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ABSTRACT

Synchronization of multiple chaotic oscillators in Hamiltonian form is numerically studied and is achieved by appealing
to complex systems theory [1-5]. The topology that we consider is the irregular coupled network. Two cases are
considered: i) chaotic synchronization without master oscillator (where the final collective behaviour is a new chaotic
state) and ii) chaotic synchronization with master oscillator (where the final collective behaviour is imposed by the
dynamics of the master oscillator to multiple slave oscillators). The Hysteretic and Rdssler chaotic oscillators in
Hamiltonian form will be used as examples.
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RESUMEN

La sincronizacion de multiples osciladores caéticos en forma Hamiltoniana es numéricamente estudiada y se logra
apelando a la teoria de sistemas complejos [1-5]. La topologia que consideramos es la red compleja irregular. Dos
casos se consideran: i) sincronizacion caotica sin oscilador maestro (donde el comportamiento colectivo final de la
red compleja es un estado cadtico nuevo y ii) sincronizacién caoética con oscilador maestro (donde el comportamiento
colectivo final de la red cadtica es impuesto por la dinamica del oscilador maestro a los osciladores esclavos). Los

osciladores cadticos de Rossler e Histéresis en forma Hamiltoniana se utilizan como ejemplos.

1. Introduction

Since synchronization discovery, the scientific
community has paid special attention to this
phenomenon due to its importance in science and
technology. In the late years, especially since the
appearance of the article by Pecora and Carroll [6],
the scientific community has turned their eyes into
complex network synchronization. Ever since, lots
of ideas have emerged, posing interesting new
ways to synchronize diverse dynamical systems [7-
8], as well as exciting new findings in science.

Some of the first accounts of synchronization
behavior might be referenced to the well-known
story of the Bible, when the Jericho walls were
destroyed by highly coupled sounds of trumpets
and an army marching around the city.
Nevertheless, the first research report on
synchronization in general is due to Christiaan
Huygens [9-10] in the mid 1600’s. He suspended
two pendulum clocks through a common wooden
beam. The tiny vibrations from the clocks

synchronize the pendulums’ movements giving
place to rhythmic swings. Ever since this property
has been reported in systems of different nature
such as chemical, biological, social, physical and
so on, e.g. fire-flies bioluminescence
communication [11-12], bamboo mast flowering
[13], sound pipes quenching [14] and heavenly
bodies movements [15]. In general, we can
understand synchronization as the “adjustment of
rhythms of oscillating objects due to their weak
interaction” [16]. It can be said that synchronization
is one of the most widespread phenomena among
oscillating dynamical systems.

A prevailing occurrence in nature is the gathering
of systems or individuals in common tasks, such
large numbers of highly interconnected dynamical
systems render a collective behavior completely
different to the individually shown by its units.
Classic examples run from the nervous system (a
network by itself) to human societies, from a grass
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hopper in the garden to swarms of locust on the
fields, and from a tiny personal system such as a
smart phone to entire computer networks that drive
the lives of modern world.

All of these cases can be characterized as
structures made of individual entities, called
nodes (with an individual behavior known or not),
weak connections among them and, depending
on the nature of the system, the existence of a
driving force which imposes its dynamics to the
network, we call this entity a master node. The
nodes’ dynamical nature plus the structure of the
connections dictate the network’s behavior,
which can be simple or capriciously complicated.
These phenomena can be translated to
benefices to the human race (e.g. the heart pace
maker), which stresses the importance of the
study of this topic nowadays.

The nodes used in this work are chaotic oscillators,
the richness of its dynamics due to its random
behavior challenges many paradigms of
synchronization techniques. This chaotic nature
became popular among the scientific community in
the mid 1960’s thanks to Edward Lorenz [17] who,
while trying to forecast weather, discovered a
defining feature of chaos, any difference in the
initial conditions of certain dynamical systems, no
matter how small it might be, has huge effects on
its outcome. lts understanding unraveled lots of
nature’s “code”, as Prof. Marcus du Sautoy [18-19]
would say. Examples of this can be found in the
population growth of some insects [20], weather
forecasting [17], economics [21-22], social
behavior, movement of artificial satellites [23],
chemical reactions, electronic circuits [27], etc.

