Trajectory Tracking Control in a Single Flexible-Link Robot using
Finite Differences and Sliding Modes

J.F. Peza-Solis*, G. Silva-Navarro and N. R. Castro-Linares

Centro de Investigacion y Estudios Avanzados del
Instituto Politécnico Nacional

México, D. F., México

*peza@cinvestav.mx

ABSTRACT

In this article it is shown how the end effector position of a single flexible-link robot can be directly controlled by the
angular position of its joint, so that, trajectory tracking in the end effector of the robot is possible by properly designing
a reference trajectory for the joint angle. In order to ensure trajectory tracking of the angular position of the robot joint,
a Sliding Modes Control (SMC) scheme is employed once the desired trajectory for the robot joint has been designed.
SMC scheme is chosen because its known robust performance under dynamical disturbances and modeling
inaccuracies. Then, the angular position of the robot joint plays the role of a virtual control input for the flexible
dynamics of the link. Both, regulation and trajectory tracking of the end effector position are achieved by using the
scheme devised in this work. The Finite Differences Method (FDM) is employed to simulate the closed loop
performance of the flexible-link robot, because its dynamics are assumed to be governed by the undamped Partial

Differential Equation (PDE) of the Euler-Bernoulli Beam (EBB).
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1. Introduction

Although the study of flexible-link robots have
been the subject of intense research in the last
three decades [1, 2, 3], flexible link robots have
proved to be an extremely challenging problem
for areas such as mechanical design, electronics
and instrumentation, modeling and of course, for
the area of control engineering [3, 4, 5, 6, 7].
Most of the works which deals with the modeling
and controlling of flexible-link robots use the so
called Assumed Modes Method (AMM) [2, 8], in
which flexible links are considered to be flexible
beams which are governed by the so called
Euler-Bernoulli Beam Equation [9, 10], which is a
PDE so that, modal analysis is often used to
obtain a finite modal approximation to the
dynamics of the robot [11]. Even though the
AMM provides great insight into the overall
phenomena [12, 13, 14. 15] which occurs in the
flexible link robot dynamics, it has the main
drawback that it is quite complicated to model a
system with more than three flexible modes
[16]. This is the reason why, most papers using
the AMM only consider two flexible modes.

Besides, the AMM provide us with only
information of a selected point along the flexible
link which is usually the flexible link tip. Having
this in mind, some researchers began to work
directly in the PDE domain [2, 8], but still a
simulation platform to work with PDE's is difficult
to find. One method which allows to work directly
with the Euler-Bernoulli PDE without having to
perform modal analysis and which also bring
information of several points along the flexible
link length is the Finite Differences Method
(FDM) [17].

In this work, a cascaded control which allows
to perform trajectory tracking of the end
effector of the flexible-link robot, by controlling
the robot joint [18], is implemented using the
FDM in order to achieve trajectory tracking
control of the end effector of the flexible link
robot. The platform is considered to be a single
flexible-link robot which moves on an horizontal
plane, so that, gravity effects are negligible, as
depicted in Fig. 1.
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Figure 1. A single flexible-link robot.

Thus, the basic idea in this work is that the end
effector position of the flexible-link robot is
directly driven by the joint angular position and
the overall system dynamics can be represented
in a cascade-link fashion [19, 20], so that, by
properly designing a reference trajectory for the
joint angle, the end effector position has the
prescribed behavior as stated in [18]. So, in
order to ensure trajectory tracking of the angular
position of the robot joint, a SMC scheme is
employed over a Finite Differences model for the
flexible-link robot, once the desired trajectory for
the robot joint has been designed playing the
role of a virtual control signal. In this paper it is
show that both, regulation and trajectory tracking
of the end effector position can be achieved to a
satisfactory degree by using the scheme devised
along this work.

