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ABSTRACT 
Bayesian Belief Network (BBN) is an appealing classification model for learning causal and noncausal dependencies 
among a set of query variables. It is a challenging task to learning BBN structure from observational data because of 
pool of large number of candidate network structures. In this study, we have addressed the issue of goodness of data 
fitting versus model complexity. While doing so, we have proposed discriminant function which is non-parametric, free 
of implicit assumptions but delivering better classification accuracy in structure learning. The contribution in this study 
is twofold, first contribution (discriminant function) is in BBN structure learning and second contribution is for Decision 
Stump classifier. While designing the novel discriminant function, we analyzed the underlying relationship between the 
characteristics of data and accuracy of decision stump classifier. We introduced a meta characteristic measure 
AMfDS (herein known as Affinity Metric for Decision Stump) which is quite useful in prediction of classification 
accuracy of Decision Stump. AMfDS requires a single scan of the dataset. 
 
Keywords: machine learning, Bayesian network, decision stump, K2, data characterization. 
 
 
1. Introduction 
 
Bayesian Belief Network (BBN) is a notable 
formalism in structure learning. It is based on joint 
probability distribution in which every question is 
submitted to the network in a probabilistic mode 
and the user can receive the answer with a certain 
confidence level. A BBN in short is composed of 
three components.  DG ,, in which G is a 
Directed Acyclic Graph (DAG). As from the graph 
theory we know that each graph is composed of 
two elements and same is true for G  such that 

),( EVG  .The DAG technically reprents the 
quality of a model rendered by the structure 
learning procedure because it is comprised of all of 
the dependent and independent nodes. Infact the 
absence of certain arcs realize the conditional 
independence of the nodes. Moreover G posses a 
probability   which is a quantitative component of 
structure learning, an indicative of implicit degree 
of association between the random variables. The 
vertices in G usually denotes the random variables 
such that VvvXX  )( and  represents  

 
 
the joint probability distribution of X with )(X  

Vv vpav XX )|( )( where )|( )(vpav XX  shows a 

conditional distribution and )(vpa is the set of 
parents of v . 
 

BBN has proven its usefullness in the diversified 
domains such as bioinformatics, natural language 
processing, robotics, forecasting and many more 
[1]–[3]. The popularity of BBN stems from its 
generatlity in formalis and amenable visualization 
because it enables the viewers to render any 
expert based modification. The process of 
structure learning is comprised of two major 
components excluding setting of external 
parametres. However both of these steps are 
layered in onion style structure. The first 
component is a traversing algorithm which takes 
input variables and formulates a structure in shape 
of a Directed Acyclic Grapg (DAG).This structure is 
handed over to the second component. The 
second component is a discriminant function 
which evaluates the goodness of the structure 
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under inspection. The discriminant function in BBN 
captures the assumption during learning phase that 
every query variable is independent from the rest of 
the query variables, given the state of the class 
variable. The goodness of the structure is produced 
in form of a numeric value. The search algorithm 
caters for the comparison of last value and current 
value produced by the discriminant function and 
marks one of them as the latest posible structure. In 
a simple brute force searching mechanism, every 
candidate of BBN structure is passed to evaluate its 
discriminant function after which the BBN with 
highest discriminant function is chosen.  
 
Although brute force provides a gold standard, 
however it is restricted to dataset with only a very 
small number of features as otherwise generating 
a score (output of discriminant function) for each 
possible candidate is NP hard with the increasing 
count of nodes in structures. A solution to tackle 
this NP-hard issue is to restrict the number of 
potential candidates for parent nodes and 
employing a heuristic searching algorithm such as 
greedy algorithm [4], [5]. In the greedy search 
algorithm, the search is started from a specific 
structure which initially takes the input variables in 
a predefined order. The obtained structure is 
analyzed by the discriminant function which results 
in adding, deleting or reversing the direction of the 
arc between two nodes. The ordering of the query 
nodes is characterized by the prior knowledge or 
by means of sophisticated techniques such as 
defined by [6].The search continues to the 
adjacent structure reaching to the maximum value 
of a score if this value is greater as compared to 
the current structure. This procedure, which is 
known as hill-climbing search halts when 
culminating to a local maxima.  One way of 
escaping local maxima is to employ greedy search. 
While employing greedy search, random 
perturbation of the structure is the way through 
which local maximum can be avoid off. Apart from 
this approach, there are alternate approaches 
escaping of local maxima problem. These include 
simulated annealing introduced by [7], [8] and 
best-first search [4]. In other words, if one 
describes the procedure of K2 [9] in simple words 
then pursuit of an optimal structure is more or less 
equivalent to selecting the best set of parents for 
every variable but avoiding any circular 
dependency. This is the basic concept behind the 
K2 algorithm. 

