

Vol. 12, December 2014 1176

Efficient Workload Balancing on Heterogeneous GPUs using Mixed-
Integer Non-Linear Programming

Chih-Sheng Lin1, Chih-Wei Hsieh2, Hsi-Ya Chang2 and Pao-Ann Hsiung*1

1Department of Computer Science and Information Engineering
National Chung Cheng University
Chaiyi, Taiwan
*pahsiung@cs.ccu.edu.tw
2National Center for High-Performance Computing
Hsinchu, Taiwan

ABSTRACT
Recently, heterogeneous system architectures are becoming mainstream for achieving high performance and power
efficiency. In particular, many-core graphics processing units (GPUs) now play an important role for computing in
heterogeneous architectures. However, for application designers, computational workload still needs to be distributed
to heterogeneous GPUs manually and remains inefficient. In this paper, we propose a mixed integer non-linear
programming (MINLP) based method for efficient workload distribution on heterogeneous GPUs by considering
asymmetric capabilities of GPUs for various applications. Compared to the previous methods, the experimental results
show that our proposed method improves performance and balance up to 33% and 116%, respectively. Moreover, our
method only requires a few overhead while achieving high performance and load balancing.

Keywords: Computational workload distribution, graphic processing units (GPUs), load balancing, mixed-integer non-
linear programming (MINLP).

1. Introduction

Nowadays, a hybrid system consisting of general
purpose processors (CPUs) and accelerators are
becoming mainstream in system architecture
design for achieving high performance and power
efficiency. In particular, many-core graphics
processing units (GPUs) now play an important
role for computing in heterogeneous architectures
for many fields like optimization [1], neural network
[2], and bioinformatics. For example, Titan is
ranked first in the list of supercomputers of Top500
[3] in Nov. 2013, and is equipped with 18,688
Nvidia Tesla K20 GPU and 18,688 AMD Opteron
6274. As for embedded systems, Nvidia Tegra [4]
integrates ARM processor and a 16-core GPU into
a chip for mobile devices.

In order to catch up with the progress of the above
domains, the most critical task is to enhance the
performance of more and more complex
applications running on heterogeneous GPUs
efficiently. Most work concentrate on providing
programming environments such as CUDA [5],

OpenCL [6], and DirectCompute [7] for application
developers to transform serial programs to
heterogeneous parallel programs. However, with
the progressive number of heterogeneous GPUs,
computational workload distribution (CWD)
becomes more attractive due to the asymmetric
capabilities of GPUs. There are two regards to
distribute computational workload on
heterogeneous GPUs: the constraints of memory
capacity of GPUs and the load balancing among
GPUs. First, in general, the applications running on
GPUs have extremely large data size, thus the
memory capacity of GPUs dominates the workload
distribution of applications. Second, the workload of
application should be distributed to heterogeneous
GPUs based on their computing capabilities for load
balancing and further minimizing the overall
execution time. In this paper, we model
computational workload distribution on
heterogeneous GPUs as a mixed-integer non-linear
programming (MINLP) problem for efficient
workload balancing.

Efficient Workload Balancing on Heterogeneous GPUs using Mixed‐Integer Non‐Linear Programming, Chih‐Sheng Lin et al. / 1176‐1186

Journal of Applied Research and Technology 1177

Consequently, we make the following contributions
in this paper:

•.We model the problem of computational workload
distribution on heterogeneous GPUs as MINLP for
efficient load balancing and further optimize the
overall performance.

•_Based on our formulation of MINLP, our
approach can support various numbers of
heterogeneous GPUs.

•_The overhead of our approach is quite minimum
because only a few number of training samples are
required.

This paper is organized as follows. In Section II,
we review the related work about workload
distribution and load balancing. Section III
describes our proposed method for computational
workload balancing. In Section IV, we present our
evaluation and compare with the previous
methods. Finally, we present concluding remarks
and future work in Section V.

