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ABSTRACT

A problem of packing a limited number of unequal circles in a fixed size rectangular container is considered. The aim
is to maximize the (weighted) number of circles placed into the container or minimize the waste. This problem has
numerous applications in logistics, including production and packing for the textile, apparel, naval, automobile,
aerospace and food industries. Frequently the problem is formulated as a nonconvex continuous optimization problem
which is solved by heuristic techniques combined with the local search procedures. A new formulation is proposed
based on using a regular grid approximated the container and considering the nodes of the grid as potential positions
for assigning centers of the circles. The packing problem is then stated as a large scale linear 0-1 optimization
problem. The binary variables represent the assignment of centers to the nodes of the grid. The resulting binary
problem is then solved by the commercial software. Two families of valid inequalities are proposed to strengthening
the formulation. Nesting circles inside one another is also considered. Numerical results are presented to demonstrate
the efficiency of the proposed approach.

Keywords: Circle Packing, Integer Programming, Large Scale Optimization.

RESUMEN

Se considera el problema de empaquetar un numero limitado de circulos de radios diferentes en un contenedor
rectangular de dimensiones fijas. El objetivo es maximizar el niumero (ponderado) de circulos dentro del contenedor o
minimizar el desperdicio de espacio dentro del mismo. Este problema tiene numerosas aplicaciones dentro de la
logistica, incluyendo la produccidon y empaquetado para la industria textil, naval, automotriz, aeroespacial y la
industria de alimentos. Frecuentemente, el problema es formulado como un problema de optimizacién continua no
convexo que es resuelto con técnicas heuristicas combinadas con procedimientos de busqueda local. Se propone
una nueva formulacién basada en el uso de una malla regular que cubre el contenedor y donde se considera a los
nodos de la malla como posiciones potenciales para la asignacién de centros de los circulos. El problema de
empaquetamiento se escribe entonces, como un problema de optimizacién 0-1 a gran escala y es resuelto con
software comercial. Resultados numéricos son presentados para demostrar la eficiencia del enfoque propuesto y
realizar una comparacion con los resultados conocidos.

1. Introduction

Packing problems constitute a family of natural
combinatorial optimization problems, which occur
in many fields of study such as computer science,
industrial engineering, logistics and manufacturing
and production processes. For instance, several
real life industrial applications require the allocation
of a set of pieces to a larger standardized
rectangular stock unit. They generally consist of

packing a set of items of known dimensions into
one or more large objects in order to minimize a
certain objective (e.g. the unused part of the
objects or waste).

The circle packing problem is a well studied
problem [12] whose aim is the packing of a certain
number of circles, each one with a fixed known
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radius (not necessary the same for each circle)
inside a container. The shape of the container may
vary from a circle, a square, a rectangular, etc.

This problem has been applied in different areas,
such as the coverage of a geographical area with
cell transmitters, storage of a cylindrical drums into
containers o stocking them into an open area,
packaging bottles or cans into the smallest box,
planting trees in a given region as to maximize the
forest density and the distance between the trees,
and so forth [2,5,8]. Other applications one can
find in the motor cycle industry, circular cutting,
communication networks, facility location and
dashboard layout [5,10,11].

In this paper we address the problem of packing a
set of circular items in a rectangular container.
There are two principal types of objectives that
have been used in the literature: a) regard the
circles (not necessary equal) as being of fixed size
and the container as being of variable size and b)
regard the circles and the container as being of
fixed size and minimize “waste”.

Examples of the first approach include [17]:

» For the square container minimize the length of
the side and hence minimize the perimeter and
area of the square;

* Minimize the perimeter of the rectangle;
» Minimize the area of the rectangle;

» Considering one dimension of the rectangle as
fixed, minimize the other dimension. Problems of
this type are often referred to as strip packing
problems (or as circular open dimension problems).

For the second approach various definitions of the
waste can be used. The waste can be defined in
relation to circles not packed (e.g. the number of
unpacked circles or the perimeter/area of
unpacked circles), or introducing a value
associated with each circle that is packed (e.g.
area of the circles packed), etc.