2. Modeling of a flexible-link robot using the
Finite Differences Method

The Fig. 2 depicts the geometry of a single
flexible link robot, which moves on an horizontal
plane, so that, gravitational effects can be
neglected. A mass is attached to its tip in order to
simulate the presence of an end effector which is
manipulating a payload. It is worth noticing from
Fig. 2 that the distributed parameters for this
system are: the flexible link stiffness El, its
material density p, and its cross-sectional area A.
All of them, assumed to be constant along the
distributed coordinate r of the robot. Also, the
flexible link length is L and m, is the payload
mass attached to the link tip. The coordinates to
describe the system dynamics are: the joint
coordinate 8 and w(r, t) which is the deflection
curve of the flexible link. Finally, the control input
is the torque u(t) which drives the robot joint.

Figure 2. Flexible-link robot geometry.

However, the system variable of interest is the
flexible link tip position. So, a definition for this tip
position is required in order to define the system
output. Fig. 3 depicts the definition of a system output
y(t), where t is the time, defined as the distance that
the end effector travels along the arc of a circle of
radius L centered about the joint axis of gyration.

Figure 3. End effector position.

2.1 Finite Differences model of the PDE rotational
dynamics for the Euler-Bernoulli Beam

Let us consider the classical PDE of the EBB
equation, in which a rotational dynamics has been
included. Also, let us consider that the flexible link
of the robot has its clamped base at the joint hub
of the robot. This equation is a classical model in
the flexible-link robots literature and can be found
(e.g.) in [2] and is given by

*w(r,t) Pwrt) -
El py + pA proanbe pArf (1)
Also, it is important to define de Boundary

Conditions (BC) which must be valid for the
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flexible link for all the time. As the Euler-Bernoulli
given in Eq. 1 is fourth order in the distributed
coordinate, it is necessary to define a set of four
BC's. The set of BC's considered in this work
corresponds to a clamped-free beam with an
inertial condition at the free end, so that, they are
expressed as

o, w00 _A. Pw(Lt) _ .
w(0,t) = 0; p 2—0, El vz = 0;
a3 w(L t) a°w(L,t) o
El =My + Lo (2)

The Finite Differences Method (FDM) employs
approximations to the partial derivatives found in
Egs. 1 and 2. This approximations are obtained
by the discretization the domain of the variables
of the PDE. A partition At of the time t and a
partition Ar of the flexible link spatial coordinate r
are required. In this way, the Finite Differences
(FD) approximations needed are given by Eq. 3,
which can be found in [2] and where the notation
w,-k has been used to denote w(jdr, kAt) in which
the quantities At and A4r are fixed positive
constants, but, in general Af does not equal A4r.
Also, this FD approximations are generally
referred to as FD analogs (see e.g. [21]). Hence,

% = A2 (W 2W + Wk+1)
aw;:, D ﬁ(wﬁl +wky)
azl;vr(z,t) = Alz (ij+1 - ZW-k + w-k_l)
3
av(;%t) 2A1r3 ( Wit - 2wk /j+1 + 2W ij—z)
4
% 14 (Wj+2 4ij+1 + 6ij - 4-ij_1 + W]-k_z)

3)

Replacing the partial derivatives in Eq. 1 by their
FD analogs given in Eq. 3, it yields,

El
m(wjﬁ2—4w]-’ﬁr1+6wj" — 4w/, +wl,) +
PA i k k-1Y) _
A_tz(wj —2wf +wfh) =
AAr
— ]pA (9k+1 29k+0k 1)

(4)

in which the initial conditions of the system at
rest are

—91
8(0)=6°=0; 6(0)=——=
© O =35
aw(r,0) _ wj-w;

w(r,0) =w) =0; $=#=0 (5)

and the boundary conditions analogs are then
given by

1
W(,)( = 0; E(W{(_W’—cl) = 0;

ﬂ(w,’f+1—2wrlf+w,’f 1) =0;