However, it is an interesting question whether 
classification accuracy or error rate is sufficient 
enough for introduction of a new data model 
learner. There are situations when large number 
of variables degrades the performance of the 
learnt network by increasing the model 
complexity. This issue has motivated us to 
investigate the behavior of model complexity for 
various discriminant functions. 
 
This study discusses the issue of formally 
defining   ‘effective   number   of   parameters’   in   a  
BBN learnt structure which is assumed to be 
provided by a sampling distribution and a prior 
distribution for the parameters. The problem of 
identifying the effective number of parameters 
takes place in the derivation of information criteria 
for model comparison; where notion of model 
comparison   refers   to   trade   off   ‘goodness   of   data  
fitting’  towards  ‘model  complexity’. 
 
We call our algorithm Non Parametric Factorized 
Likelihood Discriminant Function ( NPFLDF ). 
The proposed discriminant function is designed to 
increase the prediction accuracy of the BBN 
model by integrating mutual information of query 
variable and class variable. We performed a 
large-scale comparison with other similar 
discrattempt functions on 39 standard benchma 
UCI datasets. The experimental results on a large 
number of UCI datasets published on the main 
web site of Weka platform show that NPFLDF
significantly outperforms its peer discriminant 
function in model complexity while showing 
almost same or better classification accuracy. 
 
2. Model Complexity 
 
The BBN model complexity has been 
conceptualized in many ways. One simple 
concept is the frequentist approach of dependent 
and independent query variables. Another 
approach is related to the joint distribution of the 
observed query variables and the random 
parameters (varies from one discriminant function 
to another). However we argued for the second 
approach as in case if the distinct states are few 
or features are binary in nature then frequentist 
approach becomes the lonely dominant criteria for 
explaining the model complexity. Keeping in view 
of this assumption we shall introduce the 
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mathematical formulation for model complexity 
along this line. 
 
Lemma 1. The maximum links in a directed 
acycle graph can be termed as the model 
complexity. The problem of model complexity is a 
frequentistic solution. 
 
Proof. Let N be the total number of nodes in a 
DAG excluding class attribute, then problem of 
finding the maximum possible nodes is equivalent 
to the 'How to sum the integers from 1 to N' 
problem and can be expressed as. 
 

2
)1( 


NN                                                         (1) 

 
Let P be the constraint of maximum links a node 
can have in terms of its parent nodes. We can 
divide all of the links in two sets, one set cn  
belongs to the arcs realized by the nodes with 
constraint and the second set ot represents all 
other arcs. We express it as: 
 

otcn                                                       (2) 
 
Certainly, if the constraint is in its first value 
(level); that is each node can have maximum one 
and only one arc then the BBN model will be a 
simple BBN structure. A higher value of constraint 
will lead towards more arcs in the second set. Let 
P denotes the constraint such that each node can 
have maximum P nodes as its parent nodes with 
whom the node is independent of, then the 
second set cn can further be divided into two 
sub sets cn

P  and cn
P such that: 

 
cn
P

cn
P

cn
                                                 (3) 

 
The count of the maximum links for the first subset 

cn
P  can be defined as:  

 
)1(  PNPcn

P                                              (4) 
 
The second subset comprised of the links in 
which first node can have maximum one parent 
node, second node can have maximum two  
 

parent nodes, third node can have maximum 
three parent node. If we continue this pattern then 
last node can have maximum P-1 parent nodes 
such that. 
 

2
)1( 


PPcn

P                                                    (5) 

 
Notice that if value of P is one, then the above 
subset is an empty subset. Now based on the 
above last three equations, we can re write the 
equation of set of links with constraint such as: 
 

2
)1()1( 


PPPNPcn                                  (6) 

 
From the above equation, we can derive a simple 
mathematical formula such as: 
 

2
1

2 PPPNcn 
                                          (7) 

 
Where P is the constraint on count of máximum 
parents, a node can have and N is the total number 
of non class features or query variables. The 
equation 5 is a frequentistic representation of model 
complexity. At this point it is quite easy to calaculate 
the model complexity in percentage as below. 
 





cn

100                                                      (8) 

 
The above equation is quite useful for calaculating 
the numeric value of the model complexity in this 
study. The detailed result will be discussed in 
empirical validation section. 
 
