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ABSTRACT

Effective planning of a transportation network influences tactical and operational activities and has a great impact on
business. Planning typically considers multiple aspects such as variable transportation costs, various levels of
customer service offered, security of goods, and traveling time. These aspects often vary with time. Although the
minimum cost flow problem is a widely seen approach to configure a transportation network, there is no much work
considering variations on arcs; even more, the problem with varying nodes has hardly been addressed. In this work is
developed a mathematical model for the multi-objective minimum cost flow problem, applied in networks with varying
attributes on arcs. The model finds the set of non-dominated solutions for a multi-objective stochastic network having
variations in attributes of its arcs and nodes, such as cost or transportation time. A modified version of the two-stage
method was used to address the stochastic nature of the problem combined with the epsilon-constraint method, which
is used for building the set of non-dominated solutions.

This paper presents the main features of the model, the theoretical bases and a computational implementation.
Experiments were applied in a transport network for the exportation market of ornamental flowers as perishable goods
from Mexico to the United States, which considered variations in border crossing times.

Keywords: Multi-objective optimization; Minimum cost flow; stochastic network; perishable goods.

RESUMEN

Una planeacion eficaz de una red de transporte tiene un gran impacto en las empresas, al considerar multiples
aspectos como costos de transporte, seguridad de las mercancias, tiempo de viaje y demas niveles de servicio
ofrecidos. Atributos que frecuentemente varian con el tiempo. Aunque el problema de flujo a costo minimo (MCF) ha
sido ampliamente visto para configurar redes de transporte, no hay muchos trabajos que consideren variaciones en
los arcos. En este trabajo se desarrolla un modelo matematico para el problema MCF multi-objetivo, aplicado en
redes con atributos variantes en los arcos. EI modelo encuentra la Frontera Pareto para una red estocastica con
variaciones en los atributos de costo o tiempo de transporte. Para enfrentar la naturaleza estocastica del problema
se utiliza Descomposicion de Benders para el problema estocastico de dos etapas, posteriormente se conjunta con el
método e-restriccion, que es utilizado para la construccion del conjunto de soluciones no dominadas.

Este articulo presenta las principales caracteristicas del modelo, las bases teéricas y una implementacion
computacional. Los experimentos fueron aplicados en una red de transporte para el mercado de exportacion de flores
ornamentales como productos perecederos desde México a Estados Unidos, considerando las variaciones en los
tiempos de cruce de fronteras.

1. Introduction

According to the Strategic Technology
Observatory of the Tecnologico de Monterrey in

agricultural sector, an opportunity is in the
planting of ornamental flowers. Planting of

Mexico [1], the State of Mexico has shown growth
rates below the national average in recent years,
despite this, the agricultural sector showed an
average annual growth of 3.1% to 2011. In the

chrysanthemum, rose and carnation in the south
and east of the state represents the 19.33% of
the total value of production using only 0.38% of
the sown area.
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While is globally recognized that Mexican flower
quality is excellent, the main challenge for all
actors involved in the floriculture industry is to take
them to the homes, and promote consumption as a
frequent habit.

Proximity of Mexico to the United States, the main
buyer of flowers outside Mexico, gives the country
a competitive advantage in this market relative to
its competitors like Colombia and Ecuador,
allowing better travel times for trucking transport
and the resulting cost savings compared to air
mode, a condition that can only be used by
Mexican producers [2, 3].

Despite its contribution to the transport network
design, the Minimum Cost flow problem (MCF) is
far from adapting to the needs of transport that
companies may have, which routes need to select
suppliers from different objectives, not only from
choosing the lowest cost or the shortest time
separately. In various applications in real problems
of route selection are considered other targets, so
that the identification of a unique solution that is
better to others with respect to all objectives is
often impossible, rather than a single solution is
sought a set of Pareto optimal solutions. This
problem is known as Multi-Objective Minimum Cost
Flow (MMCEF).

In MMCF, [4] found that the majority of the
approaches are of theoretical interest. It was also
found that although for continuous MMCF,
approximate algorithms for finding a representative
set of all efficient flows generate good quality
results, the appropriate approach to the entire case
(MMCIF) has hardly been addressed by current
literature in [5, 6, 7, 8, 9].

