  the particu-

lar tabu attribute  is forbidden  (the  size  of  tabu  list)  is called  Tabu

tenure. An  algorithmic  description  of  a  simple implementation

of the tabu  search  is given  in Fig.  5.

4.1.  Solution  representation  and  initialization

Since  the  problem  is mapped  into  a  graph  partitioning  and

layer assignment,  the solution  is represented  as  a number  of par-

titions each  of  which  corresponds  to  a  layer  in  the  3D structure.

The  first  partition,  which  represents  the  top-most  layer,  includes

all the I/O  terminals.  Other  blocks or  cells  of the  circuit are

assigned to  one of  the  other partitions.  In  the  initialization  step,

all I/O terminals  are assigned  to the  first  partition,  while  blocks

are randomly  assigned to  the remaining  partitions.

4.2.  Cost  evaluation

The  cost  function  is a  measure  of  how good a  particular  solu-

tion is.  For  3D partitioning  and assignment,  there are two  main

criteria:  area  balancing  and TSV count.  The  cost  function  should

reflect  all  objectives.  Traditionally,  multi-objective  problems  are

implemented by  combining  the objectives into  a  scalar  function

like the weighted  sum  of the  multiple attributes.  Usually,  it is

difficult  to  determine  suitable  weights  for these objectives  as

their values  belong  to  different  ranges.

One practice  is to  use fuzzy  logic to  handle  these types of

multi-objective problems  (Sait  &  Youssef,  1999;  Zadeh,  1965;

Zadeh, 1973;  Zadeh,  1975).  Unlike  ordinary  set theory  where  an

element  is either  in  a set or  not,  in  fuzzy  set  theory,  an element
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partially  belongs  to  a set with  a certain degree  of  membership.

This  is  realized  by using  a membership  function  µA(.) that  maps

the space  of  points  (solutions)  to  the interval  [0,1].  Operations

like union  (∪), intersection  (∩),  and complementation  (¬)  which

are used  in  ordinary  set  theory  have  been  defined  for  operations

on fuzzy  sets.  One such logic is defined  by  Zadeh  and  called  the

min-max  logic  (Sait  &  Youssef,  1994). In  this  logic,  the above

operations are  defined  as follows:

µA∩B (x) = min (µA (x) , µB (x)) ,

µA∪B (x) =  max (µA (x) , µB (x)) ,

µ¬A (x) = 1.0 − (µA (x)) .

The  evaluation  of  a solution  comprises  the evaluation  of  fuzzy

rules which  return  a value that  corresponds  to  the  degree  of  mem-

bership of  that solution  in  the fuzzy  subset  of  good  solutions.

The fuzzy  logic  rules  are usually  expressed  on  problem-specific

linguistic  variables  (Zadeh,  1965;  Zadeh,  1973;  Zadeh, 1975).

In our  case,  the objective  is to  find  a  solution  which  is opti-

mized with  respect to  TSV count  and  the standard  deviation

in area  across all  partitions.  To obtain  a  fuzzy  logic defini-

tion of  the above  multi-criteria  objective  function, two  linguistic

variables, tsv-count  and  area-deviation, are introduced  and a  lin-

guistic value “low”  and  “small”  for  each  of  them,  respectively,

is defined.  These  linguistic  values  characterize  the degree  of

satisfaction  of  the designer  with  the values  of  objectives.