Complex dynamical networks can be defined as
an interconnection of individual dynamical
systems interacting in several ways [28]. Such
interconnections might have different forms or
topologies, every arrangement of units affect the
final behavior of the system. In networking,
irregular arrays have no formal or regular
construction, and pose an evolving research
topic, showing that even when nature has its
own mathematical order, disorder is most likely
to be found.

In this work we study the synchronization of
complex networks made by chaotic dynamical

nodes (we call these oscillators from now) in
irregular arrays and two main arrangements, with
and without a master node. Such systems exhibit
emergence and synchronization to the master
node behavior.

The paper is organized as follows: in Section 2 a
brief summary on synchronization in complex
dynamical networks is given. For Section 3, an
approach to solve networks given in Hamiltonian
Generalized form, followed by Section 4 where two
examples are given. Finally conclusions are given
in Section 5. In Appendix A, the essentials of
Hamiltonian Generalized form systems, and its
synchronization is included.

2. Synchronization of Complex Networks

A complex dynamical network is defined as a set
of interconnected oscillators. An oscillator is the
basic element of a network, whose behavior
depends on its nature [4]. Consider a dynamical
network that is made of N identical linearly and
diffusively coupled oscillators, and each oscillator
is an n-dimensional system with chaotic behavior.
The state equations of the complex network are
given by:

N
xi=f(xl.)+cZaijij,i=1,2,...,N, )

J=1

Where X, =(X,,X,,....X, ) €R",is the state
vector of the oscillator i. The constant ¢ >0 is
the coupling strength of the complex network.
I'e R is a constant matrix and it is assumed
that I =diag(n,,r,,...,r,) is a diagonal matrix with
1, =1 for a particular i and r, =0 for j #i. This
means that two coupled oscillators are linked
through their ith state variables. Coupling matrix
A = (a;) € R represents the coupling
configuration of the complex network. If there is a
connection between oscillator i and oscillator j ,
then a, =1; otherwise, a, =0 (i = )).

The diagonal elements of matrix are defined as

N

N .
a[,j:— Zqijz_ Zaﬁ’l:1’2"”’N' (2)

J=Lj# J=Lj#i
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Clearly, if the degree of oscillator i is £, , , then
a,=-k,i=12,..,N. (3)

The complex dynamical network (1), is said to
achieve (asymptotically) synchronization, if

X, () =x,(t)=---=xy(t), as t — . 4)

Theorem 2.1 [2, 24] Consider a dynamical network
(1. Let 0=A4>A4242---24  be the

eigenvalues of its coupling matrix A . Suppose
that there exists a nxn diagonal matrix D >0 and

two constants d <0Oandz >0, such that
[Df (s(2))+ dr'l’D+ DIDf (s(t))+dl]<—d,. (5)

Foralld <d, where I, e R™" is the identity matrix.
If, moreover, cA,<d, then the synchronization

state (4) of the dynamical network (1) is
exponentially stable.

3. Hamiltonian Networks

Hamiltonian systems theory is an energy approach
to dynamical systems, a brief description of the
results of this theory can be found in Appendix A.
Due to the defined output signal property of
Hamiltonian systems, the Hamiltonian method can
use an observer to synchronize two oscillators in
master-slave configuration; this paper extends the
previous result to multiple oscillators.

Consider two cases where the synchronization
must be applied to a complex network of more
than two oscillators: i) regular topology where the
oscillators are connected following a connection
rule irregular and ii) irregular topology where the
oscillators are connected without a connection rule
(in this paper, irregular topology of complex
network is studied). In this case, the Hamiltonian
observer method seen above may not suffice.