Many variants of packing circular objects in the
plane have been formulated as nonconvex
(continuous) optimization problems with decision

variables being coordinates of the centres. The
nonconvexity is mainly provided by no overlapping
conditions between circles. These conditions
typically state that the Euclidean distance
separating the centres of the circles is greater than
a sum of their radii.

The nonconvex problems can be tackled by
available nonlinear programming (NLP) solvers,
however most NLP solvers fail to identify global
optima. Thus, the nonconvex formulation of
circular packing problem requires algorithms which
mix local searches with heuristic procedures in
order to widely explore the search space. It is
impossible to give a detailed overview on the
existing solution strategies and numerical results
within the framework of a single short paper. We
will refer the reader to review papers presenting
the scope of techniques and applications for the
circle packing problem (see, e.g. [1,4,17,18] and
the references therein).

In this paper we propose a new formulation for
approximate solution of circular packing problems
using a regular grid to approximate the container.
The nodes of the grid are considered as potential
positions for assigning centers of the circles. The
packing problem is then stated as a large scale
linear 0-1 optimization problem. Two classes of
valid inequalities are proposed to strengthening
the formulation. Nesting circles inside one
another is also considered. Numerical results are
presented to demonstrate efficiency of the
proposed approach.

To the best of our knowledge, the idea to use a
grid was first implemented by Beasley [3] in the
context of cutting problems. This approach was
recently applied in [9,15,16] for packing problems.
This work is a continuation of [15].

2. The model

Suppose we have non-identical circles C, of
known radiusR, ,ke K ={1,2,..K}. Let at most
M, circles C, are available for packing and at
least m, of them have to be packed. Denote by
iel={1,2...,n} the node points of a regular grid
covering the rectangular container. Let F < I be
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the grid points lying on the boundary of the
container. Denote bydij the Euclidean distance

between points iand j of the grid. Define binary
variables x! =1 if centre of a circle C, is assigned

to the point i; x/ =0 otherwise.

In what follows we will distinguish two cases of
circle packing, depending on whether nesting
circles inside one another is permitted o not. To
the best of our knowledge, nesting problem was
first mentioned in [10] in the context of packing
pipes of different diameters into a shipping
container. Comparing to the standard packing,
packing with nesting is much less investigated.

Consider first the problem without nesting. In order
to the circle C, assigned to the point ibe non-

overlapping with other circles being packed, it is
necessary that xj. =0 for jel,leK, such that

fixed i,k let
be the

d;<R,+R,. For any
Ny ={j.l:i#j,d; <R +R}. Let n,
cardinality of N, :n, =|N,|. Then the problem of
maximizing the area covered by the circles can be
stated as follows:

Then the problem of maximizing the area covered
by the circles is as follows:

max 7y Y Rix! (1)
iel keK

mkSle.kSMk, kek, (2)
iel

> xf<l, iel\F (3)

kekK

kafémi;ldij, iel,kek, (4)
Jje ;

xf+x <l foriel,keK,(jl)eN, (5)

x[ke{O,l}, iel,kek (6)

Constraints (2) ensure that the number of circles
packed is betweenm, and M, ; constraints (3) that
at most one centre is assigned to any grid point;

constraints (4) that the point i can not be a centre
of the circle C,if the distance from ito the

boundary is less than R, ; pair-wise constraints (5)

guarantee that there is no overlapping between the
circles; constraints (6) represent the binary nature
of variables.

Note that for the particular case of packing equal
circles of radius we may simply reduce the
dimensions of the container by and then apply the
above model to a smaller container dropping the
boundary conditions (4).

We may expect that the linear programming
relaxation of the problem (1)-(6) provides a poor
upper bound for the optimal objective. For example,
for K=1 and suitably chosen M,,m,, set

x! =0.5for all i e 1. This solution is feasible to no

overlapping constraints (5) and corresponding
objective value grows linearly with respect to the
number of grid points.

To tightening the LP-relaxation of (1)-(6) we
propose two families of valid inequalities. The first
ensure that no grid point is covered by two
circles, while the second guarantee that there is
at most one centre assigned to the area covered
by a circle.