Unlike deterministic models, this paper considers
variations in transportation time attribute on arcs
corresponding to the crossing borders. In this arcs
were considered three possible states for crossing
times (low, medium, high) with its respective
probability of occurrence. The resulting problem
grows exponentially according to the number of
variant arcs with respect to deterministic model.

The kind of problem to be solved relates to the
determination of an efficient curve that provides
various appropriate routes optimizing interest
objectives for the distribution of perishable goods

in constrained networks, where the time
dependence and the stochastic nature of attributes
on arcs and capabilities are explicitly mentioned.
The resulting model will serve to solve the Multi-
objective Minimum Cost Flow problem for
stochastic networks (SMMCF).

In [10] was proposed to test this model the
International Trade U.S. - Mexico for perishable
products, in a particular problem of exportation
from a Mexican region to destinations in the U.S.,
where there are variations in arc attributes such as
travel time, mainly due to delays in nodes. This is a
problem of multi-objective minimum cost flow, with
time variations in arcs and in certain nodes, which
may result from the congestion, it is applied to the
case of flower export market, having its origin in
the State of Mexico and Puebla, and identifying
different possible destinations in the U.S. It's about
finding the flows of merchandises minimizing costs
in both, monetary and time terms.

In Section 2, concerning the description of the
problem, will deal with the nature of the problem to
solve, which by its nature is considered a minimum
cost flow problem with multiple objectives and
stochastic variations in their arcs. To deal with
variations in arcs, is proposed the use of the two-
stage method, which will be solved by Benders
decomposition, these techniques are described in
Section 3. Later, in Section 4 is developed a model
to deal with the stochastic multi-objective minimum
cost flow problem. Finally, Section 5 discusses the
work done, explaining the application instance and
the characteristics of the developed program for its
solution, presented difficulties and solutions found.

2. Multi-objective minimum cost flow problem

According to [11] the group of problems currently
known as transport problems was first studied in
[12]. In turn, another seminal work [13] described
the standard form of transport problem. Here was
proposed a method for finding the fixed points in
this border, called vertices, to generate better
solutions iteratively expressing the objective
function in terms of zero-valued variables.

Much of the development known as minimum cost
flow problem (MCF) and network-based methods
are attributed to [14]. MCF has been studied by
many authors as in [15, 16, and 17].
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A multi-objective linear problem (MOLP — multi
objective linear problem) is given by

Min Cx
st xeX @)

where C= (c',..., ¢®) with rows C',... , C” denotes a
linear matrix p x m

In MOLP conflicting objective functions are
assumed, i.e., excluding the existence of an ideal
solution x € X that minimizes all objectives p
simultaneously. According with [18, 19 and 8] a
solution y' € Y is not dominated if no other solution
yeYsuchthaty<y'andy=y"

There is a variety of available methods to solve
multi-objective problems; many of them involve
converting this in one or a series of single-
objective problems [20, 21, 22, 23 and 24].

g-constraint method is proposed to solve the
MMCF problem because, within scaling methods is
the best suited to mixed integer programming
problems and guarantees to obtain all Pareto
border points (as a trade-off with run time).

2.1 g-constraint method

g-constraint method was proposed in [25, 26],
where this method is based on an escalation
where one of the objective functions is bounded by
additional restrictions

Min f(x)
s. t.
()
fi(X) <g, ik
xeX

Where & = (811 €2, &K1, Ek#1, SP)T GRP-‘1 and
ke{1,...,p}. The feasible set of the problem is given
as:

X& = {xe{Xfi(x)< &, i#k
Theorem 1. x* is an efficient solution of a
biobjective problem if and only if g, such that x
solves P4(g;) or g4 such that x* solves Py(g4).

Theorems 1 has been demonstrated for general
multi-objective problems in [25]. This means that
efficient solutions can always be found by e-
constraint method.

Theorem 1 indicates that, for every efficient
solution x*, can be found a g; such that x* can solve
P1(g) or Pa(g), with this, the complete Pareto
frontier can be found by solving e-constraint
problems.

According to [27], calculating the range of the
objective functions on the efficient set is not a
trivial task, while the best value is easily accessible
as the individual optimum, the worst value in the
efficient set (nadir value) is not. The most common
approach is to calculate a set of these ranges from
a trade-off table (the table with the results of
individual optimization of the objective functions p),
where nadir value is usually approximated with the
minimum column.