3. Related work 
 
There are two essential properties associated with 
any discriminant function to optimize the structural 
learning [10]. The first property is the ability of any 
discriminant function to balance the accuracy of a 
structure keeping in view of the structure 
complexity. The second property is computational 
tractability of any discriminant function (metric). 
Bayes [9], BDeu [11], AIC [12], Entropy [13] and 
MDL [14], [15] and fCLL [16] have been reported to  
satisfy these characteristics. Among these 
discriminant functions, AIC, BDeu and MDL are 
based on Log Likelihood (LL) as given below: 
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
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1 1 1

log)|(                  (9)

 

 
WhereG denotes directed acyclic graph given 
datasetD .Other three counters include n , iq and 

ir indicate number of cases, number of distinct 
states of a query variable and number of distinct 
states of parent variable of a ith query variable. The 
log likelihood tends to promote its value as the 
number of features increases. The phenomenon 
occurs because addition of every arc is prone to 
pay contribution in the resultant log likelihood of 
final structure. This process can be controlled 
somewhat by means of introduction of penalty 
factor or otherwise restricting the number of 
parents for every node in the graph. The 
mathematical detail of the discriminant functions in 
this study are as follow. 
 
3.1 AIC 
 
Akaike Information Criterion (AIC) originally 
defined by Akaike [12] is defined mathematically:  
 

KLLAIC  2)ln(2                                (10) 

 
In the equation 10, K denotes the number of 
parameters in the given model. However, [17] 
decompose AIC into a discriminant function which 
can be used in BBN. AIC is established on the 
asymptotic behavior of learnt models and quite 
suitable for large datasets. Its mathematical 
equation has been transformed into. 
 

||)|()|( BTBLLTBAIC                              (11) 

 
Where |B| is length of network, number of 
parameters for each variable. 
 
3.2 Bayes 
 
We earlier mentioned that Cooper and Herskovits 
introduced an algorithm K2 in which greedy search 
was employed while a discriminant function of 
Bayes was used [9]. It was described that the 
structure with highest value of Bayes metric was 
considered the best representative of the underlying 
dataset. It motivates us to describe Bayes metric 
formally expressing in mathematical notations. 

Let there is a sequence of n instances such that 

n

n
ddddz .....321 the Bayes discriminant function of 

structure Gg can be formulated in form of the 
equation. 


Jj gjSs

j
Aq

j

b

n

b

gjsn

gjsan

gPzgP
j

 





























 


),( )!1]..[(

)]!,,,[)!1(

).(),(




            (12)

 

 
Where Pb (g) is the prior probability of full network

Gg .The prior probability can be omitted in the 
computation. The notation },....,1{ NJj  is the 
count of the variable of the network g, and 

),( gjSs is the counting of the set from all sets 
of values obtained from the parents of the jth node 
variable. The expansion of the denominator factor 
can be expressed mathematically as below. 
 

  



n

i

j

ii
SqzIgjsqn

1
),(,,, 

 

 

 

  



n

i

j

i
SIgjsn

1
)(,, 

      

 

 

Where 
jj
 , the function I(E) = 1 given E is 

true, and I(E)=0 if E is false. The K2 learning 
algorithm uses Bayes as its core function in its  
 
each iteration enumerating all potential candidate 
graphical structure. The outcome of this 
enumeration is an optimal learnt structure which is 

stored in 
*g . This optimal structure possess 

highest value of ),(
n

b zgP  such that ,0gGg   

ggthenzgPzgPif
n

b

n

b  ** ),,(),( . 
 
The above equation is required to be decomposed 
simply into a computational model; otherwise this 
theoretical model requires a very large number of 
computations involving factorial. It means score 
value for a network g can be enumerated as the 
sum of scores for the individual query variables 
and the score for a variable is calculated based on 
that variable alone and its parents. 

