
Available online at www.sciencedirect.com

Journal of Applied Research
and Technology

www.jart.ccadet.unam.mxJournal of Applied Research and Technology 14 (2016) 67–76

Original

Design partitioning and layer assignment for 3D integrated circuits using

tabu search and simulated annealing

Sadiq M. Sait ∗, Feras Chikh Oughali, Mohammed Al-Asli

Center for Communications & IT Research, Computer Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

Received 30 August 2015; accepted 19 November 2015

Available online 22 January 2016

Abstract

3D integrated circuits (3D-ICs) is an emerging technology with lots of potential. 3D-ICs enjoy small footprint area and vertical interconnections

between different dies which allow shorter wirelength among gates. Hence, they exhibit both lesser interconnect delays and power consumption.

The design flow of 3D integrated circuits consists of many steps, the first of which is the 3D Partitioning and Layer Assignment. This step has

a significant importance as its outcome will influence the performance of subsequent steps. Like other partitioning problems this one is also an

NP-hard. The approach taken to address this critical task is the application of iterative heuristics (Sait & Youssef, 1999), as they have been proven

to be of great value when it comes to handling such problems. Many aspects have been taken into consideration when attempting to solve this

problem. These factors include layer assignment, location of I/O terminals, TSV minimization, and area balancing. Tabu Search and Simulated

Annealing are employed and engineered to tackle this task. Results on well-known benchmarks show that both these techniques produce high

quality solutions. The average percentage of the area deviation between layers is around 2.4% and the total number of required TSVs is reduced.

All Rights Reserved © 2015 Universidad Nacional Autónoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnológico. This is an

open access item distributed under the Creative Commons CC License BY-NC-ND 4.0.

Keywords: Through-silicon via (TSV); 3D integrated circuits (3D ICs); Iterative heuristics; Tabu search; Simulated annealing; Combinatorial optimization; Multi-way

partitioning; NP-hard problems

1. Introduction

The rapid advancement in technology allowed devices to

become faster and to be fabricated in smaller size. These fac-

tors have helped to enable higher integration densities and

decreased circuit delay. Nonetheless, this high density on chips

requires longer interconnections which leads to greater inter-

connect delays. Consequently, other related issues like signal

integrity and power consumption became the bottleneck of

todays technology. Fortunately, 3D integrated circuits (3D-ICs)

have emerged as an approach to overcome interconnects delay

and its consequences in 2D-ICs (Baliga, 2004). 3D-ICs enjoy a

smaller footprint area, and the vertical interconnections between

different dies allow shorter wirelength among gates. More-

∗ Tel.: +966 503826267.

E-mail addresses: sadiq@kfupm.edu.sa (S.M. Sait),

foughali@kfupm.edu.sa (F.C. Oughali), alasli@kfupm.edu.sa (M. Al-Asli).

Peer Review under the responsibility of Universidad Nacional Autónoma de

México.

over, 3D-ICs enhance system integration by either increasing

functionality or combining different technologies (Davis et al.,

2005).

3D-ICs are built up of an IC stack with short vertical inter-

connections between adjoining dies using through-silicon vias

(TSVs). Despite their attractiveness of mitigated congestion and

reduced wirelength, TSVs occupy significant silicon area. In

addition to increase in die area, excessive use of TSVs will

have a negative impact on wirelength in the 3D design (Kim,

Mukhopadhyay, & Lim, 2009). There are two types of TSVs:

via-first TSVs which reside within the device layer only, and

via-last TSVs which occupy both device and metal layers, as

illustrated in Fig. 1. Both these types have much larger area foot-

print than other components (e.g., wires, local vias and gates)

(Gerousis, 2010), (Beyne et al., 2008). Therefore, usage of TSVs

must be kept minimal in order to exploit their advantages and

reduce their negative impact.

Depending on the stacking style, 3D integration is catego-

rized into three types. A basic face-to-face (F2F) type which

stacks only two chips face-to-face. For more than two layers,

http://dx.doi.org/10.1016/j.jart.2015.11.001

1665-6423/All Rights Reserved © 2015 Universidad Nacional Autónoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnológico. This is an open access

item distributed under the Creative Commons CC License BY-NC-ND 4.0.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jart.2015.11.001&domain=pdf
http://www.sciencedirect.com/science/journal/00000000
http://www.jart.ccadet.unam.mx
dx.doi.org/10.1016/j.jart.2015.11.001
mailto:sadiq@kfupm.edu.sa
mailto:foughali@kfupm.edu.sa
mailto:alasli@kfupm.edu.sa
dx.doi.org/10.1016/j.jart.2015.11.001

68 S.M. Sait et al. / Journal of Applied Research and Technology 14 (2016) 67–76

Via-first

TSV

Via-last

TSV

Metal

layer

Epoxy

Device

layer

Fig. 1. 3D structure: via-first and via-last TSVs.

face-to-back (F2B) and back-to-back (B2B) process stacking is

inevitable. F2B is the most commonly used multi-chip stacking

process hence it is adopted in this paper. Although B2B stacking

is also used to stack multiple chips, it requires two TSVs to link

two adjacent dies and leads to a larger delay.

In this work, we present a multi-objective circuit partitioning

and layer assignment techniques that takes into consideration

TSV count minimization and area balancing across all dies. We

use simulated annealing (SA) and tabu search (TS) iterative opti-

mization heuristics to achieve these objectives. The rest of this

paper is organized as follows. Related work is discussed in Sec-

tion 2. Section 3 introduces the problem description. Sections

4 and 5 present tabu search and simulated annealing heuristics

and their implementation. In Section 6 experimental results are

reported and discussed. Finally, Section 7 concludes this work.

2. Related work

Much work has been attempted and discussed in the litera-

ture regarding all aspects of the design and implementation of

3D integrated circuits. It has been suggested that it is critical

to perform circuit partitioning as an independent stage in the

design flow of 3D integration (Chiang & Sinha, 2009; Li et al.,

2006; Pavlidis & Friedman, 2009). The flow first partitions a

given design into different layers and then solves the remaining

problems of floorplanning, placement and routing as shown in

Fig. 2. Accordingly, this approach effectively reduces the com-

plexity of the problem and preserves the quality of results (Li

et al., 2006; Pavlidis & Friedman, 2009).