To present the first family, define matrix [aﬂas
follows. Let a; =1 ford, <R, ;a; =0 otherwise.

By this definition, a,f =1if the circle C, centered

at icovers point j. The following constraints

ensure that no points of the grid can be covered
by two circles:

ZZaifxfsl, iel (7)

keK jel

Note that (7) is not equivalent to non-overlapping
constraints (5). Constraints (7) ensure that there is
no overlapping in grid points, while (5) guarantee
that there is no overlapping at all. Similar to set-
covering formulations it is natural to refer to (7) as
point-covering constraints.

The second family of inequalities is stated as
follows:
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x,.k+ z fol,forie],keK. (8)

Jidy <Ry

To demonstrate that (8) is valid for the problem (1)-

(6) assume that xf =1 in (8). That is the centre of

the circle C, is assigned at i. By (8) we have
z x;fgo,foriej’kel{and then it follows that
Jidy <Ry

x; =0for j:d; <R, . That is there are no other

centres assigned to points inside the circle centred

at ;. For xik =0 we have Z xjf <1. This means
j:dU<Rk

that among all grid points covered by the

(imaginary) circle centred at i, at most one point

can be assigned as a centre. This is true since the

distance between any pair of these points is less

than 2R, and assigning the centres of C, violates

non overlapping constraints.

To consider nesting circles inside one another, we
only need to modify the non-overlapping
constraints. In order to the circle C, assigned to

the point i be non-overlapping with other circles
being packed (including circles places inside this

circle), it is necessary that xj. =0 for jel,lekK,
such that R, — R, <d, <R, + R,. Note that the later

condition is always fulfilled for R, <R,(d,.j >0),

such that only smaller circles can be placed inside
a given circle. For fixed i,k let

Q, ={j.l:i#j,R ~R <d,<R +R}. Then the

problem of packing circles with nesting can be
stated as follows:

max z z whx!

iel keK

subject to

mkSinkSMk, kek, 9)

iel

D xi<l, iel\F

keK
k . .
R x; Smandij, iel,kek,
JE

xl.k-i-xj.ﬁl, foriel, kek, (j,))eQ,

In the problem (9) the weighting coefficients wf
may be associated with the area of circles and/or

represent the relative importance of subsets of
the container.

Note that inequalities (7), (8) in general are not
valid for the problem (9).

3. Computational results

A rectangular uniform grid was used in numerical
experiments, such that all grid points are defined by
the grid points on its edges. Let L be a horizontal
dimension (length) and 7 be a vertical dimension
(width) of the container; M be a number of the
equidistant grid points on the horizontal edge of the
container, while N be a number of the equidistant
grid points on its vertical edge. Hence the grid has
M x N node points(n=M xN).

All optimization problems were solved by the
system CPLEX 12.5. The runs were executed on a
PC Toshiba Satellite L735, Intel Core I-5, 2.5 Ghz
and 8Gb RAM.

In the first part of our numerical experiment we add
valid inequalities (7) or (8) or both to the problem
(1)-(6) and compare corresponding LP-relaxations.
Five different relaxations  were studied
corresponding to constraints used/droped:

 LP1: only original constraints (2)-(5);
* LP2: constraints (2)-(5) and (7);

* LP3: constraints (2)-(5) and (8);

* LP4: constraints (2)-(5), (7) and (8);
* LP5: constraints (2)-(4), (7) and (8)

