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ABSTRACT 
Recently, heterogeneous system architectures are becoming mainstream for achieving high performance and power 
efficiency. In particular, many-core graphics processing units (GPUs) now play an important role for computing in 
heterogeneous architectures. However, for application designers, computational workload still needs to be distributed 
to heterogeneous GPUs manually and remains inefficient. In this paper, we propose a mixed integer non-linear 
programming (MINLP) based method for efficient workload distribution on heterogeneous GPUs by considering 
asymmetric capabilities of GPUs for various applications. Compared to the previous methods, the experimental results 
show that our proposed method improves performance and balance up to 33% and 116%, respectively. Moreover, our 
method only requires a few overhead while achieving high performance and load balancing. 
 
Keywords: Computational workload distribution, graphic processing units (GPUs), load balancing, mixed-integer non-
linear programming (MINLP). 
 
 
1. Introduction 
 
Nowadays, a hybrid system consisting of general 
purpose processors (CPUs) and accelerators are 
becoming mainstream in system architecture 
design for achieving high performance and power 
efficiency. In particular, many-core graphics 
processing units (GPUs) now play an important 
role for computing in heterogeneous architectures 
for many fields like optimization [1], neural network 
[2], and bioinformatics. For example, Titan is 
ranked first in the list of supercomputers of Top500 
[3] in Nov. 2013, and is equipped with 18,688 
Nvidia Tesla K20 GPU and 18,688 AMD Opteron 
6274. As for embedded systems, Nvidia Tegra [4] 
integrates ARM processor and a 16-core GPU into 
a chip for mobile devices. 
 
In order to catch up with the progress of the above 
domains, the most critical task is to enhance the 
performance of more and more complex 
applications running on heterogeneous GPUs 
efficiently. Most work concentrate on providing 
programming environments such as CUDA [5],  
 
 

 
 
OpenCL [6], and DirectCompute [7] for application 
developers to transform serial programs to 
heterogeneous parallel programs. However, with 
the progressive number of heterogeneous GPUs, 
computational workload distribution (CWD) 
becomes more attractive due to the asymmetric 
capabilities of GPUs. There are two regards to 
distribute computational workload on 
heterogeneous GPUs: the constraints of memory 
capacity of GPUs and the load balancing among 
GPUs. First, in general, the applications running on 
GPUs have extremely large data size, thus the 
memory capacity of GPUs dominates the workload 
distribution of applications. Second, the workload of 
application should be distributed to heterogeneous 
GPUs based on their computing capabilities for load 
balancing and further minimizing the overall 
execution time. In this paper, we model 
computational workload distribution on 
heterogeneous GPUs as a mixed-integer non-linear 
programming (MINLP) problem for efficient 
workload balancing. 
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Consequently, we make the following contributions 
in this paper: 
 
•.We model the problem of computational workload 
distribution on heterogeneous GPUs as MINLP for 
efficient load balancing and further optimize the 
overall performance. 
 
•_Based on our formulation of MINLP, our 
approach can support various numbers of 
heterogeneous GPUs. 
 
•_The overhead of our approach is quite minimum 
because only a few number of training samples are 
required. 
 
This paper is organized as follows. In Section II, 
we review the related work about workload 
distribution and load balancing. Section III 
describes our proposed method for computational 
workload balancing. In Section IV, we present our 
evaluation and compare with the previous 
methods. Finally, we present concluding remarks 
and future work in Section V. 
 