(13) 

(14) 



 

 

A Parameter Free BBN Discriminant Function for Optimum Model Complexity versus Goodness of Data Fitting, M. Naeem  / 734-749 

Vol. 12, August 2014 

 
738 

The  approach  in  the  “discriminant  function  inspired  
learning”   performs   a   search   through   the   space   of  
potential structures. These include Bayes, BDeu, 
AIC, Entropy and MDL, all of which measures the 
fitness of each structure. The structure with the 
highest fitness score is finally chosen at the end of 
the search. It has been pointed out that Bayes often 
results in overly simplistic models requiring large 
populations in order to learn a model which holds 
the capability to capture all necessary dependencies 
[18]. On the other hand, BDeu  tends to generate an 
overly complex network due to the existence of 
noises. Consequently, an additional parameter is 
added to specify the maximum order of interactions 
between nodes and to quit structure learning 
prematurely [19].As noted in another research that 
the choice of the upper bound given the network 
complexity strongly affects the performance of BOA. 
However, the proper bound value is not always 
available for black box optimization [20]. 
 
Nielsen and Jensen in 2009 discussed two 
important characteristics for discriminant function 
used in the belief network [10]. The first 
characteristic is the ability of any score to put the 
accuracy of a structure in-equilibrium in context of 
complexity of structure. The second characteristic is 
its computational tractability. Bayes has been 
reported to satisfy both of the above mentioned 
characteristics. Bayes denotes the measurement of 
how well the data can be fitted in the optimized 
model. The decomposition of Bayesian Information 
Criterion [21] can be preceded as below: 
 

)(log
2

)(),|(log)|( 22 NSsizeSDPDSBIC S 


        (15)
 

 

Where 


  is an estimation of the maximum 
likelihood parameters given the underlying structure 
S. It was pointed out that in case of completion of 
the database, Bayesian Information Criterion [21] is 
reducible into problem of determination of frequency 
counting [10] as given below: 
 

 
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1 1
)1(

2
log)(log

)|(

    (16)
 

 
where Nijk indicates the counts of dataset cases 
with node Xi in its kth configuration and parents  
П(Xi) in jth configuration, qi denotes the number of 

configurations over the parents for node Xi in 
space S and ri indicates the states of node Xi.  
 
3.3 BDeu 
 
Another scoring measure which depends only on 
equivalent  sample  size  N´  is  Bayesian  Dirichlet  for  
likelihood-equivalence for uniform joint distribution 
(BDeu) introduced by [11]. Later on, researchers 
have provided and discussed its decomposition as 
below in mathematical form [16]: 
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3.4 MDL 
 
Minimum Description Length (MDL) introduced by 
[14] initially and then refined by [22], and [15]. It is 
mostly suitable to complex Bayesian network. We 
shall formally define it as below. Let sequence 

n

n
ddddx .....321  of n number of instances, the 

MDL of a network Gg can be enumerated as 
below.  
 

)log(
2

)(),(),( ngkxgHxgL
nn


 
Where the function 

k(g) represents the independent conditional 

probabilities in the network. ),(
n
xgH is entropy of 

structure with respect to the variable 
n
x  which can 

be expanded into the following notation. 

),,(),(
n

Jj

n
zgjHzgH 



 and ),()( 



Jj

gjKgK  

Given the jth node variable, the value of MDL can 
be enumerated as below: 
 

)log(
2

),(),,(),,( ngjkxgjHxgjL
nn

 where ),( gjk  
is the count of independent conditional 
probabilities of jth variable. This value can be 
expressed in more detail as below. 
 

k

k

j

j
agjK 


 )1(),( while },...,1,1,....1{)( Njjj 

is a set given }:{ j
kj
kX  . 
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Given the jth node variable, the entropy can be 
expanded into the following expression. 
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where 
jj
 indicates that j

jj
kxX  ; the 

function I(E) yields a positive identity number 
when the predicate E is true and the function I(E) 
becomes false when I(E)=0. 
 
MDL differs from AIC by the log N term which is a 
penalty term. As the penalty term is smaller than 
that of the MDL, so MDL favors relatively simple 
network as compared to AIC. The mathematical 
formulation is composed of explanation of Log 
Likelihood (LL) as given below: 
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The value of LL is used in obtaining the 
decomposition of MDL as below: 
 

||)log()2/1()|(
)|(

BNTBLL
TBMDL




                 (22) 

 
|B| denotes the length of network which is 
achieved in terms of frequency calculation of a 
given   feature’s   possible   states   and   its   parent’s  
state combination with feature as following: 
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3.5 fCLL 
 
In BBN, several algorithms have been introduced 
to improve classification accuracy (or error rate) by 
weakening its conditional attribute independence 
assumption. Tree Augmented Naive Bayes (TAN) 
in terms of conditional log likelihood (CLL) is a 
notable example under this category while 
retaining simplicity and efficiency. 
 