Ten instances with equal circles were used to
compare relaxations. The first 5 instances were the
same as in [9, Table 3]: L=3, W=6 and
radiuses 0.5, 0.625, 0.5625, 0.375 and 0.3125
correspondingly. The second 5 instances were from
[6] with LxW | R defined as follows: 100x100, 13;
100x200, 25; 100x100, 18; 100x200, 31; 120x80,
21. In all instances the objective (1) was to
maximize the number of circles packed.
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P LP1 LP2 LP3 LP4 LP5
1 118 | 2964.49 | 18.179 | 18.123 | 18.123 | 18.123
2 | 10 | 2722.493 | 10.049 | 10.003 | 10.003 | 10.003
3 | 13 | 4788.501 | 13.957 | 13.957 | 13.957 | 13.957
4 | 32 | 2768.501 | 34.659 | 34.535 | 34.535 | 34.535
5 | 45 | 4178.501 | 50.946 | 50.763 | 50.763 | 50.763
6 | 13 | 1799.996 | 14.462 | 14.425 | 14.425 | 14.425
7 8 | 1799.996 8 8 8 8
8 6 | 1799.996 | 6.633 6.632 6.632 6.631
9 3 | 1799.996 | 3.032 3.001 3.001 3.001
10 | 4 | 1799.996 | 4.367 | 4.359 | 4.359 | 4.359

Table 1. LP bounds for packing equal circles.

The results of the numerical experiment are
presented in Table 1. Here the second column
presents the integer solution of the problem (1)-(6)
while all the next columns give the optimal
objectives of the corresponding relaxations.

As we can see form Table 1, valid inequalities
improve significantly LP1, continuous relaxation
of the original problem, and provide a very tight
bound for the optimal objective of the original
integer problem IP. In many cases rounding
below the corresponding rational bound results in
the optimal objective value. Note that if we drop
the pair-wise non-overlapping constraints (5) and
use both families of valid inequalities (relaxation
LP5), the bound is still good. We see that the
values of LP3-LP5 are very close to each over.
From computational point of view the relaxation
LP5 is less expensive since the pair-wise non-
overlapping constraints (5) are relaxed.

In the second part of the experiment packing of
different circles with nesting was studied. We fixed

the dimension of the container (L =W =60),
radiuses of the circles (R, =12,R,=2,R, =4,

R,=0.7) and vary the bounds m,,M, for the
circles to be packed.

The data for 6 instances of the problem (9)
considered in the experiment are presented in
Table 2 together with the number of the circles
packed and corresponding CPU time. Empty cells
in this table correspond to the case with no
lower/upper limits for the circles to be packed. All 6
problem instances were solved using the grid
41x41 and with mipgap = 15% for running CPLEX.

circles

#| k| m | M, packed CPU (sec.)
1 3
2 57

1 3 14 43207.48
4 790
1 5 4
2 30 30

2 3 30 28 17744.27
4 120 120
1 4 5 5
2 25 30 30

3 3 25 30 30 29839.04
4 50 120 120
1 3 3
2 30 37

4 3 25 25 43207.769
4 80 789
1 6 5
2 35 35

5 3 35 25 19639.091
4 200 200
1 3 6 4
2 30 35 35

6 3 25 35 25 43207.815
4 80 200 200

Table 2. Problem instances and numerical
results for packing with nesting.

Figure 1. Packing pattern for instance 1.

The objective was to maximize the total area of the
circles packed.
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Figure 3. Packing pattern for instance 3.

As we can see from Table 2 the instances with
lower bounds for the number of circles to be
packed are mostly expensive computationally.

Figures 1-6 present packing configurations for the
corresponding instances. We can see that varying
the limits for the number of circles to be packed
changes significantly the packing configuration.

4. Conclusions

The plane circle packing problem was
approximated using integer formulation based on a
grid approximation of a container.

Q00
X
o0

Figure 5. Packing pattern for instance 5.

The case of nesting circles inside one another was
considered. This problem was mentioned in [10] in
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the context of packing pipes of different diameters
into a shipping container and has not received
much attention so far.

o7 OB %

O
0

' |
o

Figure 6. Packing pattern for instance 6.

The presented approach can be easily generalized
to three (and more) dimensional case and to
different shapes of the container, including
irregulars.

For the case without nesting two families of valid
inequalities were introduced to strengthening the
formulation. Numerical experiment was presented
to demonstrate the efficiency of the proposed
approach.

An interesting topic for the future research is to
study the use of Lagrangian relaxation [14] or
decomposition techniques [7] to cope with large
dimension of the problem formulation. The other
direction for future research is using metaheuristic
approaches [13].
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