Membership functions  for low  tsv-count  µtsv and  small

area-deviation  µarea are  built easily. These  are non-increasing

functions,  since  the  lower  the tsv-count  and smaller  the  area-

deviation, the  higher  is the degree  of  satisfaction.  The  base

variables tsv-count  and area-deviation  are  normalized  to  the

interval  [0,1] as  shown in  Fig.  6.  The  values  Tmin and Dmin

are lower bounds  on  the TSV  count  and area  deviation.  Tmin

equals to the  number  of nets  that  have an  I/O terminal. This  is

based on  the assumption  that  all  blocks  which  belong  to  these

nets are  assigned  to  the layer next  to  the I/O layer; one TSV  is

used to connect  the I/O terminal to  its  associated net  in  the  next

layer. Dmin equals  to  0,  assuming  that  the sum of areas  of  blocks

and areas  of  TSVs  in  all  layers  is the same.  The  values  of  Tmax

and Dmax are  corresponding  to  the upper  bounds.  Tmax equals  to

the number  of nets  multiplied  by  number  of  layers  (# nets  × (#

layers – 1)). In  theory,  it has been  proven  that  the upper  bound

of the  standard  deviation  of  a set of  data  with  three  or  more

elements  can  not exceed  58%  of  the range  of  that  set  (Croucher,

2002; Croucher,  2004;  Lee, Lee,  &  Lee,  2006). Therefore,  the

value of  Dmax is set  to  58% of  the  range  between  maximum  and

minimum area.

The  most desirable solution  is the one with the highest

membership in the  fuzzy  subsets  low  tsv-count  and  small  area-

deviation. However,  such  a solution  most likely  does not  exist.

Therefore,  one has to  trade-off  these individual criteria with each

other. A weighted  averaging  operator (Fodor  &  Roubens,  1994;

Fodor  &  Roubens,  1992;  Fodor, Marichal,  &  Roubens,  1995)  is

used to  incorporate  this  trade-off  as follows:

µS(x)  =
1

2
(δ  × µtsv +  (1  −  δ) ×  µarea) (1)

where  µS is  the membership  function  of  the  fuzzy  subset  of  good

solutions, and β  is  a parameter  between  0 and 1.  When  β  =  1,

the focus becomes  on  the  tsv-count  objective, and for β  =  0 the

focus is switched to  the other  objective.

4.3.  Neighborhood  solutions  generation

TS  makes  several  neighborhood  moves  and  selects the  move

producing the  best  solution  among  all  candidate  moves  for  cur-

rent iteration.  This best  candidate  solution may  not improve  the

current solution. In  each  iteration,  a number  of  neighbor  solu-

tions  (i.e.,  equal in  number  to  the size  of  the  candidate  list)  are

generated by  making  perturbations  as follows:

(1)  75%  of the  time  two random  blocks  will  be  selected  from

two random  layers,  and their  respective  layers  interchanged.

(2) 25%  of  the  time  one  random  block  will  be  selected  from

a random  layer,  and it will  be  moved  to  another  randomly

selected layer.

Subsequently,  each  solution  in  the candidate  list  is evaluated

using  the  fuzzy  function  in  Eq. (1)  based  on  the  change  in  num-

ber of  TSVs  and the standard  deviation  of  area  among  different

layers before and after  the  swap/move.  If two or  more neigh-

borhood solutions  have  equal swap  cost,  one of  them will  be

selected.
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4.4.  Tabu  list  and  aspiration  level

Variety of tabu  attributes  were  tested, when  blocks (cells)

are swapped/moved.  One  experiment  considered  both  i  and j,

forbidding  any  perturbations  that  include  both of  them.  Another

attribute was to forbid  moves  related to  block  i, i.e.,  any move

which  include  i, this  covers  the reverse  of  swapping  i with  j. The

second  attribute of a move  is used  in  all results reported  in  this

paper.  If  two blocks  are  involved  in  interchange,  any  move  that

includes  any  of  these two  blocks  is forbidden.  The  same applies

for moving  blocks  from  one  layer  to  the other. A short-term

memory element  is used  throughout  the implementation  where

tabu  list  sizes  ranging  from  5 to  12  were  tested. The  change

in tabu list  size  in  this  range  has little  impact on  the  quality of

the solutions;  therefore  the size of tabu  list was set to  10.  The

aspiration criterion  is implemented  as  follows:  tabu restriction

is overridden if  the current solution  is the  best  seen  so  far, and

the current  solution  is accepted  as  new  best  solution  and tabu

list is  updated.  In  the next  section,  simulated  annealing  iterative

heuristic  is  discussed.  Details about  the  parameters  used  in  this

work  are  reported  in  Section  4.