2Ar3 (Wn+2 2Wn+1+2Wn 17 111(—2)2
Atz( kH1_2wk+wlr—1) +
7:;721‘ (9k+1 291{ _ ek—l)
(6)
where it must be noticed the presence of

fictitious points which are obtained when t=0 (i.e.,
k=0) and whenever r=0 (i.e., j=0) of r=L (i.e., j=n).
The fictitious point of time is w;” whereas the
fictitious points of the distributed coordinate are
w_gk, w.,k and w k,,+1 with also wk,,+2. Even though
these points are fictitious, they still can be
calculated by solving some of the FD-BC given
in Eqgs. 5 and 6 or by applying these solutions to
the recursive equation which goes forward in
time that is obtained by solving Eq. 4 for w;"’.
Thus, by defining the constant k= (EIAt )/(pAAr)
such a recursion is found to be

-1 —]Ar(9k+1 ng + gk—l)
4wl + 6wl — 4wl +wf,) (7)

witt = 2wf —wf

—kg (W1+2

The above equations, after a not so short

procedure, allow to compute both, initial and
fictitious point as
6°=0; 07" =0 w) =0; w' =w}
wg = 0; wk, = wk; W’_‘z = 8w1 - w¥
Wysr = 2wy — Wy_y
(8)

and, after defining mg=(2m,Ar’)/(EIAF)
Le=Lmpg, the last fictitious point is computed as

and
W1,f+2 =4- ZmE)Wr]f - 4W1’1€—1 + W;’zc—z +
+my (Wt + wh 1) + L (6% —20% + 6%°1)  (9)

The expressions given in Egs. 8 and 9 can now be
substituted in Eq. 4 and grouped into a more
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compact expression for a recursive equation which
represents the dynamics of the whole flexible-link
robot system. Therefore, the dynamics of the
overall system is,

Wk = q(k)AW* + b(k)W*1 — a(k){ArS — T}©
(10)

where A is (n+1 x n+1) and S, T are (n+1 x 3)
matrices. Also, Wk=[0,w1k,w2k, wkn_1, wkn_z]T, the
vector ®=[d‘+1, d‘, d"’]r and the discrete
coefficients a(k) and b(k) are such that, [a(0),
b(0)1=[0.5, 0], and if k > 0 then, [a(k), b(k)]=[1, -1].
The actualization matrix A is given by

0 0 0 0 0 0 0
[ 0 2-7ky 4ky —kg 0 0 0 ]
“ky  4ky 2—6k; 4k —kg O 0
0 —ky 4k 2-6ky 4ky —kg 0
|[ 0 0 —ky 4k, 25k, 2kEJ|
0 0 0 a b c

(11)

where a=-(2kg)/(1-mgkg), b=4kgl/(1-mekg) and the
last element, c=2(1+kg(mge-1))/(1-mekg). Also, the
matrix S is defined to be,

0 0 0
1 -2 1
s=| J ~2j j (12)

n—-1 -2n-1) n-1
Sn1 Sn2 Sn1

where the coefficients of the last row are defined
to be s,1=-n/(1-mgkg) and s,>=2n/(1-mgkg). And
finally,

0 0 O

_ KgLE :

T1-mgkg| 0 0 0 (13)
-1 2 -1

So that, Eq. 7 allows to compute the flexible link
deflection at every discretization point in the
distributed coordinate r for the discrete time instant
k+1 using only terms of the current time instant k
and the immediate past instant k-7, which are
always available. Notice however, that the required
values for to compute W**" are W*, W*', 9*" and
6" which is a future value for the joint coordinate.

Therefore, the dynamics of the joint angle must be
considered prior to the computation of Eq. 7, so
that, all the needed data is available.

2.2 Joint dynamics in Finite Differences terms

The dynamics of the joint of the flexible-link robot
(addressed as rigid mode) in the continuous time is
given by

d2e(t
Jo 229 — w(t) = 15(0,0)

dt?