2. Related work

The approaches of CWD on heterogeneous
processors can generally be classified with two
types: static [8-11] and dynamic [12-15]. For static
strategy, Qilin [8] proposes an adaptive mapping
method on heterogeneous parallel processing
platforms (HPPPs) consisting of one CPU and one
GPU. The purpose of Qilin is to make load
balancing on HPPPs, so it maps the partitioned
workload to all processors according to their
capabilities. First in the offline phase, Qilin
samples execution times of a task with different
problem (data) sizes, and then formulating linear
regression as prediction model. Second in online
phase with the new coming problem size, the
optimal partition proportion of workload of task on
CPU and GPU is obtained by the model. All of the
tasks are sampled and recorded in the database.
Qilin searches the database for the partition
proportion while distributing workload on HPPPs.
Luk et al. proposes an effective method for
workload partition, however, the approach only
deals with one CPU and one GPU. The number of
heterogeneous processors is a limitation of CWD
especially on HPPPs consisting of multiple CPUs

and GPUs. Another work related to CWD proposes
a waterfall energy consumption model [9] for
power issue. The authors adopt a task mapping
method, -migration, on GPU. Tasks could be

partitioned into CPU sub-task and GPU sub-task.
In this method, CPU sub-task does not move parts
to GPU because CPU sub-task is not suitable to
GPU. While CPU sub-task and GPU sub-task do
not work in a balanced way, the proportion of

GPU sub-task is migrated to CPU.

As for dynamic strategy, [12, 13] present a
mechanism that distributes workload to processors
uniformly in the initial state (e.g., the first iteration
of a for-loop in a program), and then collects the
execution times of all processors and re-distribute
the workload based on their performance
measured by minimum code intrusion run-time.
After several steps of re-distributing workload, the
system converges to a balanced state. The
dynamic strategy can be regarded as a lightly run-
time profiling, so the most critical issue of this
strategy is how to measure the performance of
each processor with minimum overhead. In
comparison with static strategy, dynamic strategy
cannot reach an accurate proportion of workload
distribution initially for efficient load balancing.
Furthermore, dynamic approach requires data
migrations among processors thus causes
communication overhead than static approach.

In this paper, we propose a MINLP-based approach
for computational workload distribution on various
numbers of heterogeneous GPUs for efficient
workload balancing and optimal performance.

3. Motivation

As the trend of Platform as a Service (PaaS) in
cloud computing, keeping platform balancing and
fully utilized become an important issue for high
performance. However, distributing workload of a
data-parallel application to a computing node
which consists of asymmetric-capabilities
processing elements efficiently is difficult because
the proportion of distributed workload to
processing elements should be based on their
abilities to an application. This phenomenon is very
common especially in a platform consisting of
heterogeneous GPUs for science computing.

Efficient Workload Balancing on Heterogeneous GPUs using Mixed‐Integer Non‐Linear Programming, Chih‐Sheng Lin et al. / 1176‐1186

Vol. 12, December 2014 1178

We now motivate the need of efficient workload
distribution on heterogeneous GPUs with a case
study of matrix multiplication. For the case of
matrix multiplication, it is commonly known that
each element in the product matrix is obtained
by the inner product of one row vector of one
input matrix and one column vector of the other
input matrix. The Eq. 1 formally depicts the
matrix multiplication.

1
[][] [][]* [][]

n

k

C i j A i k B k j

 (1)

We did two motivating experiments with two
heterogeneous GPUs used. In each experiment,
we set the input size of matrix as 3200 and varied
the distribution of workload between GPUs. As the
data parallelism of matrix multiplication C A B ,
A can be divided into smaller matrices by row and
B can be divided into smaller matrices by column
for computing in parallel. Consider the feature of

coalesced access on GPU, we only divided A by
row. Finally, we combine the partial results into C .
We use the CUDA CUBLAS library [16].

Figure 1(a) and 1(b) show the results of matrix
multiplication experiments with different
combinations of GPUs (details of the machine
configuration are given in Section 6). The x-axis is
the distribution of workload between the two
GPUs. The notation “A/B” means A% of workload
mapped to K20c and B% of workload mapped to
GTS250 in Figure 1(a) or GTX690 in Figure 1(b).
The y-axis is the execution time in millisecond. In

Figure 1(a) and 1(b), we can see the optimal
workload distributions are located between 80/20
and 50/50, respectively. This is because of the
asymmetric computing capabilities of GPUs. It is
very clear from these experiments, the optimal
workload distribution depends on the hardware
capability for an application. Assume that the
proportion of workload distributed to a GPU is
either increased or decreased by 10%. For two
GPUs, there are nine combinations to search for
optimal distribution in brute-force style. As for three
GPUs, there are up to sixty three combinations.
There will be a large amount of combinations if the
number of GPUs is increased or the proportion of
distributed workload is more subtle. Therefore, we
propose an efficient method for workload
distribution on heterogeneous GPUs with the
considerations of number of GPUs and accuracy.