5. Simulated  annealing  and  its  implementation

Simulated  annealing  is a general  heuristic  and one of  the

most well  developed  iterative  techniques.  It is widely used  for

solving  optimization  problems.  One  important  feature of  simu-

lated  annealing  is that,  like tabu  search,  it also  accepts  solution

with deteriorated  cost.  It is this  feature  that  gives  the  heuristic

the hill  climbing  capability.  Initially,  the probability  of accept-

ing inferior  solutions  is large; but  as  the search  progresses,  only

smaller  deteriorations  are  accepted,  until  finally  only good solu-

tions  are  accepted.  In  order to simulate the annealing  process,

much flexibility  is allowed  in  neighborhood  generation  at higher

“temperatures”, i.e.,  many  ‘uphill’  moves  are  permitted  at higher

temperatures. The  temperature  parameter  is lowered  gradually

as the  search  progresses.  As  the temperature  is lowered,  fewer

and  fewer  uphill  moves  are  accepted.  In  fact, at absolute  zero,

the simulated  annealing  algorithm  turns greedy,  allowing  only

downhill  moves.

The iterative improvement  scheme  starts with  some given

state, and  examines  a  local  neighborhood  of  the state  for  better

solutions. A local  neighborhood  of  a state  S,  denoted  by  ℵ(S),

is the  set of  all states  which  can be  reached from  S by  making  a

small change  to S.

The  simulated  annealing  algorithm  is shown  in Fig.  7. The

core  of  the algorithm  is the  Metropolis  procedure, which sim-

ulates  the  annealing  process  at a  given  temperature  T (Fig. 8)

(Metropolis,  Rosenbluth  &  Teller,  1953).  The  Metropolis  proce-

dure  receives  as  input the  current temperature  T, and  the  current

solution CurS  which  it  improves through  local  search.  Finally,

Metropolis must  also  be  provided  with  the value M, which

is the  amount  of  time for which  annealing  must be  applied

at temperature  T.  The  procedure  Simulated  annealing  simply

invokes Metropolis  at decreasing  temperatures.  Temperature  is

initialized to  a value T0 at  the beginning  of  the procedure,  and

is reduced  in a controlled  manner  (typically  in  a geometric

Algorithm   Simulated_annealing(S0, T0, α,  β,  M,  Maxtime);

(*S0 is the  initial  solution *)

(*BestS is the  best solution *)

(*T0 is the  initial  temperature *)

(*α is the cooling  rate *)

(*β a constant *)

(*Maxtime  is the  total  allowed time for the annealing process *)

(*M represents the  time  until the  next  parameter update *)

Begin

T=T0;

CurS=S0;

BestS =CurS; /* BestS is the  best  solution  seen  so  far */

CurCost=Cost(CurS);

BestCost=Cost(BestS);

Tim e =0;

Repeat

Call  Metropolis(CurS,  CurCost,  BestS,  Best Cost, T,  M );

Tim e =Time+M;

T=αT;

M=βM

Until (Time≥Max Time);

Return( BestS)

End.(* of  Simulated_annealing*)

Fig. 7. Procedure for simulated annealing algorithm.

progression);  the  parameter  α is used to achieve  this  cooling.

The amount  of  time spent  in  annealing  at a temperature  is  grad-

ually increased  as temperature  is lowered.  This  is done  using

the parameter  β  >  1.  The  variable  Time  keeps  track of  the  time

being  expended  in  each  call to  the Metropolis. The  annealing

procedure halts when  Time  exceeds  the allowed  time  (Sait  &

Youssef, 1999).