Therefore, in order to solve this problem, a
complex network approach must be used. The
network synchronization methodology defined by
Wang [2, 24], as well as the Hamiltonian approach
[3] are applied to the studied systems to achieve
the chaotic synchronization of the network. The

dynamics of complex network where the
oscillators are given in Hamiltonian form can be
determined as follows:

. oH oH J
x,.=J(yi)a—Xi+(I+S)a—xi+F(y,.)+ch:;aijij;
x eR"i=12,....N, (6)
OH
=C—; m
g ox, v €R %
where X, =(X,,X,,,....x,) €R",is the state

vector of the oscillator; i =1,2,...,N refers to the
oscillator; J(y,)0H /Ox, exhibits the conservative

part of the system; S is a constant symmetric
matrix, not necessarily of definite sign; [ is a
constant skew symmetric matrix; y, is referred to

as the system output; C is a constant matrix; F'
represents a locally destabilizing vector field;
¢ >0 is the coupling strength of the complex

network; I e R™" is a constant matrix, and it is
assumed that I'=diag(#,r,,....,r,) is a diagonal
matrix with 7, =1 for a particular 7 and r,=0 for

J#1 A =(a,)eR™, is called coupling matrix,
represents the coupling configuration of the

complex network; FH(x;) denotes a smooth
Hamiltonian energy function which is globally
positive R"; OH /0x;is the columns gradient vector

and is assumed to exist everywhere. For an
oscillator in a network configuration, the following
notation will be used:

o _[on om - oH] @)
ox, |Ox; Ox, 0x,,
4. Examples

Example 1: Hysteretic chaotic circuit in an
irregular network with a master oscillator.

Consider the Hysteretic chaotic oscillator [3] as the
oscillator (or fundamental node) of an irregular
array network. The nonlinear equations:

Vol. 12, August 2014




Synchronization of Irregular Complex Networks with Chaotic Oscillators: Hamiltonian Systems Approach, C. Posadas-Castillo et al. / 782-791

X =X, + % + 8%,
X, =—wx, —ox,, 9)

&y = (l—x:f)(sx1 +x;) — fx;,

with parameters: y = 0.2, g =2, w = 10, 6 = 0.001,

s =1.667, B = 0.001 and ¢ = 0.3, exhibits chaotic

behavior, as shown in figure 1.

2 i TN

Figure 1.Phase space of the chaotic attractor
generated by oscillator (9), projected onto
(x,, x5, x5)-

The energy function for system (9) can be
expressed as follows:

H(x) =%(x12 +x3 +éaxl). (10)

From equations (A.1) and (A.2) and theorem (A.1),
system (9) can be expressed in the generalized
Hamiltonian form, as below:

1 1
5 0 E(1+W) ;(g—s)
1 OH
ffz = —5(1+w) 0 ng
lleo o 0 (11)
2¢
1 1
4 E(I*W) ;(g+5) 0
l(l—w) -0 0 6H+ 0 s
2 ox N
—x; (xy +5x,)

Lgrn o Loy
2¢ &

And the output of the system, is denoted by

y=[t 0 0]%]. (12)

Assume the network is generated by six oscillators
coupled in an irregular array, as shown on figure 2.

Figure 2.Six irregularly coupled
oscillators with master oscillator (1).

The coupling matrix A for the system is:

0O 0 0 0 0 O

1 -3 1 0 0 1

o1 -3 1 1 0
A=

1 0o 1 -3 1 0

1 0 1 1 4 1

11 0 0 1 =3

The initial conditions for the respective oscillators
are:x,(0)=(19,-2,0.5); x,(0) =(4.8,4,-1);

x;(0) =(6,1,0); x,(0) =(-3,0,7);

x5(0) =(-2.8,2.9,3.7); x,(0) =(0,2,5.7).

According to theorem (A.1), the chaotic
synchronization of the system is achieved using a

coupling strength ofc = 2.

Using the following gradient vectors:

X. X,

X 21 61

o | |5 oH _ S A I F

—=| X, = Xy o 62

Ox, 0ox, o |
&Xy3 X3 6

System (11) can be expressed as:

1 1 1 1
0 —(l+w) —(g-s —(1- —(g+s
. S0Ew —(g=9) v S0=w S-(g+s)
Nl x, |= —l(l+w) 0 0 0—H+ l(l—w) -5 0 ot
SES
N 2 ox, % . ox,
X 1
le—g-s 0 0 —@g+s) 0 (-1
2¢ 2¢ &