Li, Mak, and Wang (2012) proposed computing a tier assign-

ment (i.e., circuit partitioning) based on 1-D placement. They

first conduct a traditional 1-D placement of the modules using a

spectral method (Hagen & Kahng, 1992). The intuition behind

this approach is that tightly connected modules are placed close

to each other in the 1-D placement and thus will be assigned to

the same layer. The number of TSVs inserted into the ith layer

for connecting signals between the ith and the (i + 1)th layer is

determined by the number of nets crossing the ith cut position.

Start

3D Partitioning & layer assignment

3D Floorplanning

3D Placement

3D Routing

End

Fig. 2. Design flow of 3D integrated circuits.

The authors also imposed a constraint on the total area utilized

in each layer. Then, they used a dynamic-programming-based

algorithm to determine the best L − 1 cut positions on the linear

placement to obtain an assignment with the minimum number of

TSVs while satisfying the area constraint. However, the authors

did not take into consideration connections to I/Os in the 1-D

placement which will result in additional TSVs in all the layers.

Another approach to solve the partitioning problem employs

integer linear programming (ILP) (Lee, Jiang, & Mei, 2012).

However, this can only be used for small-size circuits since

its runtime grows very fast with problem size. An alternative

method is introduced as part of 3D place and route for FPGAs

(Ababei, Mogal, & Bazargan, 2006; Siozios, Sotiriadis, Pavlidis,

& Soudris, 2007). The authors used a two-step approach.

First, they applied the hMetis partitioning algorithm (Karypis,

Aggarwal, Kumar, & Shekhar, 1999) to divide a design into

a set of partitions. Then, they associated each partition with a

layer. A typical partitioning algorithm gives similar weights to

cuts between any two partitions, while those weights can have a

great impact on the 3D partitioning based on the distance among

partitions.

Huang, Liu, and Huang (2011) proposed an iterative layer-

aware partitioning algorithm which can minimize the number of

TSVs and smooth the distribution of TSVs in 3D structures. The

proposed algorithm is iterative and gradually produces the final

result layer by layer. The algorithm applies layer-aware parti-

tioning at each iteration. While the focus of the algorithm was

on TSV minimization, in this work there was no clear evidence

on how the algorithm handled area balancing among layers.

In another work, Kim, Athikulwongse, and Lim (2013) stud-

ied the impact of TSVs on various aspects of 3D layouts.

These aspects include: maximum allowable TSV count, trade-

off between wirelength and TSV count, and wirelength and die

area versus number of dies. The authors stated that although they

could not draw a clear conclusion on the relationship between

wirelength and number of TSVs, using too many TSVs will

eventually increase the die area, which will result in wirelength

increase.

No non-deterministic algorithms have been attempted to

solve the problem of TSV minimization and layer assignment

S.M. Sait et al. / Journal of Applied Research and Technology 14 (2016) 67–76 69

thus far. Therefore, an attempt to use Tabu Search and Simulated

Annealing (Sait & Youssef, 1994) is presented in this work. As

more design constraints than those reported in the literature are

considered, this work can be the base for future work on the

partitioning step or the other subsequent steps.

3. Problem description

3.1. Motivation

There are many critical aspects that must be considered when

solving the partitioning problem in the context of 3D design flow.

These aspects comprise the following points:

• Layer assignment: It is a crucial task to be aware of assign-

ing partitions into layers. Usually, different layer assignments

result in variance in TSV requirements (Huang et al., 2011).

• Location of I/O terminals: all external I/O terminals must

be assigned to the top-most layer (or the bottom-most layer).

Failing to satisfy this requirement will result in additional

TSV requirements in later stages of the design.

• TSV minimization: It is desired to have a design with min-

imal number of TSVs as excessive use of them will increase

the area of the design and hence the total wirelength which

will eventually degrade the performance of the circuit.

• Area balancing: TSVs have a significant area footprint when

compared to other components. Thus, an ill-distribution of

TSVs across layers will eventually result in a design with

imbalanced area. To Achieve this objective, many factors have

to be considered, namely, area of cells or blocks, area of TSVs,

and distribution of both cells and TSVs across all dies.

Subject to the above requirements, we present in this paper

a multi-objective circuit partitioning technique, using iterative

non-deterministic heuristics, that takes into consideration: (1)

TSV count minimization, and (2) balanced area across all layers

or dies.

3.2. Problem formulation

Any design can be represented as a hypergraph H = (V,E),

where V is a set of vertices that include the set of blocks or cells

B and the set of I/O terminals I. E is the set of hyperedges that

connect vertices from the set V, which in terms corresponds to the

netlist of a given design. Therefore, the problem can be mapped

into hypergraph partitioning problem to N + 1 total partitions

P = {P0, P1, . . ., PN}, where the ith layer (partition) belongs to

the range 0 � i � N. As all I/O terminals must reside in the top-

most layer, all vertices in the set I are assigned to the first partition

P0. All other vertices in the set V are assigned to N disjoint

partitions {P1, P2, . . ., PN} such that P1 ∩ P2 ∩ . . . ∩ PN = ϕ.

For each vertex v ∈ V , area(v) denotes the area occupied by v.

TSVarea denotes the area cost of a TSV.

For each net j in the design (i.e., hyperedge e in H) that spans

across two layers, we assume that only one TSV is used to con-

nect the subnet in the first layer to the one in the other layer.

In general, if net j spans across different layers where u is the

upper layer and l is the lower layer, the number of TSVs which

is required to connect all subnets of j equals to TSV(j) = u − l.

Thus, the total number of required TSVs in the design can be

calculated as TSVtotal =
∑

∀j ∈ netlist

TSV (j).

Given a 3D design and a target N + 1 of total partitions, our

technique maps the problem into hypergraph H partitioning

problem. It partitions the design into N + 1 disjoint partitions

such that all I/O terminals reside in the first partition (layer) P0.