4. Compute Unified Device Architecture (CUDA)

Compute Unified Device Architecture (CUDA) is a
GPU programming model developed by NVIDIA.
CUDA provides a programming interface [5] to
utilize the highly-parallel nature of GPUs and hide
the complexity of controlling GPUs. A
programmer specifies a kernel as a series of
instructions and a data set, then the kernel is
executed by thread blocks, each of which consists
of a number of threads as shown in . Precisely, a
thread block is divided into warps of 32 threads.
Each warp is executed by an streaming
multiprocessor (SM) within 4 cycles if the input
data is cached for computing. For utilizing an SM
efficiently, the threads of each warp should
execute the same instructions.

Figure 1(a). Matrix multiplication experiments with K20c and GTS 250.

Efficient Workload Balancing on Heterogeneous GPUs using Mixed‐Integer Non‐Linear Programming, Chih‐Sheng Lin et al. / 1176‐1186

Journal of Applied Research and Technology 1179

Figure 3 shows CUDA programming and
execution model. In the CUDA code shown in the
left part, the serial code such as for file I/O is
executed by CPU. As for the highly data-parallel
code section such as vector addition with large
data, is written as a kernel function which is

executed on GPU launched by the CPU. The
parameters nBlk and nThd represent the number
of thread blocks and the number of threads in
each thread block, respectively. The parameters
nBlk and nThd are called execution configuration
in CUDA programming.

Figure 1(b). Matrix multiplication experiments with K20c and GTX690.

Figure 2. The concept of prgramming and execution in CUDA.

Efficient Workload Balancing on Heterogeneous GPUs using Mixed‐Integer Non‐Linear Programming, Chih‐Sheng Lin et al. / 1176‐1186

Vol. 12, December 2014 1180

5. Methodology

Figure 4 shows the concept of our proposed
approach. For a given problem (data) size of an
application, the goal of workload balancing on
heterogeneous GPUs is to search a set of problem
sizes distributed on GPUs that makes the equal
execution time on GPUs. In other words, the
variance of execution times on GPUs is minimized
as possible. Note that many sets of distributed
sizes can make the variance minimum, however
only one single set of distributed sizes
accumulated to the given problem size.

The flow of our approach for CWD is shown in
Figure 5. Left part is the phase of training run. In
the training run, task with different sizes are run on

n heterogeneous GPUs (1 2, ,..., nG G G) and then

the execution times are collected to build linear
regressions for GPUs. Then, the linear regressions

which are
1 2
, ,...,

nG G GT T T shown in Eq. 3 are

stored in the database as performance model for

reference run. Note that in Eq. 3, ic is the

execution confiugration of parallel program (i.e.,
number of threads in a thread block which is
intriduced in Section 4) and is equal to the size of

data which are distributed to iG because the

distributed size should be equal to the multiples of

execution configuration without any other
techniques (e.g., adding extra paddings to size).

Furthermore, GT and rN indicate the avergae

execution time on GPUs and the referenced
problem size on runtime, respectively. Right part in
Figure 5 is the phase of reference run. In the
reference run, the reference size of task is used as
the input for mixed-integer non-linear programming
(MINLP) with the objective function and the
constraints as shown in Eq. 2 and 3. In Eq. 2, we
take load balancing into our consideration, thus we
adopt the concept of standard deviation and
minimize it. After solving Eq. 2 with Eq. 3 by
MINLP solver, the optimal partition proportion of
workload to each GPU is obtained.

 (2)

 (3)

1 2

2 2 2min[() () ... ()]
nG G G G G GT T T T T T

1 0,1 1,1 1 1

0, 1,

1

1

,

...
,

/ ,

n

i

G

G n n n n

n

G G
i

n

r i i
i

T c m

T c m

T T n

N c m

Figure 3. Programming and execution model of CUDA.

Efficient Workload Balancing on Heterogeneous GPUs using Mixed‐Integer Non‐Linear Programming, Chih‐Sheng Lin et al. / 1176‐1186

Journal of Applied Research and Technology 1181

Figure 4. The concept of proposed approach for efficient workload distribution.

Figure 5. Flow of the proposed approach for CWD on heterogeneous GPUs.