In [27] was proposed a transformation of equality
constraints on the objective function by explicitly
incorporating the appropriate slack. At the same
time, the sum of these slack variables is used as
secondary terms (lower priority) in the objective
function to force to only produce efficient solutions.
The new problem becomes:

Min f((x) + 3 (s;) i#k
s.t.

fi(x) + s <g; iz k (3)
xeX

where 6 is a small number (usually between 10°
and 10®)

In [27] was also performed and demonstrated the
following proposition: the above formulation of the
e-constraint method produces only efficient
solutions (avoiding the generation of weakly
efficient solutions).

g-constraint method works predefining a virtual grid
in the objective space and solving different single
objective problems restricted in each grid cell. All
of Pareto optimal solutions can be found only if
grid is fine enough that at most one Pareto optimal
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solution is found in every cell. For a general
problem, the choice of the grid size parameter is
therefore very difficult besides, but influences also
the execution time of the algorithm.

The steps to follow in the e-constraint method are:
Algorithm 1. e-constraint method

1. Set k1 (k) as the first target to consider, km1(k)
to other objectives.

2. Set kk(k) to the objective function as a constraint
in a single expression, this is done with objective
functions different to k1(k).

3. Optimize the first objective and the others are
set as constraints.

4. Generate the trade-off table with lexicographic
optimization.

5. Release the fixed values of the objective
functions for a new iteration.

6. Define different grid intervals for different targets.

7. Walk the grid points and take shortcuts, if the
model becomes feasible.

8. Keep going on the net.
9. Get unique solutions from the point file.
3. Consideration of changes in arcs

To solve problems with variations in the arcs is
proposed the two-stage method [28].

According to [29] a linear stochastic two-stage
program with stochastic fixed resource is a two-
stage program with the following form:

min, cT x + IE[Q(x, &)]
s.t. Ax=b, x20 (4)

where Q(x, £) is the optimum value of the second
stage problem.

min, q(w)T y
s.t. T(w)x + Wy =h(w), y=0 (5)

The second stage problem depends on the data ¢
(w) = (q (W), h (W), T (w)), which elements can be
random, while the matrix W is known beforehand.
Matrices T(w) and W are called matrices of
technology and resource, respectively.

The expectation IE [Q (x, §)] is taken with respect
to the random vector § = (w) whose probability
distribution is assumed to be known. The above
formulation was originated in [30].

Whereas the optimal solution y* = y*(w) of the
second stage of (5) may depend on the random
data ¢ = € (w), and hence is random, it has

Q(x, & (w)=q (W) Ty" (w). (6)

If the random data have a discrete distribution with
a finite number K of possible realizations ¢k = (gk,

hk, Tk), k = 1, ... , K, (scenarios) with their
corresponding probabilities p(k). Then

IETQ(x, §)] =nk pxQ(X, k), (7)
where

Q(x, &) = min

quyk: Tix + Wy=hy, yx=20

Therefore, the problem of two stages can be
formulated as a big linear problem:
min ¢’ x +nxpkq k i

s.t. Ax=b
TkX+ Wyk:hk
X20,y,20,k=1,...,K 8)

Linear problem (8) has a concrete block structure
that makes it susceptible to various decomposition
methods.

The above numerical approach works reasonably
well if the number of scenarios is not too large.
However, if the random vector ¢ has m
components independently distributed with only 3
possible realizations. Then the total number of
different scenarios is K = 3™. That is, the number of
scenarios grows exponentially with the number m
of random variables. In that case, even for a
moderate number of random variables, for

Journal of Applied Research and Technology




Efficient Frontier for Multi-Objective Stochastic Transportation Networks in International Market of Perishable Goods, A. Bustos et al. / 654-665

example m = 100, the number of scenarios
becomes so large that even modern computers
cannot deal with the required calculations. To deal
with exponential growth in the number of scenarios
is proposed using Benders decomposition method.

3.1 Benders Decomposition

A major concern regarding the building and solving
of optimization problems is that the computational
effort required to solve such problems grow
significantly with the number of variables and
constraints. The traditional approach, which
involves making all decisions simultaneously by
solving a monolithic optimization problem quickly,
becomes intractable because of the increase in the
number of variables and constraints. The multi-
stage algorithms for optimization, such as Benders
decomposition [31], have been developed as an
alternative approach to palliate this problem.