The technique has an objective of minimizing the total number of

required TSVs (TSVtotal). It also handles area balancing among

the different layers by minimizing the standard deviation of area

across all layers, while taking into consideration area of blocks

or cells, number of TSVs in each layer, and the area occupied by

these TSVs. Thus, it will result in area-balanced TSV-minimized

layer-assigned partitions that respect the I/O constraints.

The problem can therefore be formulated as:

Minimize TSVtotal =
∑

∀j ∈ netlist

TSV (j)

Minimize σarea

Subject to:

∀v ∈ I ⇒ v ∈ P0

P1 ∩ P2 ∩ . . . ∩ PN = ϕ

∃Pi, i ∈ {1, N} |∀v ∈ (V − I) ⇒ v ∈ Pi

4. Tabu Search and its implementation

Tabu Search is a general iterative metaheuristic for solving

combinatorial optimization problems. TS progresses by making

iterative perturbations while preventing cycling to certain num-

ber of recently visited points in the search space. TS procedure

starts from an initial feasible solution S (current solution) in the

search space �. A neighborhood ℵ(S) is defined for each S. A

sample of neighbor solutions V* ⊂ ℵ (S) is generated called trial

solutions (n =
∣

∣V∗
∣

∣ ≪ |ℵ(S)|), and comprises what is known

as the candidate list. From this generated set of trial solutions,

the best solution, say S* ∈ V∗ is chosen for consideration as

the next solution. A solution S* ∈ ℵ (S) can be reached from S

by an operation called a move to S*. The move to S* is con-

sidered even if S* is worse than S, that is, Cost(S*) > Cost(S).

Selecting the best move in V* is based on the supposition that

good moves are more likely to reach the optimal or near-optimal

solutions. The best candidate solution S* ∈ V∗ may or may not

improve the current solution, but is still considered. It is this fea-

ture that enables escaping from local optima. However, with this

strategy, it is possible to reach the local optimum, since moves

with Cost(S*) > Cost(S) are accepted, and then in a later iteration

return back to local optimum.

In order to block returning to previously visited solutions a

memory or list T, known as tabu list, is maintained. This list

contains information that to some extent forbids the search from

returning to a previously visited solution. Whenever a move is

accepted, its attributes are introduced into the tabu list T. Move

70 S.M. Sait et al. / Journal of Applied Research and Technology 14 (2016) 67–76

Accepted moves

Tabu list

size

Fig. 3. Tabu list visualized as window over accepted moves.

reversal are prevented for next k = |T| iterations because they

might lead back to a previously visited solution. The tabu list

can be visualized as a window on accepted moves as shown in

Fig. 3; moves which tend to undo previous moves within this

window are forbidden.

In some cases, it is necessary to overrule the tabu status since

only move attributes (not complete solutions) are stored in tabu

lists. These tabu moves may also prevent the consideration of

some solutions which were not visited earlier. This is done with

help of the notion of aspiration criterion. Aspiration criterion

is a device used to override the tabu status of moves whenever

appropriate. Aspiration criterion must make sure that the reverse

of a recently made move leads the search to an unvisited solu-

tion, generally a better one (Sait & Youssef, 1999). A flow chart

illustrating the basic short-term memory tabu search algorithm

is given in Fig. 4. Intermediate-term and long-term memory pro-

cesses are used to intensify and diversify the search respectively

(Sait & Youssef, 1999).

One of the Tabu Search algorithm parameters is the size of

the tabu list. A small tabu list size is preferred for exploring the

solution near a local optimum, and a larger tabu list size is prefer-

able for breaking free of the vicinity of local minimum. List sizes

varying between 5 and 12 have been used in many applications

Current

solution

Best

solution

New

solution

“Best”

New

solutionMove n

TABU

?

No

Yes

Yes Current

solution

Current

solution

No

Regenerate

moves

Aspiration

criterion

passed?

Move 1

Fig. 4. Flow-chart of tabu search algorithm.

Ω : Set of feasible solutions (i.e., partitions).
S : Current solution.

: Best admissible solution.S*

: Neighborhood of S ∈ Ω.ℵ(S)
: Sample of neighborhood solutions.V*
: Tabu list.T
: Aspiration Level.AL

Begin
1. Start with an initial feasible solution (partitions) S ∈ Ω.

2. Initialize tabu list and aspiration level.
3. For fixed number of iterations Do
4. Generate neighbor solutions V* ⊂ ℵ(S).

(Each solution results from swap/move of cell(s)).
5. Find best S* ∈ V*.
6. If move S to S* is not in T Then
7. Accept move & update best solution.
8. Update tabu list (Store swap/move attributes).
9. Update aspiration level.

(AL = Cost of best solution seen so far).
10. Increment iteration number.
11. Else
12. If Cost(S*) < AL Then
13. Accept move - update best solution.
14. Update tabu list & aspiration level.
15. Increment iteration number.
16. EndIf
17. EndIf
18. EndFor

End.

: Objective function (Reduce # of TSVs & Std. deviation of area).Cost

Fig. 5. Algorithmic description of short-term tabu search (TS).

(Sait & Youssef, 1999). Any aspect (feature or component of

a solution) that changes as a result of a move from S to Strial

can be an attribute of that move. A single move can have several

attributes. The duration for which a move containing the particu-

lar tabu attribute is forbidden (the size of tabu list) is called Tabu

tenure. An algorithmic description of a simple implementation

of the tabu search is given in Fig. 5.

4.1. Solution representation and initialization

Since the problem is mapped into a graph partitioning and

layer assignment, the solution is represented as a number of par-

titions each of which corresponds to a layer in the 3D structure.

The first partition, which represents the top-most layer, includes

all the I/O terminals. Other blocks or cells of the circuit are

assigned to one of the other partitions. In the initialization step,

all I/O terminals are assigned to the first partition, while blocks

are randomly assigned to the remaining partitions.

4.2. Cost evaluation

The cost function is a measure of how good a particular solu-

tion is. For 3D partitioning and assignment, there are two main

criteria: area balancing and TSV count. The cost function should

reflect all objectives. Traditionally, multi-objective problems are

implemented by combining the objectives into a scalar function

like the weighted sum of the multiple attributes. Usually, it is

difficult to determine suitable weights for these objectives as

their values belong to different ranges.