The  Metropolis  procedure  is shown in  Fig.  8.  It  uses  the  pro-

cedure Neighbor  to  generate  a  local neighbor NewS  of any  given

solution  S.  The  function  Cost  returns  the cost  of  a  given  solution

S.  If  the  cost  of  the  new  solution  NewS  is better  than  the cost  of

the current solution  CurS,  then the  new  solution  is accepted,  and

we do  so  by  setting  CurS=NewS. If the cost  of  the new  solution

is better  than  the  best  solution  (BestS) seen  thus  far,  then we

Algorithm   Metropolis(CurS, CurCost, BestS, BestCost, T, M);

Begin

Repeat

NewS=Neighbor (CurS);/* Return a neighbor from CurS */

NewCost=Cost(NewS);

∆Cost=(NewCost−CurCost);

If   (∆Cost<0) Then

CurS=NewS ;

If NewCost<BestCost   Then

BestS=NewS

EndIf

Else

If (RANDOM<e−∆Cost/T )   Then

CurS=NewS ;

EndIf

EndIf

M=M−1

Until (M=0)

End. (* of Metropolis*)

Fig. 8. The metropolis procedure.
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also  replace  BestS  by  NewS.  If the  new  solution  has  a higher

cost in comparison  to  the  original  solution  CurS,  Metropolis

will accept  the  new  solution  on  a probabilistic  basis.  A random

number is generated  in  the range  0 to  1.  If this  random  num-

ber  is smaller  than  e−�Cost/T,  where  �Cost  is  the  difference  in

costs, (�Cost  =  Cost(NewS)  −  Cost(CurS)),  and T is the  current

temperature, the  uphill  solution  is  accepted.  This  criterion  for

accepting  the  new solution  is known as  the  Metropolis  criterion.

The Metropolis  procedure  generates  and examines  M solutions.

The probability  that  an  inferior  solution  is accepted  by  the

Metropolis  is  given  by  P(RANDOM<e−�Cost/T).  The  random

number  generation  is  assumed to  follow  a uniform  distribution.

Remember  that  �Cost  >  0 since we have  assumed  that  NewS  is

uphill from  CurS.  At very  high temperatures,  (when  T  →  ∞),

e−�Cost/T≃1, and hence  the above  probability  approaches  1. On

the contrary,  when T  →  0,  the  probability  e−�Cost/T falls  to 0.

In order  to  implement simulated  annealing,  the same  cost

function formulated  in Section  IV  is used.  In  addition,  simi-

lar techniques  are  used  to  implement  the Neighbor  function  to

generate new  states  from current states.

6.  Experimental  results

The  algorithms  described  in this  work  were  implemented

and tested  on  a set of  benchmark  circuits  to  solve  the  L-way

partitioning and assignment  problem,  where  L  is the number

of layers.  These  include  small,  medium, and large  size  cir-

cuits (“MCNC/GSRC  benchmarks,”  n.d.; Yang,  1991).  Table  1

reports  these  circuits  and their  respective number  of  IOs,  blocks,

and nets.

After  many experiments  and fine  tuning to  the parameters  of

the iterative  heuristics,  a  candidate  list  of  size  25  is used  for tabu

search;  the  tabu  list  size  is set to  10. For  simulated  annealing,

different values  for  parameters  α,  β, and  M  were  tested  and  the

value of α =  0.98,  β  =  1.001,  and M  =  50  were found  suitable.

The initial  temperature,  T0, was  determined  using  the classi-

cal heating  method  by  experiment  with  increasing  temperatures

until the  probability  of  accepting  of  both  good and bad moves

was very  high.  Simulation  was  by setting  the temperature  to

1, and  then  increasing  until  100.  Acceptable  values  of  T0 were

found  to  be  in  the range  [40,50].  The  number  of  iterations  for

TS is  fixed  to 4,000.  Since  the  candidate  list  size  in  TS is 25,

for the  sake  of  comparison  simulated  annealing  is allowed  to

Table 1

Benchmark circuits.