Unlike the traditional approach, these algorithms
split the decision making process in several
stages. In Benders decomposition, a main problem
is solved in its first stage for a subset of variables,
while values of the remaining variables are
determined by a subproblem of the second stage,
given the values of variables of the first stage. If
the subproblem determines that the proposed
decisions in the first stage are not feasible, it
generates one or more constraints and added to
the main problem, which is then solved. Thus, a
series of smaller problems are solved instead of
one big problem, which can be justified by the
increase in computational resource requirements
associated with the solution of larger problems.

The MIP problem can be set as [32]:

min ¢'x + ny

Ax + By >b

yey (9)
x 20

If y is attached to a feasible integer configuration,
the resulting model to solve is:

min ¢'x
Ax >b — By’ (10)

x>0

Full minimization problem thus can be written as:

Min [fry + min wo{c'x | Ax= b — By}] (11)
Then, the dual internal LP problem is:

Max (b — By’)" u

Alu<c (12)
u>0

Under Benders decomposition two distinct

problems are solved. A major problem which has
the form:

min ¥z

z>f y+(b-By) uk, k=1,...K

(b-By) u,<0;1=1,....L (13)
yeY

and subproblems with the form:

max,f'y + (b-By) u

ATus<c (14)

u=0

The dual subproblem is a linear programming
problem, and the main problem is a pure IP
problem (no continuous variables). Benders
Decomposition for MIP is of particular interest
when the Benders subproblems and the relaxed
master problem are easy to solve, while the
original problem is not.

4. Models

As mentioned, in this paper is proposed to add the
component of variation in attributes of certain
nodes at the multi-objective minimum cost flow
problem. Since it has been seen that in current
state of art there are few studies that take into
account changes in attributes on arcs and this is
compounded if there are problems with variations
of attributes in nodes.

The proposed model to work with multi-objective
minimum cost flow problems adapted to deal with
variations in the attributes of the arcs and nodes,
was based on the classic MMCF models. With this,
the two-stage model applied to a MCF problem
would be as follows:
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i Set of node indices of arc source, ieV
j Set node indices of arc destination, jeV

¢’ Relative cost to use the arc from i to j in
accordance with criterion p, p=1,2,...,r, (i,j)eA

x;j Flow from i to j nodes, i,jeV

b; Capacity/ demand of node i, ieV

Elci” ] Expected value of relative cost to use the
arc from i to j in accordance with the criterion p,
p=1,2,...,r, (i,j)eA

P, Probability of scenario q, g=1,2,...,Q

qujp Relative cost to use the arc from i to j in
accordance with the criterion p in a scenario q,
p=1,2,....r, (i,j)eA, g=1,....Q

Plcgi® ] Probability of cost value for using arc (i)
for criterion p on scenario q, p=1,2,....,r, (i,j)eA,
g=1,...,.Q

Xqj Cargo flow from | to j for scenario q, (i,j)€A,
g=1,...,.Q

minZ =( ) E[C;]X,..E[C/1X))

(@i.jeV

(5, PICL X,y T, PICLIX, ) (15)
s.t.
inj _Zk:Xﬂ*'inu_Zn:Xqﬂ:bf (16)

j=1 Jj=1 J=k+1 Jj=h+l

For all i=1,...,g (second stage)

i= 1,...k in deterministic arcs

i= k+1,...m in stochastic arcs

g=1,...,Q scenarios

Xjj 20

Xqij 20

The first set of terms in (15) represents the

expected values already known and which fall in
the first stage of the problem. This has the classic

form of the multiobjective minimum cost flow
problem as in (1), where the objective is to
minimize the cost of for the p attributes of sending
the merchandises from a set of origins to a set of
destinations. This set includes the objectives for
which all values are deterministic and the known
values of stochastic objectives. The flow
conservation constraints on nodes connected by
arcs with known values are defined in first group of
terms of (16).

On the other hand, the second set of terms in (15)
represents the data of which there is uncertainty in
the values it takes, but where are known both the
possible values that could be taken as the
probability that these values are presented.
Formulation is similar to first group of terms, but
considering the probability of each scenario.
Second group of terms in (16) refers to the flow
conservation in those nodes connected by arcs
with non-deterministic values, where probability of
scenarios affects the expected flow.

Selected methodology includes the two-stage
method to develop scenarios that could arise
depending on the state of time on the variant arcs
and their respective probabilities. Once scenarios
are generated, the method applies s-constraint to
solve the MMCF problem, using Benders
decomposition in stochastic arcs as in Figure 1.