One practice is to use fuzzy logic to handle these types of

multi-objective problems (Sait & Youssef, 1999; Zadeh, 1965;

Zadeh, 1973; Zadeh, 1975). Unlike ordinary set theory where an

element is either in a set or not, in fuzzy set theory, an element

S.M. Sait et al. / Journal of Applied Research and Technology 14 (2016) 67–76 71

Degree of

membership

for tsv-count

Degree of

membership for

area-deviaton

area-

deviation/

Dmax

1

1 1
0

1

0

Tmin\Tmax Dmin\Dmax

tsv-count/

Tmax

Fig. 6. Normalized membership functions for TSV-count and area-deviation.

partially belongs to a set with a certain degree of membership.

This is realized by using a membership function µA(.) that maps

the space of points (solutions) to the interval [0,1]. Operations

like union (∪), intersection (∩), and complementation (¬) which

are used in ordinary set theory have been defined for operations

on fuzzy sets. One such logic is defined by Zadeh and called the

min-max logic (Sait & Youssef, 1994). In this logic, the above

operations are defined as follows:

µA∩B (x) = min (µA (x) , µB (x)) ,

µA∪B (x) = max (µA (x) , µB (x)) ,

µ¬A (x) = 1.0 − (µA (x)) .

The evaluation of a solution comprises the evaluation of fuzzy

rules which return a value that corresponds to the degree of mem-

bership of that solution in the fuzzy subset of good solutions.

The fuzzy logic rules are usually expressed on problem-specific

linguistic variables (Zadeh, 1965; Zadeh, 1973; Zadeh, 1975).

In our case, the objective is to find a solution which is opti-

mized with respect to TSV count and the standard deviation

in area across all partitions. To obtain a fuzzy logic defini-

tion of the above multi-criteria objective function, two linguistic

variables, tsv-count and area-deviation, are introduced and a lin-

guistic value “low” and “small” for each of them, respectively,

is defined. These linguistic values characterize the degree of

satisfaction of the designer with the values of objectives.

Membership functions for low tsv-count µtsv and small

area-deviation µarea are built easily. These are non-increasing

functions, since the lower the tsv-count and smaller the area-

deviation, the higher is the degree of satisfaction. The base

variables tsv-count and area-deviation are normalized to the

interval [0,1] as shown in Fig. 6. The values Tmin and Dmin

are lower bounds on the TSV count and area deviation. Tmin

equals to the number of nets that have an I/O terminal. This is

based on the assumption that all blocks which belong to these

nets are assigned to the layer next to the I/O layer; one TSV is

used to connect the I/O terminal to its associated net in the next

layer. Dmin equals to 0, assuming that the sum of areas of blocks

and areas of TSVs in all layers is the same. The values of Tmax

and Dmax are corresponding to the upper bounds. Tmax equals to

the number of nets multiplied by number of layers (# nets × (#

layers – 1)). In theory, it has been proven that the upper bound

of the standard deviation of a set of data with three or more

elements can not exceed 58% of the range of that set (Croucher,

2002; Croucher, 2004; Lee, Lee, & Lee, 2006). Therefore, the

value of Dmax is set to 58% of the range between maximum and

minimum area.

The most desirable solution is the one with the highest

membership in the fuzzy subsets low tsv-count and small area-

deviation. However, such a solution most likely does not exist.

Therefore, one has to trade-off these individual criteria with each

other. A weighted averaging operator (Fodor & Roubens, 1994;

Fodor & Roubens, 1992; Fodor, Marichal, & Roubens, 1995) is

used to incorporate this trade-off as follows:

µS(x) =
1

2
(δ × µtsv + (1 − δ) × µarea) (1)

where µS is the membership function of the fuzzy subset of good

solutions, and β is a parameter between 0 and 1. When β = 1,

the focus becomes on the tsv-count objective, and for β = 0 the

focus is switched to the other objective.

4.3. Neighborhood solutions generation

TS makes several neighborhood moves and selects the move

producing the best solution among all candidate moves for cur-

rent iteration. This best candidate solution may not improve the

current solution. In each iteration, a number of neighbor solu-

tions (i.e., equal in number to the size of the candidate list) are

generated by making perturbations as follows:

(1) 75% of the time two random blocks will be selected from

two random layers, and their respective layers interchanged.

(2) 25% of the time one random block will be selected from

a random layer, and it will be moved to another randomly

selected layer.

Subsequently, each solution in the candidate list is evaluated

using the fuzzy function in Eq. (1) based on the change in num-

ber of TSVs and the standard deviation of area among different

layers before and after the swap/move. If two or more neigh-

borhood solutions have equal swap cost, one of them will be

selected.

72 S.M. Sait et al. / Journal of Applied Research and Technology 14 (2016) 67–76

4.4. Tabu list and aspiration level

Variety of tabu attributes were tested, when blocks (cells)

are swapped/moved. One experiment considered both i and j,

forbidding any perturbations that include both of them. Another

attribute was to forbid moves related to block i, i.e., any move

which include i, this covers the reverse of swapping i with j. The

second attribute of a move is used in all results reported in this

paper. If two blocks are involved in interchange, any move that

includes any of these two blocks is forbidden. The same applies

for moving blocks from one layer to the other. A short-term

memory element is used throughout the implementation where

tabu list sizes ranging from 5 to 12 were tested. The change

in tabu list size in this range has little impact on the quality of

the solutions; therefore the size of tabu list was set to 10. The

aspiration criterion is implemented as follows: tabu restriction

is overridden if the current solution is the best seen so far, and

the current solution is accepted as new best solution and tabu

list is updated. In the next section, simulated annealing iterative

heuristic is discussed. Details about the parameters used in this

work are reported in Section 4.