0 Py
+ 0 +| 0|,
—xh(x+sx)] [0
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1 1 1 1
0 ~a —(g-s Z-w)  —(g+s
£, 2( +w) 25(8 s b4 2( w) 2g(g+v)
N s l=| ~Lasw 0 o | Loy s 0o |
. 2 ox, 2 ox,
S [ o | |l o —Leen|
2 28 &
0 )2
+ 0 +[ 0|,
— X+, [0
.
.
.
1 1 1 1
0 ~a —(g- “-w)  —
t 2( +w) 2g(g ) v 2( w) 2g(gH)
Nt |=| —2asw o o | lasw s o
B 2 X, 2 0x,
et 0 0 Lo o Loy
& 2e &

0
+ 0
= X (s + 5%,

The coupling signals for this network, are given in
an explicit way as

p, =0,

Dy = (X)) = 3%y, + X3, + X ),

Py =c(Xy = 3x3 +xy + Xg,),

Py =c(xyy + X5 = 3%y, + X5),

Ds = c(xy; + X3 + x4 —4x5, + X)),

Pe = Xy + Xy + X5y = 3X,),

Figure 3 shows chaotic synchronization in the first
state of the six hysteretic oscillators,x, ,

i=1,2,...6 and the chaotic attractor of the

collective behavior imposed by master oscillator 1
to the dynamical network, projected onto space

(x,, x,, x3)-

A diagonal line in the phase graph, as shown in
the figure 3, means that synchronization is
achieved after a finite period of time. This shows

that synchronization in every x, i=1,2,..,6 is
obtained, hence theorem (A.1) holds. States x,,

and x,, also synchronize to the respective states

of the master oscillator, i.e. in this case, all the
states synchronize to the master oscillator 1. The
phase diagrams for the rest of the states are not
shown due to space restrictions.

J0 // 7.
. 6|
fs 0 5
% 5|
10 10 4
,ED/ F 0 - FREER\ Y . :
A A : e ) o f
T 0 5 2 ] 5 ; _ e ;
L Aoy i .,f ‘s' b,
5 5 : 5 i 'vﬁ'\
. . ; i Ay .
F0 F0 4 S50 % . S
% i 5 35 0 5 %0
LT ] L]
5 5 . 5
&0 %/ 50 % 50
% i [ 55 0 5 %o
bt L]
5 5 T 5
a0 / Fo / ED
] 5 : 5
5 1} 5 5 0 5 -10
49 2

Figure 3. Synchronization in the first state of six chaotic Hysteretic oscillators, x,, ,i =1,2,...,6,

and the chaotic attractor of the dynamical network, projected onto the (X, X,, X,)-space.
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Example 2: Rdssler chaotic oscillator in a 12
node irregular network without a master node.

Consider a Rdssler chaotic oscillator [3] as the
basic oscillator in an irregular array network. The
nonlinear equations (9), with parameters ¢ =04,

b=2,g=-4 exhibit a chaotic behavior in the
Rdssler oscillators shown in figure 4:

X ==X, — X5,
X, =X, +ax,,

(13)
X =b+x,(x, - g),

Figure 4. Phase space of the chaotic attractor
generated by Rdssler oscillator (13), projected
onto (X, X,, X3).

The energy function for system (9) can be
expressed as:

H(x)=%(x12+x§+x§). (14)

Applying equations (A.1) and (A.2) and theorem
(A.1), the system (13) can be expressed in the
generalized Hamiltonian form as:

Assume the network is generated by twelve
oscillators coupled in an irregular array, as shown
on figure 5.

Figure 5. Irregularly coupled network
with 12 oscillators to be synchronized.

The coupling matrix A is:

20 0 0 0 0 1 0 1 0 0 O]
0 31 0 0 1 0 0 0 1 0 0
01 -6 1 1 1 1 0 0 0 1 0
00 1 40 0 0 1 0 1 0 1
00 1 0 21 0 0 0 0 0 0
01 1 0 1 -4 0 0 0 1 0 0

A<l 0 1 0 0 0 40 0 1 1 of
00 0 I 0 0 0 -3 1 1 0 0
1 00 0 0 0 0 1 20 0 0
01 0 1 0 1 1 1 0 =50 0
00 1 0 0 0 1 0 0 0 -3 1
lo o 0 1.0 0 0 0 0 1 =2

The initial conditions for the respective nodes are:

x,(0) = (5.1,0.2,0.5); x,(0) = (0.8,0.25,1);
x,(0) = (0.53,0.1,—6); x,(0) = (1,0,1);

x,(0) = (0.65,0.9,-3); x,(0) =(3.9,0.12,5.7);
x,(0)=(0.7,1,1); x,(0) = (=0.5,2.11,0.6);
%,(0) = (1,0.01,-0.1); x,,(0) = (0.57,0.79,0.31);
x,,(0) = (0,4.09,0); x,,(0) = (0.19,-2.22,6.75).