(14)

where J, is the rotational inertia of the joint
mechanism, u(t) is the input torque driving the
joint and the only available control input to the
system, r;, is the perpendicular distance between
the clamping of the flexible link and the rotation
axis of the robot joint, and S(0,t) is the shearing
force at the flexible link base, which produces
the reaction torque at the joint given by the
second term to the right of Eq. 14. The shearing
force at the base is given by

_ 33w (0,t)
S5(0,t) = El——3~ (15)
So, in order to obtain the FD analog to the rigid
mode dynamics given by Egs. 14 and 15, it is
necessary to substitute the FD equivalences of the
derivatives and the discretized equivalences of
the functions appearing in these equations. This is

a quite straightforward calculation which yields

k ThEIAtZ

9k+1 — A_"LZ
JoAr3

(wk —4awk) +

Jo

+20k — gkt (16)
which depends on the current and past values of
the system variables. Equation 16 completes the
model of the system since it allows to compute
all the required data to evaluate Eq. 7, so that, it
is possible to calculate W**" and 0" once the
initial conditions (00, WO) and the input torque uk
have been specified.

It is important to stress out that. for the FDM to
work in the present case, it is necessary to obey a
restriction upon the relative magnitudes of the
discretization values Ar and At, so that, their
magnitudes must be restricted to be such that,

2mpArd 1
EIAt2 < 4 (17)
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Failure in fulfilling the restriction imposed by Eq. 17
may lead to simulation instability [21].

3. Controlling the End Effector position

The end effector position is the system variable
that is required to follow a prescribed trajectory, so,
let the end effector position be the output of the
system which is given by (see Fig. 3)

y()=L0+w(L1t) (18)

Also, let y*(t) be the desired trajectory for the
output, so that, the tracking error e and its first two
time derivatives are, e=y*(f)-y(t), ¢ = y*(t) — y(¢t)

é=y"(t)—Lo(t) —w(L,t) (19)

Now, let us impose a stable dynamics upon the
error and its time derivatives, so that,

é+Kyé+Kpe=0 (20)

where Ky and K, are positive constants so that, Eq.
20 is Hurwitz. By substituting Eq. 19 into Eq. 20
and solving for the angular acceleration, it yields,

b= 2{7" —W(L,t) + Kaé + Kpe} (21)
Also. from Eq. 14 J,6 = u(t) — ,5(0,t), but, as will
be shown in the next section, the contribution of the
reaction torque 1,5(0, t), to the rigid mode dynamics
is negligible. This means that J,6 = u(t). So, the
error dynamics in Eq. 21 can be expressed as

Kqé = —Kye — 5 +w(L,t) + Jiu(t) (22)
0

which is a perturbed first order dynamics for the
error e. Let a Candidate Lyapunov Function (CLF)
for the error dynamics be

V(e) = s KqKye? (23)

which is positive definite and radially unbounded.
Taking the time derivative of Eq. 23 along the
trajectories of the system, it yields,

dav(e)
dt

= Kpe (~Kpe =" +W(L,O) +u(®)  (24)

Now, define the correction angle & such that

9*(t) — y*(t)—LW(L:t) (25)
which is exactly the angular amount needed to
match the current output of the system to the
desired trajectory. Now, by taking the second
time derivative of Eq. 25 and multiplying it by J,,
it yields,

wH(E) = W‘LM (26)
Therefore, by substituting Eq. 26 into Eq. 24 as the
nominal control input, it can be seen that the time
derivative of the CLF in Eq. 24 is rendered negative
definite, thus, implying that the tracking of the
trajectory is ideally asymptotically stable. However,
the exact controlling signal u*(t) is not achieved
because there always exist some parametric and
modeling uncertainties. The closest thing to do, is to
make sure that the rigid mode trajectory for &)
reaches ¢*(f) as its reference trajectory. Hence, by
ensuring the tracking of the trajectory &%), it is
possible to obtain at least, a stable trajectory tracking
for the end effector position of the flexible link robot.
In this work, it is also assumed that the measurement
of the end effector position is available.