5. Simulated annealing and its implementation

Simulated annealing is a general heuristic and one of the

most well developed iterative techniques. It is widely used for

solving optimization problems. One important feature of simu-

lated annealing is that, like tabu search, it also accepts solution

with deteriorated cost. It is this feature that gives the heuristic

the hill climbing capability. Initially, the probability of accept-

ing inferior solutions is large; but as the search progresses, only

smaller deteriorations are accepted, until finally only good solu-

tions are accepted. In order to simulate the annealing process,

much flexibility is allowed in neighborhood generation at higher

“temperatures”, i.e., many ‘uphill’ moves are permitted at higher

temperatures. The temperature parameter is lowered gradually

as the search progresses. As the temperature is lowered, fewer

and fewer uphill moves are accepted. In fact, at absolute zero,

the simulated annealing algorithm turns greedy, allowing only

downhill moves.

The iterative improvement scheme starts with some given

state, and examines a local neighborhood of the state for better

solutions. A local neighborhood of a state S, denoted by ℵ(S),

is the set of all states which can be reached from S by making a

small change to S.

The simulated annealing algorithm is shown in Fig. 7. The

core of the algorithm is the Metropolis procedure, which sim-

ulates the annealing process at a given temperature T (Fig. 8)

(Metropolis, Rosenbluth & Teller, 1953). The Metropolis proce-

dure receives as input the current temperature T, and the current

solution CurS which it improves through local search. Finally,

Metropolis must also be provided with the value M, which

is the amount of time for which annealing must be applied

at temperature T. The procedure Simulated annealing simply

invokes Metropolis at decreasing temperatures. Temperature is

initialized to a value T0 at the beginning of the procedure, and

is reduced in a controlled manner (typically in a geometric

Algorithm Simulated_annealing(S0, T0, α, β, M, Maxtime);

(*S0 is the initial solution *)

(*BestS is the best solution *)

(*T0 is the initial temperature *)

(*α is the cooling rate *)

(*β a constant *)

(*Maxtime is the total allowed time for the annealing process *)

(*M represents the time until the next parameter update *)

Begin

T=T0;

CurS=S0;

BestS =CurS; /* BestS is the best solution seen so far */

CurCost=Cost(CurS);

BestCost=Cost(BestS);

Tim e =0;

Repeat

Call Metropolis(CurS, CurCost, BestS, Best Cost, T, M);

Tim e =Time+M;

T=αT;

M=βM

Until (Time≥Max Time);

Return(BestS)

End.(* of Simulated_annealing*)

Fig. 7. Procedure for simulated annealing algorithm.

progression); the parameter α is used to achieve this cooling.

The amount of time spent in annealing at a temperature is grad-

ually increased as temperature is lowered. This is done using

the parameter β > 1. The variable Time keeps track of the time

being expended in each call to the Metropolis. The annealing

procedure halts when Time exceeds the allowed time (Sait &

Youssef, 1999).

The Metropolis procedure is shown in Fig. 8. It uses the pro-

cedure Neighbor to generate a local neighbor NewS of any given

solution S. The function Cost returns the cost of a given solution

S. If the cost of the new solution NewS is better than the cost of

the current solution CurS, then the new solution is accepted, and

we do so by setting CurS=NewS. If the cost of the new solution

is better than the best solution (BestS) seen thus far, then we

Algorithm Metropolis(CurS, CurCost, BestS, BestCost, T, M);

Begin

Repeat

NewS=Neighbor (CurS);/* Return a neighbor from CurS */

NewCost=Cost(NewS);

∆Cost=(NewCost−CurCost);

If (∆Cost<0) Then

CurS=NewS ;

If NewCost<BestCost Then

BestS=NewS

EndIf

Else

If (RANDOM<e−∆Cost/T) Then

CurS=NewS ;

EndIf

EndIf

M=M−1

Until (M=0)

End. (* of Metropolis*)

Fig. 8. The metropolis procedure.

S.M. Sait et al. / Journal of Applied Research and Technology 14 (2016) 67–76 73

also replace BestS by NewS. If the new solution has a higher

cost in comparison to the original solution CurS, Metropolis

will accept the new solution on a probabilistic basis. A random

number is generated in the range 0 to 1. If this random num-

ber is smaller than e−�Cost/T, where �Cost is the difference in

costs, (�Cost = Cost(NewS) − Cost(CurS)), and T is the current

temperature, the uphill solution is accepted. This criterion for

accepting the new solution is known as the Metropolis criterion.

The Metropolis procedure generates and examines M solutions.

The probability that an inferior solution is accepted by the

Metropolis is given by P(RANDOM<e−�Cost/T). The random

number generation is assumed to follow a uniform distribution.

Remember that �Cost > 0 since we have assumed that NewS is

uphill from CurS. At very high temperatures, (when T → ∞),

e−�Cost/T≃1, and hence the above probability approaches 1. On

the contrary, when T → 0, the probability e−�Cost/T falls to 0.

In order to implement simulated annealing, the same cost

function formulated in Section IV is used. In addition, simi-

lar techniques are used to implement the Neighbor function to

generate new states from current states.

6. Experimental results

The algorithms described in this work were implemented

and tested on a set of benchmark circuits to solve the L-way

partitioning and assignment problem, where L is the number

of layers. These include small, medium, and large size cir-

cuits (“MCNC/GSRC benchmarks,” n.d.; Yang, 1991). Table 1

reports these circuits and their respective number of IOs, blocks,

and nets.

After many experiments and fine tuning to the parameters of

the iterative heuristics, a candidate list of size 25 is used for tabu

search; the tabu list size is set to 10. For simulated annealing,

different values for parameters α, β, and M were tested and the

value of α = 0.98, β = 1.001, and M = 50 were found suitable.

The initial temperature, T0, was determined using the classi-

cal heating method by experiment with increasing temperatures

until the probability of accepting of both good and bad moves

was very high. Simulation was by setting the temperature to

1, and then increasing until 100. Acceptable values of T0 were

found to be in the range [40,50]. The number of iterations for

TS is fixed to 4,000. Since the candidate list size in TS is 25,

for the sake of comparison simulated annealing is allowed to

Table 1

Benchmark circuits.