2. Related work 
 
The approaches of CWD on heterogeneous 
processors can generally be classified with two 
types: static [8-11] and dynamic [12-15]. For static 
strategy, Qilin [8] proposes an adaptive mapping 
method on heterogeneous parallel processing 
platforms (HPPPs) consisting of one CPU and one 
GPU. The purpose of Qilin is to make load 
balancing on HPPPs, so it maps the partitioned 
workload to all processors according to their 
capabilities. First in the offline phase, Qilin 
samples execution times of a task with different 
problem (data) sizes, and then formulating linear 
regression as prediction model. Second in online 
phase with the new coming problem size, the 
optimal partition proportion of workload of task on 
CPU and GPU is obtained by the model. All of the 
tasks are sampled and recorded in the database. 
Qilin searches the database for the partition 
proportion while distributing workload on HPPPs. 
Luk et al. proposes an effective method for 
workload partition, however, the approach only 
deals with one CPU and one GPU. The number of 
heterogeneous processors is a limitation of CWD 
especially on HPPPs consisting of multiple CPUs  
 

and GPUs. Another work related to CWD proposes 
a waterfall energy consumption model [9] for 
power issue. The authors adopt a task mapping 
method,  -migration, on GPU. Tasks could be 

partitioned into CPU sub-task and GPU sub-task. 
In this method, CPU sub-task does not move parts 
to GPU because CPU sub-task is not suitable to 
GPU. While CPU sub-task and GPU sub-task do 
not work in a balanced way, the   proportion of 

GPU sub-task is migrated to CPU. 
 
As for dynamic strategy, [12, 13] present a 
mechanism that distributes workload to processors 
uniformly in the initial state (e.g., the first iteration 
of a for-loop in a program), and then collects the 
execution times of all processors and re-distribute 
the workload based on their performance 
measured by minimum code intrusion run-time. 
After several steps of re-distributing workload, the 
system converges to a balanced state. The 
dynamic strategy can be regarded as a lightly run-
time profiling, so the most critical issue of this 
strategy is how to measure the performance of 
each processor with minimum overhead. In 
comparison with static strategy, dynamic strategy 
cannot reach an accurate proportion of workload 
distribution initially for efficient load balancing. 
Furthermore, dynamic approach requires data 
migrations among processors thus causes 
communication overhead than static approach. 
 
In this paper, we propose a MINLP-based approach 
for computational workload distribution on various 
numbers of heterogeneous GPUs for efficient 
workload balancing and optimal performance. 
 
3. Motivation 
 
As the trend of Platform as a Service (PaaS) in 
cloud computing, keeping platform balancing and 
fully utilized become an important issue for high 
performance. However, distributing workload of a 
data-parallel application to a computing node 
which consists of asymmetric-capabilities 
processing elements efficiently is difficult because 
the proportion of distributed workload to 
processing elements should be based on their 
abilities to an application. This phenomenon is very 
common especially in a platform consisting of 
heterogeneous GPUs for science computing. 
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We now motivate the need of efficient workload 
distribution on heterogeneous GPUs with a case 
study of matrix multiplication. For the case of 
matrix multiplication, it is commonly known that 
each element in the product matrix is obtained 
by the inner product of one row vector of one 
input matrix and one column vector of the other 
input matrix. The Eq. 1 formally depicts the 
matrix multiplication. 
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We did two motivating experiments with two 
heterogeneous GPUs used. In each experiment, 
we set the input size of matrix as 3200 and varied 
the distribution of workload between GPUs. As the 
data parallelism of matrix multiplication C A B  , 
A can be divided into smaller matrices by row and 
B can be divided into smaller matrices by column 
for computing in parallel. Consider the feature of 

coalesced access on GPU, we only divided A  by 
row. Finally, we combine the partial results into C . 
We use the CUDA CUBLAS library [16]. 
 
Figure 1(a) and 1(b) show the results of matrix 
multiplication experiments with different 
combinations of GPUs (details of the machine 
configuration are given in Section 6). The x-axis is 
the distribution of workload between the two 
GPUs. The notation “A/B” means A% of workload 
mapped to K20c and B% of workload mapped to 
GTS250 in Figure 1(a) or GTX690 in Figure 1(b). 
The y-axis is the execution time in millisecond. In 

Figure 1(a) and 1(b), we can see the optimal 
workload distributions are located between 80/20 
and 50/50, respectively. This is because of the 
asymmetric computing capabilities of GPUs. It is 
very clear from these experiments, the optimal 
workload distribution depends on the hardware 
capability for an application. Assume that the 
proportion of workload distributed to a GPU is 
either increased or decreased by 10%. For two 
GPUs, there are nine combinations to search for 
optimal distribution in brute-force style. As for three 
GPUs, there are up to sixty three combinations. 
There will be a large amount of combinations if the 
number of GPUs is increased or the proportion of 
distributed workload is more subtle. Therefore, we 
propose an efficient method for workload 
distribution on heterogeneous GPUs with the 
considerations of number of GPUs and accuracy. 
 