According to theorem (A.1), the chaotic
synchronization of the system is achieved using a

coupling strength of ¢ =0.35.

If the following gradient vectors are used:

X, X
. X le eee » 121,
OH _ » OH ; 3 OH _ ;
—| M2 Il I —| M2
axl Ox, 2 0x,,
X3 X3 X123
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system (15), can be expressed as:

I 1] 1 .
" 0 -1 —— 0 0 ——
iy 2| iy 2o 0 Py
Njilx,|=|1 0 O |—+| 0 a 0 | —+ 0 + 0 |,
1 0x, 1 ox,
| %13 E 0 0 —E 0 —-g b+x,X;3 07
— 1] [ 1 .
0 -1 —= 0 0 ——
le 2 aH 2 BH 0 p2
Nys| % |=|1 0 0 |=—+| O 0 |—+ 0 + 0
wl 120 0™ 2L 0 Zg|® lbexm] |0
LA _2 ] ] ) g 21%23 i

¢ 0 -1 —— 0 —— 0
X1 ) ) P
Nyl X |=[1 0 0 gH + 0 a O gH + 0 + K
X1y X1y
X ! 0 0 N _% 0 -g| " [btxaxy 0

And the explicit expression of the coupling signals
for this network, are given as:

Py = (22X, + g, + X))
Dy = (3%, + x5, + X, + X1,

Py = (X =023 + X, + X5y + X + X, +Xp),

=
o
=3
=
=
=
=3
o
=3

Py =€y —AX, + Xy + Xy T X)),

Ps = c(x3; = 2x5, + X)),

Do = (X, + x5, + X5, —4xg, +1xy,),

Py =0, + x5 —4x, + X, +2,),

Py = (L =30y, + X5, +X,0),

Po =Xy + X, —2x;,),

Pro = C(%Xy; + Xy + Xgy + X7 + X = 5X,,)

Dy = (x4 X5, = 3%, +Xp,), pp =0y, +x,,,-2%,,)

A diagonal line in the phase graph, as shown in the
figure 6, means that synchronization is achieved
after a finite period of time. This shows that
synchronization in the first state of every one of the

twelve systemsx, i=1,2,..,12 is attained, hence
theorem (A.1) holds. States x, and x_also

synchronize, i.e. in this case, all the states
synchronize. The phase diagrams for the rest of
the states are not shown due to space restrictions.

10 1
10 0 10 -10 0 10 -10 0 10 -10 0 10 -10 0 10
- 10 0 10 10 1 ] ]
50 0 [} 0 [ |o |
40 10 10 10 10 o J
10 0 10 -10 © 10 -10 0 10 -10 O 10 -10 © 10 -10 O 10
- 10f 10 10 10 10 110 10
¥ 0| ° 0 ° ° | o
1 10 10 10 10 l10
0 10 -10 0 10 -10 0 10 -10 O 10 -0 O 10
- 10 10 10 10 1 T10
xﬂ‘ 0 L] 0 ] [ ]
1 10 10 10 10 10
0 0 10 -10 0 10 -0 € 10 -10 0 10 -0 0 10
1 10 10 10 10 10
= | [ 0 0 0 |o
* 0 10 10 10 10 410
40 0 10 -10 0 10 -10 0 10 -10_ 0 10 -10 O 10
- 10 10 10 10 10 10
‘: ] ] ‘o ‘o ‘o |0
-10 1 10 10 10 ho 4
0 0 10 -10 0 10 - 10 0 10 -10_0 10 00 10
i