Circuit Num. of IOs Num. of blocks Num. of nets

ami33 42 33 123

ami49 22 49 408

n100 334 100 885

n200 564 200 1585

n300 569 300 1893

tseng 174 2417 2295

diffeq 103 3024 2985

elliptic 245 6831 6717

frisc 136 7024 6908

pdc 56 7609 7569

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0

0

500 1000

20 000 40 000 60 000

Iterations

M
e
m

b
e
rs

h
ip

 v
a
lu

e
M

e
m

b
e
rs

h
ip

 v
a
lu

e

80 000 100 000 120 000

1500 2000

Iterations

a

b

2500 3000 3500 4000 4500

Fig. 9. Membership value of the fuzzy cost function versus iterations for the

“tseng” circuit for: (a) tabu search; (b) simulated annealing.

run for 4000 × 25 = 100,000 iterations. The objective is set to

partition the design into 4 layers in addition to the I/O layer. The

total number of TSVs reported later includes TSVs that connect

I/O terminals to other blocks in the circuit. The size of a TSV,

TSVarea, is fixed to 10 units. The value of the weight of the total

membership function δ is set to 0.8 in Eq. (1).

The performance of the presented algorithms is compared

considering different aspects. Fig. 9 shows a plot of the values

retrieved by the fuzzy cost function, that is membership value

of the solution, versus the number of iterations for the “tseng”

circuit for both TS and SA. Recall that the TS and SA are seek-

ing to maximize the membership function. In this regard, SA

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6
0 2000 4000 6000

Iterations

M
e
m

b
e
rs

h
ip

 v
a
lu

e

8000 10 000 12 000

Fig. 10. Membership value of the fuzzy cost function versus iterations for

the “tseng” circuit for tabu search with extended run-time and candidate list

size = 40.

74 S.M. Sait et al. / Journal of Applied Research and Technology 14 (2016) 67–76

outperformed TS as it achieved a higher membership value.

After a little bit of almost a random behavior where the ini-

tial temperature is high, simulated annealing sharply achieved

an improvement from 0.65 up to 0.85. Later on, it went up on a

slower pace until it almost saturated around a membership value

of 0.92. On the other hand, TS showed a steady improvement

which started sharply at the beginning and then continued slow

and steady. TS could not pass the 0.9 threshold in the given time.

However, giving TS enough time should eventually lead to bet-

ter solutions as TS can always escape local minima. To verify

this, Fig. 10 shows the performance of tabu search when the

run-time is extended to 10,000 iterations and the candidate list

size is increased to 40. It is evident that, given enough run-time,

tabu search can produce high quality solutions.

Another experiment consists of comparing the two heuris-

tics with respect to the searched spaces. Results are summarized

in Fig. 11 in the form of bar charts. TS exhibited the best per-

formance, while SA was behind. This figure depicts where each

algorithm spent its time. TS concentrated its efforts in good sub-

spaces, i.e., evaluating solutions with high membership values.

In contrast, SA spent most of its time evaluating poor quality

solutions as it starts with almost a random behavior at the initial

temperature. These behaviors were observed with all test cases.

Tabu search showed a better behavior in general. As shown ear-

lier in Fig. 10, giving enough time, it can produce high quality

results. Thus, the termination criterion, i.e., number of maxi-

mum iterations, can be decided later based on the application

and the time constraint.

Finally, Tables 2 and 3 report detailed results about the appli-

cation of TS and SA respectively. In these tables membership

values of the fuzzy cost function, total number of the required

TSVs, standard deviation of area across all layers (in units),

average layer area, and the percentage of area deviation to the

average area are presented (average values of different runs are

reported in these tables). Both algorithms exhibited a good per-

formance on small as well as large circuits. It is evident that,

in terms of membership value of the fuzzy cost function, SA

has achieved better results when compared to TS in most of the

cases in our setup. This membership value translates itself to the

total number of required TSVs and the standard deviation in area

across different layers. A higher membership value could result

in a better TSV count and a better area deviation, or at least one

3500

3000

2500

2000

1500

1000

7000

6000

5000

4000

3000

2000

1000

0

500

0

0.6-0.65 0.65-0.7 0.7-0.75 0.75-0.8 0.8-0.85

Membership value

a

b

0.85-0.9 0.9-1

0.6-0.65 0.65-0.7 0.7-0.75 0.75-0.8 0.8-0.85

Membership value

F
re

q
u
e
n
c
y
 o

f
s
o

lu
ti
o

n
s

F
re

q
u

e
n

c
y
 o

f
s
o

lu
ti
o

n
s

0.85-0.9 0.9-1

Fig. 11. Bar charts depicting the sub-space searched by each heuristic for the

“tseng” circuit: (a) tabu search; (b) simulated annealing.

of them. If we look at the “n100” circuit in the two tables, we

observe almost the same membership value. However, in the first

table, associated with TS, it results in a better TSV count and

a worse area deviation as compared to the second table which

is associated with SA. In the used setup, SA outperformed TS

in achieving a better TSV count and area deviation especially

for large circuits like “tseng”, “diffeq”, “elliptic”, and “pdc”.

The standard deviation of area for all the cases is less than 5%

with an average around 2.4%. Unfortunately, we could not com-

pare our results with the ones reported in (Huang et al., 2011)

as they did not report the area deviation. Moreover, number of

TSVs reported for some circuits is less than number of nets with

Table 2

Tabu search results with: 4,000 iterations, candidate list size = 25, and tabu list size = 10.

Circuit Avg. membership Total # TSVs Area Deviation (units) Avg. Layer Area (units) Dev. to Avg. ratio (%)

ami33 0.908 113 8 593 1.28

ami49 0.941 277 55,797 7,481,946 0.75

n100 0.821 991 812 48,129 1.69

n200 0.791 2076 831 51,181 1.62

n300 0.813 2210 797 76,519 1.04

tseng 0.910 1568 479 9924 4.83

diffeq 0.893 1986 489 12,761 3.83

elliptic 0.870 4365 1185 29,275 4.05

frisc 0.870 4442 1163 29,711 3.91

pdc 0.846 7296 498 41,699 1.20

Avg. 0.866 2532 6206 778,174 2.42

S.M. Sait et al. / Journal of Applied Research and Technology 14 (2016) 67–76 75

Table 3

Simulated annealing results with: 100,000 iterations, α = 0.98, β = 1.001, M = 50, and the initial temperature, T0, in the range [40,50].