Efficient Workload Balancing on Heterogeneous GPUs using Mixed‐Integer Non‐Linear Programming, Chih‐Sheng Lin et al. / 1176‐1186

Vol. 12, December 2014 1182

6. Evaluations

Table 1 lists the experimental setup of evaluations.
We take four heterogeneous GPUs as our target
platform. Table 2 lists our benchmarks which are
workload divisible and guaranteed that the
computational workload can be partitioned and
distributed to GPUs without any synchronization
for communication in thread level. For MINLP
solver, we adopt Matlab R2012a with the package
of solver BONMIN. In our experiments, we take
overall execution time and imbalance as two
metrics for evaluating approaches. The metric of
imbalance is the standard deviation of execution
times among GPUs. In other words, the less
imbalance among GPUs, the superior distribution
is obtained. We take uniform distribution (UD) and
specification-based distribution (SBD) as the
comparisons in the experiments. UD distributes
workload to GPUs uniformly while SBD distributes
workload to GPUs base on specifications (i.e.,
number of cores multiplies clock frequency).

In the first experiment, we evaluate our approach
for different numbers of GPUs with twelve training
samples. As shown in Figure 6, the overall
execution time reduces while the number of
heterogeneous GPUs increases. As for
imbalance, our approach can efficiently reduce

the variance of execution times among GPUs by
our objective function no matter the number of
GPUs used. Compared to the overall execution
time, our approach constrains the imbalance
under 1.2%.

Figure 7 and 8 show the performance and
imbalance comparison of MINLP-based, UD, and
SBD with twelve training samples, respectively. In
these two experiments, we use GTX 690, C2050,
and GTS250. Note that our main objective is
workload balancing among GPUs.

In Figure 7, the average performance of MINLP-
based is 1.66x and 1.35x speedup to UD and SBD,
respectively. And for load balancing in Figure 8,
MINLP-based outperforms 2.8 and 3.2 times better
than UD and SBD in average, respectively.

The final experiment is to evaluate our approach
on performance with various numbers of training
samples. As shown in Figure 9, the performance of
all benchmarks improve while the number of
training samples increase. In addition, the
performance of most benchmarks converge when
the number of training samples is more than nine.
Therefore, our approach requires minimum
overhead for building regressions and reach the
optimal performance.

 GPU 1 GPU 2 GPU 3 GPU 4
Architecture GTX 690 GTS 250 Tesla C2050 K20c
Core Clock 1.02 GHz 1.62 GHz 1.15 GHz 0.76 GHz

Number of Cores
1536

CUDA cores
128

CUDA cores
448

CUDA cores
2496

CUDA cores
Memory Size 2 GB 1 GB 3 GB 5 GB

Threading API Nvidia CUDA 4.0
Compiler Nvidia C Complier (nvcc)

OS 64-bit Linux Ubuntu 11.04

Table 1. Experimental setup.

Benchmark Description Testing Size Origin

K-means Cluster analysis
76800 points,

dim=34, k=1024
Rodinia [17]

MatrixMul Matrix multiplication 6144 x 6144

CUDA SDK [18]
Convolve

2D separable image
convolution

12288 x 12288 image

Binomial American option pricing 768 options, 2048 steps
BlackScholes European option pricing 180000000 options

Table 2. Benchmark summary.

Efficient Workload Balancing on Heterogeneous GPUs using Mixed‐Integer Non‐Linear Programming, Chih‐Sheng Lin et al. / 1176‐1186

Journal of Applied Research and Technology 1183

Figure 6. Impact on performance and imbalance of matrix multiplication with number of GPUs.

155.98

175.77

235.01

1.937

1.083

1.117

0 50 100 150 200 250

4GPUs (K20,GTX690,C2050,GTS250)

3GPUs (K20,GTX690,C2050)

2 GPUs (K20,GTX690)

Imbalance (ms) Overall execution time (ms)

0

50

100

150

200

250

300

350

400

450

500

MatrixMul K-means Convolve Binomial BlackScholes

O
ve

ra
ll

 E
xe

cu
ti

on
 T

im
e

(m
s) MINLP

Uniform Distribution

Spec-based Distribution

Figure 7. Performance comparison.

Efficient Workload Balancing on Heterogeneous GPUs using Mixed‐Integer Non‐Linear Programming, Chih‐Sheng Lin et al. / 1176‐1186

Vol. 12, December 2014 1184

Figure 9. Impacts on performance with different number of training samples.