Circuit Num. of IOs Num. of blocks Num. of nets

ami33 42 33 123

ami49 22 49 408

n100 334 100 885

n200 564 200 1585

n300 569 300 1893

tseng 174 2417 2295

diffeq 103 3024 2985

elliptic 245 6831 6717

frisc 136 7024 6908

pdc 56 7609 7569
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Fig. 9. Membership value of the fuzzy cost function versus iterations for the

“tseng” circuit for: (a)  tabu search; (b) simulated annealing.

run  for 4000 ×  25  =  100,000  iterations.  The  objective  is set  to

partition the  design  into  4 layers  in  addition to  the I/O layer.  The

total  number  of  TSVs  reported  later  includes  TSVs  that  connect

I/O  terminals  to  other  blocks  in  the circuit.  The  size  of  a TSV,

TSVarea,  is fixed  to  10  units.  The  value of  the  weight  of  the total

membership function  δ  is set to  0.8 in  Eq.  (1).

The performance  of  the presented  algorithms  is  compared

considering different  aspects.  Fig.  9 shows  a plot  of  the values

retrieved by the fuzzy  cost  function, that  is membership  value

of  the  solution,  versus the  number  of  iterations  for the  “tseng”

circuit for both  TS  and  SA.  Recall  that  the  TS and  SA  are seek-

ing to  maximize  the membership  function. In  this  regard, SA
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the “tseng” circuit for tabu search with extended run-time and candidate list

size = 40.
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outperformed  TS  as  it achieved  a higher  membership value.

After a  little bit of  almost  a random  behavior  where  the ini-

tial temperature  is high,  simulated  annealing  sharply  achieved

an improvement  from  0.65  up to  0.85. Later  on,  it  went up on  a

slower pace until it almost  saturated  around a membership  value

of 0.92.  On the  other  hand,  TS  showed  a steady  improvement

which started  sharply  at the beginning  and then  continued  slow

and steady.  TS  could  not pass  the  0.9 threshold  in  the  given time.

However,  giving  TS enough  time should eventually  lead  to  bet-

ter solutions  as TS  can always  escape  local minima.  To  verify

this, Fig.  10  shows  the  performance  of  tabu search  when the

run-time is extended  to  10,000  iterations  and the  candidate  list

size is  increased  to  40. It is evident  that,  given enough  run-time,

tabu search  can  produce  high  quality solutions.

Another  experiment  consists  of  comparing the  two  heuris-

tics with  respect  to  the searched spaces.  Results  are  summarized

in Fig.  11  in  the  form of  bar charts.  TS exhibited  the  best  per-

formance, while  SA was  behind.  This figure  depicts  where  each

algorithm  spent  its  time. TS  concentrated  its  efforts in  good sub-

spaces,  i.e.,  evaluating  solutions  with high membership  values.

In contrast,  SA spent most  of  its  time  evaluating poor  quality

solutions as  it  starts  with almost  a random  behavior  at the initial

temperature.  These behaviors  were observed  with all  test  cases.

Tabu search  showed  a better  behavior  in  general.  As shown  ear-

lier in  Fig.  10, giving  enough  time, it  can produce  high  quality

results. Thus,  the termination  criterion,  i.e.,  number  of maxi-

mum  iterations,  can  be decided  later  based  on the  application

and the time  constraint.

Finally,  Tables  2 and 3  report  detailed  results  about  the  appli-

cation  of TS  and SA respectively.  In  these tables membership

values of the fuzzy  cost  function, total  number  of  the required

TSVs, standard  deviation  of  area  across  all layers  (in  units),

average layer  area,  and  the percentage  of area  deviation  to  the

average area  are presented  (average  values  of  different  runs  are

reported in  these tables).  Both algorithms  exhibited  a  good  per-

formance  on  small  as  well  as  large  circuits.  It is evident  that,

in terms  of  membership  value  of  the fuzzy  cost  function,  SA

has achieved  better  results when  compared  to  TS in  most of  the

cases in  our setup.  This  membership  value translates  itself to  the

total number  of  required  TSVs  and the standard  deviation  in  area

across  different  layers.  A higher  membership  value  could  result

in a  better  TSV  count  and a better  area  deviation,  or at least  one
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Fig. 11. Bar charts depicting the  sub-space searched by each heuristic for the