Circuit Avg. membership Total # TSVs Area Deviation (units) Avg. Layer Area (units) Dev. to Avg. ratio (%)

ami33 0.849 116 9 573 1.48

ami49 0.925 292 56,082 7,481,931 0.75

n100 0.820 996 725 48,170 1.50

n200 0.795 2035 930 50,646 1.84

n300 0.820 2133 882 76,223 1.16

tseng 0.924 1091 399 8927 4.47

diffeq 0.930 1309 398 11,337 3.51

elliptic 0.904 3502 897 26,728 3.36

frisc 0.897 3683 1213 27,772 4.37

pdc 0.865 6398 399 40,647 0.98

Avg. 0.873 2155 6193 777,295 2.34

I/O connections which contradicts with both our assumptions

and practicality. For example, “aqua” circuit has 3792 IOs and

the reported number of required TSVs for this circuit is 909.6

(Huang et al., 2011). However, the results presented in this work

can be the base for future work on the partitioning step or the

other subsequent steps.

7. Conclusion

In this work we provided a multi-objective circuit partitioning

and layer assignment techniques, using iterative optimization

heuristics namely Tabu Search and Simulated Annealing, that

takes into consideration TSV count minimization, and area bal-

ancing across all layers while including the I/O constraint. Both

the heuristics have been engineered to tackle this problem. They

both were able to produce a high quality outcome. The average

percentage of the area deviation compared to the average area

of a layer was around 2.4% in addition to minimizing the total

number of required TSVs.

Conflict of interest

The authors have no conflicts of interest to declare.

Acknowledgment

Authors acknowledge King Fahd University of Petroleum &

Minerals for all support.

References

Ababei, C., Mogal, H., & Bazargan, K. (2006). Three-dimensional

place and route for FPGAs. IEEE Transactions on Computer-

Aided Design of Integrated Circuits & Systems, 25(6), 1132–1140.

http://dx.doi.org/10.1109/TCAD.2005.855945

Baliga, J. (2004). Chips go vertical [3D IC interconnection]. Spectrum, IEEE,

41(3), 43–47. http://dx.doi.org/10.1109/MSPEC.2004.1270547

Beyne, E., De Moor, P., Ruythooren, W., Labie, R., Jourdain, A., Tilmans,

H., et al. (2008). Through-silicon via and die stacking technologies for

microsystems-integration. In 2008 IEEE International Electron Devices

Meeting (pp. 1–4). http://dx.doi.org/10.1109/IEDM.2008.4796734

Chiang, C., & Sinha, S. (2009). The road to 3D EDA tool readiness. In Proceed-

ings of the Asia and South Pacific Design Automation Conference, ASP-DAC

(pp. 429–436). http://dx.doi.org/10.1109/ASPDAC.2009.4796519

Davis, W. R., Wilson, J., Mick, S., Xu, J., Hua, H., Mineo, C.,

et al. (2005). Demystifying 3D ICs: The pros and cons of going

vertical. IEEE Design and Test of Computers, 22(6), 498–510.

http://dx.doi.org/10.1109/MDT.2005.136

Fodor, J., Marichal, J.-L., & Roubens, M. (1995). Characterization of the ordered

weighted averaging operators. IEEE Transactions on Fuzzy Systems, 3(2),

236–240. http://dx.doi.org/10.1109/91.388176

Fodor, J., & Roubens, M. (1994). Fuzzy preference modelling and multi-

criteria decision support. Theory and Decision Library Series D: System

Theory, Knowledge Engineering, and Problem Solving, http://dx.doi.org/

10.1002/(SICI)1099-0771(199612)9:4<300::AID-BDM226>3.0.CO;2-8

Gerousis, V. (2010). Physical design implementation for 3D IC: method-

ology and tools. In Proceedings of the 19th International Sym-

posium on Physical Design (p. 57). New York, USA: ACM.

http://dx.doi.org/10.1145/1735023.1735042

Hagen, L., & Kahng, A. B. (1992). New spectral methods for ratio

cut partitioning and clustering. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 11(9), 1074–1085.

http://dx.doi.org/10.1109/43.159993

Huang, Y.-S., Liu, Y.-H., & Huang, J.-D. (2011). Layer-aware design

partitioning for vertical interconnect minimization. In 2011 IEEE

Computer Society Annual Symposium on VLSI (pp. 144–149).

http://dx.doi.org/10.1109/ISVLSI.2011.16

Croucher, J. (2002). Statistics: Making business decisions. Sydney: McGraw-

Hill.

Fodor, J., & Roubens, M. (1992). Aggregation and scoring procedures in mul-

ticriteria decision making methods. In IEEE International Conference on

Fuzzy Systems (pp. 1261–1267).

Croucher, J. S. (2004). An upper bound on the value of the standard

deviation. Teaching Statistics, 26(2), 54–55. http://dx.doi.org/10.1111/

j.1467-9639.2004.00157.x

Karypis, G., Aggarwal, R., Kumar, V., & Shekhar, S. (1999). Multilevel

hypergraph partitioning: applications in VLSI domain. IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, 7(1), 69–79.

http://dx.doi.org/10.1109/92.748202

Kim, D. H., Athikulwongse, K., & Lim, S. K. (2013). Study of through-

silicon-via impact on the 3-D stacked IC layout. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 21(5), 862–874.

http://dx.doi.org/10.1109/TVLSI.2012.2201760

Kim, D. H., Mukhopadhyay, S., & Lim, S. K. (2009). TSV-aware inter-

connect length and power prediction for 3D stacked ICs. In 2009

IEEE International Interconnect Technology Conference (pp. 26–28).

http://dx.doi.org/10.1109/IITC.2009.5090331

Lee, C.-F., Lee, J. C., & Lee, A. C. (2006). Statistics for business and economics.