Figure 8. Imbalance comparison.

Efficient Workload Balancing on Heterogeneous GPUs using Mixed‐Integer Non‐Linear Programming, Chih‐Sheng Lin et al. / 1176‐1186

Journal of Applied Research and Technology 1185

7. Conclusion

We have proposed MINLP-based method for
computational workload distribution on
heterogeneous GPUs. The proposed method shows
superiority than other methods on workload
balancing. In addition, the proposed method only
requires a few training samples thus remain the
overhead as low as possible. For the number of
heterogeneous GPUs, our method can support more
than two GPUs. We will clarify the relation between
performance and load balance in the future work.

Acknowledgments

We are grateful to the National Center for High-
Performance Computing for computer time and facilities.

References

[1] G.A. Laguna‐Sánchez et al., “Comparative Study of
Parallel Variants for a Particle Swarm Optimization
Algorithm Implemented on a Multithreaded GPU,”
Journal of Applied of Research and Technology, vol. 7,
no. 3, pp. 292-309, 2009.

[2] J.C. Cuevas-Tello et al., “Parallel Approach for Time
Series Analysis with General Regression Neural
Networks,” Journal of Applied of Research and
Technology, vol. 10, no. 2, pp. 162-179, 2012.

[3] Top 500. Available from: http://www.top500.org

[4]_Nvidia Tegra. Available from: http://www.
nvidia.com/object/tegra.html

[5] NVIDIA Corporation, NVIDIA CUDA Programming
Guide, 2009.

[6] J.E. Stone et al., “OpenCL: A Parallel Programming
Standard for Heterogeneous Computing Systems, “
Computing in Science and Engineering, vol. 12, no. 3,
pp. 66-73, 2010.

[7]-Microsoft, DirectCompute. Available form:
http://www.microsoft.com/en-
us/download/details.aspx?id=27731

[8] C.-K. Luk et al., "Qilin: Exploiting Parallelism on
Heterogeneous Multiprocessors with Adaptive Mapping,"
in the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture. MICRO-42, pp. 45–55, 2009.

[9] W. Liu et al., "A Waterfall Model to Achieve Energy
Efficient Tasks Mapping for Large Scale GPU Clusters,"
in the IEEE International Symposium on Parallel and
Distributed Processing Workshops and Phd Forum,
IPDPSW, pp. 82–92, 2011.

[10] V.J. Jimenez et al, "Predictive runtime code
scheduling for heterogeneous architectures," in the 4th
International Conference on High Performance
Embedded Architectures and Compilers, HiPEAC, pp.
19–33, 2009.

[11] S. Ghiasi et al., "Scheduling for heterogeneous
processors in server systems," in the 2nd Conference on
Computing Frontiers, pp. 199–210, 2005.

[12] A.P.D. Binotto et al., "Towards dynamic
reconfigurable load-balancing for hybrid desktop
platforms," in the IEEE International Symposium on
Parallel & Distributed Processing Workshops and Phd
Forum, IPDPSW, pp. 1–4, 2010.

Efficient Workload Balancing on Heterogeneous GPUs using Mixed‐Integer Non‐Linear Programming, Chih‐Sheng Lin et al. / 1176‐1186

Vol. 12, December 2014 1186

[13] I. Galindo et al., "Dynamic load balancing on
dedicated heterogeneous systems," In Recent Advances
in Parallel Virtual Machine and Message Passing
Interface, Springer, pp. 64–74, 2008.

[14] C. Augonnet et al., "StarPU: a unified platform for
task scheduling on heterogeneous multicore
architectures," Concurrency and Computation: Practice
and Experience, pp. 187-198, 2011.

[15] D. Clarke et al., "Dynamic load balancing of parallel
computational iterative routines on highly heterogeneous
HPC platforms," Parallel Processing Letters, pp. 195-
217, 2011.

[16] NVIDIA. CUDA CUBLAS Reference Manual, June
2007.

[17] S. Che et al., "Rodinia: A benchmark suite for
heterogeneous computing," In the IEEE International
Symposium on Workload Characterization, IISWC, pp.
44–54, 2009.

[18] Nvidia, GPU computing SDK. Available from:
https://developer.nvidia.com/gpu-computing-sdk.