One possible way to achieve the tracking of the
trajectory &%(t) given in Eq. 25 is to employ a SMC
scheme to verify that the end effector position y(t)
tracks the specified trajectory y*(t). Having in
mind that the rigid mode is governed by the
perturbed second order dynamics Eq. 14, let us
consider the first order switching function to be

o(t) = (S+2)6() (27)

where 1 is a constant, and 8(t) = 6(t) — 6*(¢t).
Also, let S(t) be a storage function, so that,

S(t) = 20%(t) (28)

Thus, its time derivative yields

L0 = 5()o(t) = (8 +20)(6 + 29) (29)
which, after manipulations, can be

expressed as

some

as(t) _
dac

() [p(®) +v(t) +26(t) — 6" (®)] (30)
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where v(t) is obtained after a control transform and
#(t) is a perturbation due to the flexible-link
bending moment at the clamping, but, since the
bending moment can be accurately measured, and
the perturbation term ¢(t) is assumed to be small
and is given by

D) =2 [1, 2200 (31)

in which J; is the best estimation available for the
system inertia moment respect to the robot joint
axis, making the fraction J;/J, close to 1 and k;is
a small constant in which the closeness of the
sensor to the clamping and the estimate of the
flexible-link stiffness are accounted for. Thus,
making ¢(t) a bounded function of time. Also, the
control transform u(t) to v(t) is defined, so that,
the rigid mode dynamics of Eq. 14 can now be
expressed by

6(t) = ¢(t) +v(t) (32)
Therefore, Eq. 30 becomes
O = 6 (1) +26(t) - 6" (1)) + ov(t) (33)

Also, the term inside the parenthesis of Eq. 33 is
assumed to be bounded, that is,

6 +26(6) - 6" v)| <M; M >0 (34)

so that, from Eq. 33 it turns out that

LO < oM + o(®)v(t) (35)

Hence, by choosing v(t) as
v(t) = —M;sign(a(t)) (36)
Then, Eq. 35 is equivalent to

ds(t)

xS (M-

M)le(®)]; vt>0 (37)
which, upon choosing M; > M, ensures that the rigid
mode state (6,6) reaches the sliding surface
defined by o1t)=0 in a finite amount of time (i.e., 4(t)
reaches g*(t) after a finite amount of time), because
the time derivative of the storage function of Eq. 28
is rendered negative definite for all time. It is

important to mention that the reference trajectory
() expressed in Eq. 25, can be treated as a virtual
controlling signal, which can be improved by adding
the classical PID gains for the error terms, so that,
the improved control law for this system is given by

07 (t) =1{y" —w(Lt) + Kpe + Kqé + K, [, edt}
(38)

where K, K, K; >0. Thus, the FD equivalence of
Eq. 38 is then given by

9*k=l{ *—wk o+ Kek + Ky e 4
Y n p d At

Ki 520 eilt) (39)
also, the corresponding expression for the control
law of Eq. 36 in discrete time is given by

uk = —Fsign(o(kAt)) (40)

Observe from Eqgs. 36 and 40 that, even though
the calculations for the control law were made in
terms of continuous functions of time, the
controlling action given by Eq. 40 has a constant
value between consecutive sampling times
(which are spaced by the time amount At).

4. Simulation results

The parameters employed to simulate the control
scheme devised in the last section are divided in
two sets: the first one is the set of mechanical
parameters of the flexible-link robot given in the
Table 1, and the second set is composed by the
simulation parameters needed to implement the
FDM, which are given in Table 2.

Parameter Value

Flexible-link length L 1[m]

Payload mass mp 1[Kg]
Link stiffness E/ 21.76 [Pa.m’]
Mass density p 2700 [Kg/m?]

Cross-sectional area A 8.0654 x10° [m?]

Equivalent inertia Jo 1.1452 [Kg.mz]

Clamping eccentricity ry 0.05 [m]

Maximum torque F 50 [N.m]

Table 1. Mechanical parameters of the robot.
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Parameter Value
Number of segments n 20
Spatial increment Ar 0.05 [m]
Time increment At 0.0001 [s]
Total simulation time 20 [s]

Table 2. Simulation parameters for the FDM.