- - 0 0 -10 -

- 10 10 10 10 10 10
x!‘-' 0 [ [ [ 0 |o
-10 0 . 0 10

10 210
] -10 -
1o 1o
|0 |0

0 o

0 ‘i‘lcl <|‘||J
J 0 |0 |o

0 o o

X1

X214 X34 X4 %54

10 1 10 1 o 10 10 1
< ¢ 10 <0 Q0 W0 -0 0 1 - 0 0 0 0 W -0 0 W W 0 W 00 W 00 W A0 0 W 00 W

X X

5.1 X4 e T %31 104 14

Figure 6. Synchronization in the first state of the 12 chaotic Réssler nodes, Xy i=1,2,.,12,

and the chaotic attractor of the dynamical network, projected onto the( X,5Xy X5 )-plane.
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5. Conclusions

In this paper, we have presented synchronization
of N-coupled chaotic oscillators in a Hamiltonian
generalized form, using the coupled network
theory. The irregular networks featured and the
initial conditions were totally random. We have
achieved synchronization in the designed irregular
complex dynamical network, with and without
chaotic master oscillator. It was shown that,
independently of the connection topology used in
the network, there exist properties that characterize
such network, and that synchronization purposes,
are determined by the highest nonzero eigenvalue
A and the coupled strength c.

Synchronization is achieved with chaotic Hysteretic
oscillators and chaotic Réssler oscillators in
Hamiltonian generalized form; synchronization in
all states of every one of the systems is achieved.

As for the method itself, many other chaotic
oscillators in Hamiltonian generalized form have
been used; but more trials must be done in the
future. For this paper only chaotic oscillators were
considered, this does not means that other kind of
oscillators cannot be used. Recent studies on
synchronization of complex dynamical networks
may shed new light on behavior and
understanding of synchronization itself or
complexity in network dynamics.
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Appendix A
Hamiltonian systems

Some of the chaotic oscillators can be placed in a
generalized Hamiltonian canonical form [25, 26]. The
advantages for that are, that if synchronization is the
goal, it can be achieved systematically; the method
bypasses the need to calculate the Lyapunov exponents;
it is not required that the initial conditions lay in the same
attraction point; the reconstructibility of the state vector,
from a defined output signal, may be defined from the
observability or the lack of it, analyzing the detectability of
a pair of constant matrices [3].

We consider a special class of Generalized Hamiltonian
systems with destabilizing vector fields and linear output
map, given by:

=IO 1+ L FG), xeR", (A1)
ox ox

yzcaﬂ,yeR”’, (A.2)

Ox
where J(y)0H / Ox exhibits the conservative part of the
system and it is also referred to as the workless part of
the system. Sis a constant symmetric matrix, not

necessarily of definite sign. The matrix [ is a constant
skew symmetric matrix. F(y) represents a locally

destabilizing vector field. The vector variable ) is
referred to as the system output. The matrix C is a
constant matrix. H(x) denotes a smooth energy
function which is globally positive R". The columns

gradient vector of H , denoted by 0H / Ox , is assumed
to exist everywhere. We denote the estimate of the state

vector X by f and the Hamiltonian energy function

H (&) to be the particularization of H in terms of .
We denote by 77 the estimated output, computed in

terms of the estimated state f: A dynamic nonlinear
state observer for the system (A.1) is readily obtained as

NG OH _ A. 3
E=J(y) a§+(1+s) og TFOITKG =), (A.3)
p=cl (A 4)

o0&

where K is a constant vector, known as the observer
gain, and we set, / +S =W, as needed.
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Theorem A.1 [3] The state x of the nonlinear system
(A.1) can be globally, exponentially, asymptotically

estimated by the state f of an observer of the form
(A.3), if the pair of matrices (C,l¥), or the pair (C,S), is

either observable or, at least, detectable. Observability
condition on either of the pairs (C,W), or (C,S), is

clearly a sufficient but not necessary condition for
asymptotic state reconstruction.

Theorem A.2 [3] The state x of the nonlinear system
(A.1) can be globally, exponentially, asymptotically

estimated, by the state f of the observer (A.3) if and

only if there exists a constant matrix K such that the
symmetric matrix

[W —KC1+[W -KC]" =[S -KC]+[S-KC] = (A. 5)

2[S—%(KC+CTKT)}
is negative definite.
Synchronization state x of the nonlinear oscillator (A.1)

is synchronized with the state ¢ of the observer (A.3) if
theorem A.1 or theorem A.2 is achieved.
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