“tseng” circuit: (a)  tabu search; (b) simulated annealing.

of  them.  If we  look  at  the “n100”  circuit  in  the two  tables,  we

observe almost  the same membership  value.  However,  in  the  first

table,  associated  with  TS,  it results in  a  better  TSV count and

a worse  area deviation  as  compared  to  the second table which

is associated  with  SA.  In  the  used  setup,  SA  outperformed  TS

in  achieving  a better  TSV  count  and area  deviation  especially

for large  circuits  like “tseng”,  “diffeq”, “elliptic”,  and “pdc”.

The  standard  deviation  of  area  for all  the  cases  is  less  than  5%

with an  average  around  2.4%.  Unfortunately,  we could  not com-

pare our results  with the  ones  reported  in (Huang  et al., 2011)

as  they did not  report  the area  deviation.  Moreover, number  of

TSVs  reported  for some circuits  is less  than  number  of  nets  with

Table 2

Tabu search results with: 4,000 iterations, candidate list size = 25, and tabu list size = 10.

Circuit Avg. membership Total # TSVs Area Deviation (units) Avg. Layer Area (units) Dev. to Avg. ratio (%)

ami33 0.908 113 8 593 1.28

ami49 0.941 277 55,797 7,481,946 0.75

n100 0.821 991 812 48,129 1.69

n200 0.791 2076 831 51,181 1.62

n300 0.813 2210 797 76,519 1.04

tseng 0.910 1568 479 9924 4.83

diffeq 0.893 1986 489 12,761 3.83

elliptic 0.870 4365 1185 29,275 4.05

frisc 0.870 4442 1163 29,711 3.91

pdc 0.846 7296 498 41,699 1.20

Avg. 0.866 2532 6206 778,174 2.42
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Table 3

Simulated annealing results with: 100,000 iterations, α  = 0.98, β = 1.001, M = 50,  and the initial temperature, T0,  in the range [40,50].

Circuit Avg. membership Total # TSVs Area Deviation (units) Avg. Layer Area (units) Dev. to  Avg. ratio (%)

ami33 0.849 116 9 573 1.48

ami49 0.925 292 56,082 7,481,931 0.75

n100 0.820 996 725 48,170 1.50

n200 0.795 2035 930 50,646 1.84

n300 0.820 2133 882 76,223 1.16

tseng 0.924 1091 399 8927 4.47

diffeq 0.930 1309 398 11,337 3.51

elliptic 0.904 3502 897 26,728 3.36

frisc 0.897 3683 1213 27,772 4.37

pdc 0.865 6398 399 40,647 0.98

Avg. 0.873 2155 6193 777,295 2.34

I/O  connections  which contradicts  with  both  our assumptions

and practicality.  For  example,  “aqua”  circuit  has 3792  IOs and

the reported  number  of  required  TSVs  for this  circuit  is 909.6

(Huang  et al., 2011). However, the  results  presented  in  this  work

can be the  base  for  future  work  on  the  partitioning  step  or  the

other subsequent  steps.

7. Conclusion

In this  work we provided  a  multi-objective  circuit  partitioning

and layer assignment  techniques,  using  iterative optimization

heuristics  namely  Tabu Search  and Simulated  Annealing,  that

takes  into  consideration  TSV count  minimization,  and area  bal-

ancing across  all  layers  while  including  the  I/O constraint.  Both

the heuristics  have  been  engineered  to  tackle  this  problem.  They

both were  able to  produce  a  high  quality  outcome.  The  average

percentage of the area  deviation  compared  to  the  average  area

of a layer  was  around 2.4% in  addition  to  minimizing  the  total

number  of required  TSVs.
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