4. Compute Unified Device Architecture (CUDA) 
 
Compute Unified Device Architecture (CUDA) is a 
GPU programming model developed by NVIDIA. 
CUDA provides a programming interface [5] to 
utilize the highly-parallel nature of GPUs and hide 
the complexity of controlling GPUs. A 
programmer specifies a kernel as a series of 
instructions and a data set, then the kernel is 
executed by thread blocks, each of which consists 
of a number of threads as shown in . Precisely, a 
thread block is divided into warps of 32 threads. 
Each warp is executed by an streaming 
multiprocessor (SM) within 4 cycles if the input 
data is cached for computing. For utilizing an SM 
efficiently, the threads of each warp should 
execute the same instructions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1(a). Matrix multiplication experiments with K20c and GTS 250. 
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Figure 3 shows CUDA programming and 
execution model. In the CUDA code shown in the 
left part, the serial code such as for file I/O is 
executed by CPU. As for the highly data-parallel 
code section such as vector addition with large 
data, is written as a kernel function which is  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
executed on GPU launched by the CPU. The 
parameters nBlk and nThd represent the number 
of thread blocks and the number of threads in 
each thread block, respectively. The parameters 
nBlk and nThd are called execution configuration 
in CUDA programming. 
 
 
 
 

 
 

Figure 1(b). Matrix multiplication experiments with K20c and GTX690. 

 
 

Figure 2. The concept of prgramming and execution in CUDA. 
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5. Methodology 
 
Figure 4 shows the concept of our proposed 
approach. For a given problem (data) size of an 
application, the goal of workload balancing on 
heterogeneous GPUs is to search a set of problem 
sizes distributed on GPUs that makes the equal 
execution time on GPUs. In other words, the 
variance of execution times on GPUs is minimized 
as possible. Note that many sets of distributed 
sizes can make the variance minimum, however 
only one single set of distributed sizes 
accumulated to the given problem size. 
 
The flow of our approach for CWD is shown in 
Figure 5. Left part is the phase of training run. In 
the training run, task with different sizes are run on 

n  heterogeneous GPUs ( 1 2, ,..., nG G G ) and then 

the execution times are collected to build linear 
regressions for GPUs. Then, the linear regressions 

which are 
1 2
, ,...,

nG G GT T T  shown in Eq. 3 are 

stored in the database as performance model for 

reference run. Note that in Eq. 3, ic  is the 

execution confiugration of parallel program (i.e., 
number of threads in a thread block which is 
intriduced in Section 4) and is equal to the size of 

data which are distributed to iG  because the 

distributed size should be equal to the multiples of  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
execution configuration without any other 
techniques (e.g., adding extra paddings to size). 

Furthermore, GT  and rN  indicate the avergae 

execution time on GPUs and the referenced 
problem size on runtime, respectively. Right part in 
Figure 5 is the phase of reference run. In the 
reference run, the reference size of task is used as 
the input for mixed-integer non-linear programming 
(MINLP) with the objective function and the 
constraints as shown in Eq. 2 and 3. In Eq. 2, we 
take load balancing into our consideration, thus we 
adopt the concept of standard deviation and 
minimize it. After solving Eq. 2 with Eq. 3 by 
MINLP solver, the optimal partition proportion of 
workload to each GPU is obtained. 
 

              (2) 

 

                                (3) 
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Figure 3. Programming and execution model of CUDA. 
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Figure 4. The concept of proposed approach for efficient workload distribution. 