It is noteworthy that objectives which all arcs are
deterministic are optimized to generate the trade-
off table as described in Section 2. To generate the
trade-off table should minimize the first goal and
the resulting value is used as a restriction to
minimize the second objective, this procedure is
repeated but the second objective is minimized at
first and it is used as a constraint in minimizing the
first objective.

To estimate each grid value on all objectives with
stochastic arcs, Benders decomposition is applied
in step 9 of Algorithm 1 when k1(k) corresponds to
objectives with variations in arcs.

5. Application

The problem is exemplified by a dealer of flowers
located in Tenango, State of Mexico and
Tecamachalco, Puebla. Its main client is in
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Chicago, lllinois, so that the transport of flowers is
of great importance.

The goal is to bring flowers on a weekly basis, so
is being looking to choose the best route. To
illustrate the process were considered three
transport companies on the Mexican side, which
can use two different types of transport units:

carrier Vehicle description

A C2

B C2

C T3S2 53" trailer

Each path is characterized by the transport

provider company, the type of vehicle used by the

Begin

¥

Create payoff table (lex fk(x), ford

all k=1.....p)

¥
Define minimum values Ibk, for
k=2.....p

¥
Calculate ranges (ra,..,ry)

¥
Define the number of gridpoints g

(k=2,....p) for all p-1 ranges of objective

functions
v
Inicialize counts i,...,i.1,1,=0,
neff=0
¥
=i+l -

v
Solve

problem p

operator, the transshipment center (or if is a direct
ride to the border) and the border crossing point
used. This instance considers only one transport
service provider in the United States.

In turn, can be used four transfer centers which are
located in Queretaro, San Luis Potosi,
Aguascalientes and Zacatecas, and four border
crossings: Colombia in Nuevo Leon, and Nuevo
Laredo, Reynosa and Matamoros in Tamaulipas.

At each border crossing there is the option of hiring
a specialized carrier to cross the merchandise from
one side to another of the border (transfer), or do
so directly by a Mexican or American vehicle
having the proper permits to cross the border.

Obj determistic min
Obj stochastic: use
Benders Decomposition

END

Obj determistic min ' X
'Obj stochastic: use

Benders Decomposition

v

factible? ~NO,

ip=gp
YES|
v
neff = Record
neff+1 solution neff

YES

ip<gp? N0

i >

Figure 1. Benders Decomposition on multi-objective e-constraint method.
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Within bilateral initiatives developed to ensure safe
and efficient flow of goods is that of FAST/Express
lanes, applicable to Mexican companies that have
been certified in the Customs-Trade Partnership
Against Terrorism program (C-TPAT). This is
aimed at reducing waiting times at the common
border creating a more streamlined flow of vehicles
in both directions.

Figure 2 summarizes the activities carried out on
the border between Mexico and the U.S. and
displayed the characterization of a border crossing.

* Where the same border crossing (formed by the
dotted box) consists of nodes A, B, C on the
Mexican side and 1, 2 on American side.

» From an origin O; vehicles can travel directly to the
Mexican border or through a distribution center c.

* The arcs that reach nodes A and B represent two
different C2 vehicles while C comes by T3S2.

» Arc A-1 represents the border crossing by means
of "transfer" service, while in C-1 is performed by
T3S2 and C-2 by T3S2 using the "Fast" lane.

Transport attributes considered in the study are the
following:

Cost. This refers to the amount of resources used
to carry out the transport given its efficiency, as the
generation of wealth and income by transporting
goods.

i : (CiJ.T‘i)C :

Cross border

Figure 2. Process Simplified at the border crossing.

In the case of perishable goods, since they have a
limited lifetime, is establishing a minimum lifetime
shelf. To be able to complying with the shelf life
time, transport time should not exceed a value Ty,
as each unit of time is exceeded in transport
represent deterioration in the condition of the
goods. The deterioration of the goods can be
considered as an increase in the total cost of
transport, so that the total transportation cost in
(17) for the objective of cost would be represented
as follows:

Zij) PCiXij + Zgij) pDiXj (17)

Where:

Cj is the price of transport service incurred when
crossing an arc in the network.

D; is the cost due to deterioration of goods due to
excessive transportation time.