The American Statistician, Vol. 60 http://dx.doi.org/10.1198/tas.2006.s59

Lee, W. Y., Jiang, I. H. R., & Mei, T. W. (2012). Generic inte-

ger linear programming formulation for 3D IC partitioning. Jour-

nal of Information Science and Engineering, 28(6), 1129–1144.

http://dx.doi.org/10.1109/SOCCON.2009.5398032

Li, C.-R., Mak, W.-K., & Wang, T.-C. (2012). Fast fixed-outline 3-

D IC floorplanning with TSV co-placement. IEEE Transactions on

dx.doi.org/10.1109/TCAD.2005.855945
dx.doi.org/10.1109/MSPEC.2004.1270547
dx.doi.org/10.1109/IEDM.2008.4796734
dx.doi.org/10.1109/ASPDAC.2009.4796519
dx.doi.org/10.1109/MDT.2005.136
dx.doi.org/10.1109/91.388176
dx.doi.org/10.1002/(SICI)1099-0771(199612)9:4<300::AID-BDM226>3.0.CO;2-8
dx.doi.org/10.1002/(SICI)1099-0771(199612)9:4<300::AID-BDM226>3.0.CO;2-8
dx.doi.org/10.1145/1735023.1735042
dx.doi.org/10.1109/43.159993
dx.doi.org/10.1109/ISVLSI.2011.16
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0055
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0055
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0055
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0055
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0055
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0055
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0055
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0055
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0055
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0055
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0055
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0060
dx.doi.org/10.1111/j.1467-9639.2004.00157.x
dx.doi.org/10.1111/j.1467-9639.2004.00157.x
dx.doi.org/10.1109/92.748202
dx.doi.org/10.1109/TVLSI.2012.2201760
dx.doi.org/10.1109/IITC.2009.5090331
dx.doi.org/10.1198/tas.2006.s59
dx.doi.org/10.1109/SOCCON.2009.5398032

76 S.M. Sait et al. / Journal of Applied Research and Technology 14 (2016) 67–76

Very Large Scale Integration (VLSI) Systems, 21(3) http://dx.doi.org/

10.1109/TVLSI.2012.2190537

Li, Z., Hong, X., Zhou, Q., Cai, Y., Bian, J., Yang, H. H., et al. (2006). Hier-

archical 3-D floorplanning algorithm for wirelength optimization. IEEE

Transactions on Circuits and Systems I: Regular Papers, 53(12), 2637–2646.

http://dx.doi.org/10.1109/TCSI.2006.883857

MCNC/G benchmarks, MCNC/GSRC benchmarks. (n.d.). Retrieved from

http://vlsicad.cs.binghamton.edu/benchmarks.html.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H.,

& Teller, E. (1953). Equation of state calculations by fast comput-

ing machines. The Journal of Chemical Physics, 21(6), 1087–1092.

http://dx.doi.org/10.1063/1.1699114

Pavlidis, V. F., & Friedman, E. G. (2009). Interconnect-based design method-

ologies for three-dimensional integrated circuits. Proceedings of the IEEE,

97(1), 123–140. http://dx.doi.org/10.1109/JPROC.2008.2007473

Sait, S. M., & Youssef, H. (1999). Iterative computer algorithms with appli-

cations in engineering: Solving combinatorial optimization problems.

California: IEEE Computer Society Press.

Yang, S. (1991). Logic Synthesis and Optimization Benchmarks User Guide

Version 3.0.

Sait, S. M., & Youssef, H. (1994). VISI physical design automation: Theory and

practice. McGraw-Hill, Inc.

Siozios, K., Sotiriadis, K., Pavlidis, V. F., & Soudris, D. (2007).

A software-supported methodology for designing high-performance

3D FPGA architectures. In 2007 IFIP International Conference on

Very Large Scale Integration, VLSI-SoC (pp. 54–59). http://dx.doi.org/

10.1109/VLSISOC.2007.4402472

Zadeh, L. a. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

http://dx.doi.org/10.1016/S0019-9958(65)90241-X

Zadeh, L. a. (1973). Outline of a new approach to the analysis of complex systems

and decision processes. IEEE Transactions on Systems, Man, and Cybernet-

ics SMC, 3(1), 28–44. http://dx.doi.org/10.1109/TSMC.1973.5408575

Zadeh, L. A. (1975). The concept of a linguistic variable and its applica-

tion to approximate reasoning—II. Information Sciences, 8(4), 301–357.

http://dx.doi.org/10.1016/0020-0255(75)90046-8

dx.doi.org/10.1109/TVLSI.2012.2190537
dx.doi.org/10.1109/TVLSI.2012.2190537
dx.doi.org/10.1109/TCSI.2006.883857
http://vlsicad.cs.binghamton.edu/benchmarks.html
dx.doi.org/10.1063/1.1699114
dx.doi.org/10.1109/JPROC.2008.2007473
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0120
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0120
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0120
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0120
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0120
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0120
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0120
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0120
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0120
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0120
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0120
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0120
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0120
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0120
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0120
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0120
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0120
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0120
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0120
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0120
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0125
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0125
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0125
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0125
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0125
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0125
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0125
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0125
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0125
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0125
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0125
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0125
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0125
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0125
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0130
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0130
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0130
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0130
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0130
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0130
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0130
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0130
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0130
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0130
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0130
http://refhub.elsevier.com/S1665-6423(15)00084-X/sbref0130
dx.doi.org/10.1109/VLSISOC.2007.4402472
dx.doi.org/10.1109/VLSISOC.2007.4402472
dx.doi.org/10.1016/S0019-9958(65)90241-X
dx.doi.org/10.1109/TSMC.1973.5408575
dx.doi.org/10.1016/0020-0255(75)90046-8

	Design partitioning and layer assignment for 3D integrated circuits using tabu search and simulated annealing
	1 Introduction
	2 Related work
	3 Problem description
	3.1 Motivation
	3.2 Problem formulation

	4 Tabu Search and its implementation
	4.1 Solution representation and initialization
	4.2 Cost evaluation
	4.3 Neighborhood solutions generation
	4.4 Tabu list and aspiration level

	5 Simulated annealing and its implementation
	6 Experimental results
	7 Conclusion
	Conflict of interest
	Acknowledgment
	References