 
 

Figure 5. Flow of the proposed approach for CWD on heterogeneous GPUs. 
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6. Evaluations 
 
Table 1 lists the experimental setup of evaluations. 
We take four heterogeneous GPUs as our target 
platform. Table 2 lists our benchmarks which are 
workload divisible and guaranteed that the 
computational workload can be partitioned and 
distributed to GPUs without any synchronization 
for communication in thread level. For MINLP 
solver, we adopt Matlab R2012a with the package 
of solver BONMIN. In our experiments, we take 
overall execution time and imbalance as two 
metrics for evaluating approaches. The metric of 
imbalance is the standard deviation of execution 
times among GPUs. In other words, the less 
imbalance among GPUs, the superior distribution 
is obtained. We take uniform distribution (UD) and 
specification-based distribution (SBD) as the 
comparisons in the experiments. UD distributes 
workload to GPUs uniformly while SBD distributes 
workload to GPUs base on specifications (i.e., 
number of cores multiplies clock frequency). 
 
In the first experiment, we evaluate our approach 
for different numbers of GPUs with twelve training 
samples. As shown in Figure 6, the overall 
execution time reduces while the number of 
heterogeneous GPUs increases. As for 
imbalance, our approach can efficiently reduce 

the variance of execution times among GPUs by 
our objective function no matter the number of 
GPUs used. Compared to the overall execution 
time, our approach constrains the imbalance 
under 1.2%. 
 
Figure 7 and 8 show the performance and 
imbalance comparison of MINLP-based, UD, and 
SBD with twelve training samples, respectively. In 
these two experiments, we use GTX 690, C2050, 
and GTS250. Note that our main objective is 
workload balancing among GPUs. 
 
In Figure 7, the average performance of MINLP-
based is 1.66x and 1.35x speedup to UD and SBD, 
respectively. And for load balancing in Figure 8, 
MINLP-based outperforms 2.8 and 3.2 times better 
than UD and SBD in average, respectively. 
 
The final experiment is to evaluate our approach 
on performance with various numbers of training 
samples. As shown in Figure 9, the performance of 
all benchmarks improve while the number of 
training samples increase. In addition, the 
performance of most benchmarks converge when 
the number of training samples is more than nine. 
Therefore, our approach requires minimum 
overhead for building regressions and reach the 
optimal performance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 GPU 1 GPU 2 GPU 3 GPU 4 
Architecture GTX 690 GTS 250 Tesla C2050 K20c 
Core Clock 1.02 GHz 1.62 GHz 1.15 GHz 0.76 GHz 

Number of Cores 
1536 

CUDA cores 
128 

CUDA cores 
448 

CUDA cores 
2496 

CUDA cores 
Memory Size 2 GB 1 GB 3 GB 5 GB 

Threading API Nvidia CUDA 4.0 
Compiler Nvidia C Complier (nvcc) 

OS 64-bit Linux Ubuntu 11.04 
 

Table 1. Experimental setup. 

Benchmark Description Testing Size Origin

K-means Cluster analysis 
76800 points, 

dim=34, k=1024 
Rodinia [17] 

MatrixMul Matrix multiplication 6144 x 6144 

CUDA SDK [18] 
Convolve 

2D separable image 
convolution 

12288 x 12288 image 

Binomial American option pricing 768 options, 2048 steps 
BlackScholes European option pricing 180000000 options 

 
Table 2. Benchmark summary. 
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Figure 6. Impact on performance and imbalance of matrix multiplication with number of GPUs. 
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Figure 9. Impacts on performance with different number of training samples. 

 
 

Figure 8. Imbalance comparison. 
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7. Conclusion 
 
We have proposed MINLP-based method for 
computational workload distribution on 
heterogeneous GPUs. The proposed method shows 
superiority than other methods on workload 
balancing. In addition, the proposed method only 
requires a few training samples thus remain the 
overhead as low as possible. For the number of 
heterogeneous GPUs, our method can support more 
than two GPUs. We will clarify the relation between 
performance and load balance in the future work. 
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