The first simulation result corresponds to the
regulation case where y*(t)=1.6493 [m], which is
simply a constant position corresponding to a
rotation angle of n/2.

The PID parameters for this regulation scheme
were set to K,=15, Ky=5, and Ki=0.1. Fig. 4
shows in dashed line the desired tip position y*(t)
which is constant and in solid line the actual
behavior of the end effector position which starts
from a zero initial condition. Fig. 5 shows the
deflection at the flexible link tip and it can be seen
that it is never continuously zero. There is always
a remaining vibratory effect even when the
system output has reached the desired trajectory.

[

-
- 7
T——

=
n

End effector desired vs current position [m|

i i
6 8 10 12 14 16 18 20
time [s]

>

<

)
w
-

Figure 4. Regulation of the end effector.

-0.5

Deflection at the Tip [m]

| 1 1
T 2 4 3 8 10 12 14 16 18 20

time [s]

Figure 5. Tip deflection for regulation.

Also, Fig. 6 depicts the virtual control signal 6*(t)
in dashed line, whereas the actual joint angle
6(t) is shown in solid line. It is worth noticing that
the angle ¢(t) follows only the average of the
function 6*(t), yet, the tip position has been
satisfactorily regulated.

Virtual control 0°(§) vs 0(t) [rad]
= \
in

Figure 6. Virtual control and joint angle.

The second simulation results are intended to
show the flexible link robot behavior when the end
effector is required to track a prescribed
trajectory. For this case, the PID controller
parameters were set to K,=15, K;=5 and K=1.
The reference trajectory signal corresponds to the
first two terms of the Fourier series of a square
wave, which is given by

YO = 21X smsin () (41)

where the square wave period is T;=2 [s].

The results of the end effector trajectory tracking
scheme are depicted in Fig. 7, in which it can be
seen that there is always an overshot of the
actual end effector position (solid line) when the
reference signal (dashed line) changes its sing,
but in general, the tracking of the desired
trajectory is satisfactory even for the reference
signal of Eq. 41, which is somewhat demanding
for the flexible link robot kind. Fig. 8, on the
other hand, shows that the elastic deflection at
the flexible link tip presents sustained
oscillations, which are significant but remain
bounded though. Finally, Fig. 9 depicts a
comparison between the required virtual control
signal 6%(t) and the actual angular joint position
g(t), whose behavior is consistent with the
regulation case in that only the averaging signal
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of the virtual control reference is reproduced.
Yet, the trajectory tracking performance of the
end effector position is satisfactory.

15

A v"v} it

2 4 6 8 10 12 14 16 18 20

time [t]

End effector desired vs current position [m]

Figure 7. Trajectory tracking
for the end effector position.

MWMMMW ANNAANAA
R R R R VAV VY

-0.5]

Deflection at the Tip [m]

2 4 6 8 10 12 14 16 18 20
time [s]

Figure 8. Tip deflection of the flexible
link for the trajectory tracking scheme.

Virtual control 0"(t) vs 0(t) [rad]

i
0 2 4 6 8 10 12 14 16 18 20
time [s]

Figure 9. Virtual control and joint angle
for the trajectory tracking scheme.

5. Conclusions

In this paper, the modeling of a single flexible link
robot was addressed using the Finite Differences
Method, so that, it was possible to skip the

classical Assumed Modes Method for modeling
this kind of robot manipulators. Also, it was found
that the trajectory of the joint driving the flexible
link can be used as a virtual control signal for the
system when the output is selected as the end
effector position. Therefore, by defining an
adequate trajectory for the robot joint in terms of
the end effector position, both, system regulation
and trajectory tracking for the end effector position
of the flexible link were achieved. Notice however,
that in this work, the calculations made to
synthesize the sliding modes control law, were
made using continuous time variables because a
discrete time analysis and control law synthesis is
currently under development including the
corresponding discrete time stability analysis.
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