Time. One of the objectives to be considered is to
minimize the total transportation time from the
beginning to the final destinations. For this, the
time data for arcs are considered deterministic,
except for the arcs corresponding to border
crossings, in which time will have three states that
may occur (low, medium, high) and the likelihood
that they will arise.

For the travel time attribute in (16) shows the
modification to the time objective:

i) PELIX; + Ziij.q) PP ()i Xy (18)
Where:

E[tj]X; Is the expected value (considered as
deterministic) of time to cross an arc within the

network

[t4i]Xqi Is the time to cross an arc in the network
given the scenario q

P(q) Is the probability that arc (i, j) is in the state q

Under these conditions was formed a network of
29 nodes and 158 arcs, of which 12 arcs depicts
activities at border-crossings and can take three
states of time: low, medium, high. Cost data are

Journal of Applied Research and Technology




Efficient Frontier for Multi-Objective Stochastic Transportation Networks in International Market of Perishable Goods, A. Bustos et al. / 654-665

taken as deterministic, while time is considered as
stochastic since it was considered variability in
time to cross some arcs.

In implementing Benders decomposition, cost
attribute and constraints corresponding to
equilibrium at nodes connected by arcs with
deterministic times, are reported in the first stage,
while those elements that represent uncertainty as
the time attribute and equilibrium constraints on
nodes where involved arcs have varying times, are
reported in the second stage. This will generate
time and cost options that subsequently feed the e-
constraint method. Figure 3 shows the Pareto
frontier obtained with the results of non-dominated
routes for the exporting perishable products.

Tests were conducted to the same network where
was considered that all arcs have deterministic
times, for which the expected values E [tj] were
used. While in these arcs the maximum times were
around 2.5 to 10 times the mean time, the results
obtained for routes on the Pareto frontier, times

showed values around 0.14% higher than the
deterministic equivalent problem. The problem in
stochastic version has the advantage that it
provides the flexibility to consider variations in
arcs, while the resulting paths are slightly higher in
transport time.

In the attribute of time, given the ranges in the
stochastic model as in the deterministic model,
which intersect at most of them, from T test to
compare means, does not give elements to reject
Ho given the level of significance shown.
Furthermore, a Levene analysis were performed
for equal variances, the result is that the time for
variances obtained by stochastic and deterministic
models are different with a significance level of
0.128, therefore, there are evidence to reject the
null hypothesis. Table 1 shows the results of tests
for equality of mean and variance. This
comparison between means and variances shows
that Pareto frontiers generated by stochastic
models have a different distribution to those
generated by deterministic models.

a
405
a‘_
<
400 "
T -
[ ]
v .
E 305 S
= =
Ta
390 ‘-'E‘
'\‘-H‘
385 Tt |
e
380 \r\?
81000 82000 83000 84000 85000 36000 87000 88000 89000
Cost

Figure 3. Non-Dominated solutions of the export of perishable goods problem.
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levene test for equality | levene test for equality
of variances of means
F Sig. t gl
assuming equal
variances 2,531 0,128 6,805 19
without assuming
equal variances 7,584 18,957
T test for equality of means

standard | confidence interval for
Sig. difference |error of the the difference 95%
(bilateral) | of means | difference |Low Up
assuming equal
variances 0,000 1304,769 191,741 903,451 1706,087
without assuming
equal variances 0,000 1304,769 172,052 944,605 1664,933

Table 1. Comparison of time in case of application for stochastic vs. deterministic model.

6. Conclusion

It has been shown that the e-constraint method can
be efficiently used to find the exact Pareto multi-
objective problem. Benders decomposition is
useful to solve problems with variations in arcs.

In SMMCEF instances, when comparing the ranges
on the Pareto Fronts, results show that this type of
model tend to generate slightly higher values of
time and cost in stochastic version than in
deterministic version in which were used expected
values. This same behavior should occur in
different networks, although the degree of variation
between stochastic and deterministic curves
depends on the difference between the values of
time state in arcs (low, medium and high).

The approach developed for SMMCF is
generalizable to problems with the following
characteristics:

* Perishable products, in which the time of
transport has a significant impact.

* Export products where congestion at border
crossings produces variations on service times,
which can be discretized.

» Markets with multiple origins and destinations.

« Selecting routes based on suppliers with different
capacities, costs and time services, depending on
the characteristics of its fleet

The proposed approach works with the probability
of occurrence of each scenario, so that gives the
set of routes with shortest probable time, rather
than working with expected times.
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