Another Likelihood based discriminant function 
was introduced known as factorized Conditional 
Log Likelihood (fCLL) [16] which was optimized 
particularly for TAN. Its mathematical detail is as 
below. 
 


   





































n

i

q

j

r

k c ij

ijc

cij

ijkc
ijkc

i i

n
n

n
n

n

DBLLDGCLLf

1 1 1

1

0 **

^

*

loglog

)|()()|(





     (24) 

Table 1 provides the brief summary of these 
notable discriminant functions. These scores 
formulate propositions for well-motivated model 
selection criteria in structure learning techniques. 
 
The noteworthy issue by employing these well-
established scores, however, is that they are 
prone to intractable optimization problems. It was 
argued that it is NP-hard to compute the optimal 
network for the Bayesian scores for all consistent 
scoring criteria [23]. AIC and BIC are usually 
applied under the hypothesis that regression 
orders k and l are identical. This assumption 
brings extra computation and also come up with 
an erroneous estimation with theoretical 
information measure in structured learning. 
Recently a research was conducted which shows 
the linear impact of improvement in model quality 
within the scope of exercising Bayes function 
score in K2 [9], [24]. However, it was arguable 
that there must be intelligent heuristics to sharply 
extrapolate the optimized size of the training data. 
We are of the view that exploiting various 
intelligent algorithms for tree and graph, an 
optimized solution can be achieved. 
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4. Towards a novel discriminant function 
 
We start with ),( CFDT   as a sampling space 
of training dataset. The dataset D  contains g  
number of query variables and h  number of 
sample instances for training model. The 
parameter F denotes the number of query 
variables or features such that 

},...,,{ 321 bffffF  while the sample instances in 
training dataset can be represented as:

},...,,{ 321 hddddD  . Furthermore, the n number 
of target class concepts can be described as: 

},...,,{ 321 nccccC  . 
 
Exemplifying the individual data instance as:

Ddx  : obviously it can be decomposed into a 
vector of array V such that 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

},...,,{ 321 bvxvxvxvxVx  , where kvx is the value 
of vxrelated to the feature set. Given an instances 
of training dataset ),( CFDT  , the objective of 
learning technique is to induce a hypothesis 

TCFh \:0  where F is the value domain of

Ff  . After this brief mathematical terminology, 
we shall head towards inscribing the degree of 
relationship between two variables specifically in 
context of classification; this relationship must 
need to be described between a query variable 
and a class variable. Let the distinct state of the 
query variable are denoted as 

},...,,{ 11312111 mfffff  while the unique states of 
the class variable can be expressed as 

},...,,{ 321 nccccC  . We already defined the 
value of h as the count of instances in the dataset. 
Now we denote ija as the joint probability between  
 
 

Discr. 

Function 
Description 

AIC 

[12] 

Its penalty term is high. AIC tends to favor more complex  networks  than  MDL.  AIC’s  behavior  was  
erratic when sample size is enlarged. AIC was observed to favors to over-fitting problem in most 
cases. 

Entropy 

[13] 
No penalty factor was involved. The joint entropy distribution always favors for over-fitting. Its 
behavior was also erratic like AIC. 

Bayes 

[9] 
The quantities of interest are governed by probability distribution. These probability distribution and 
prior information of observed data leads to reason and optimal decision on the goodness of model. 

BDeu 

[11] 

 

The density of the optimal network structure learned with BDeu is correlated with alpha; lower a 
value typically results in sparser networks and higher value results in dense network. The behavior 
of BDeu is very sensitive to alpha parameter. 

MDL 

[14], 

[15] 

The large penalty factor is good if gold standard network is thick network 
Its penalty factor was higher as compared to AIC. It gives better results as compared to AIC and 
Entropy discriminant function. 

fCLL 

[16] 

fCLL involves approximation of the conditional log-likelihood criterion. These approximations were 
formulated into Alpha, Beta and Gamma. However fCLL is mostly suitable (Restricted) towards Tree 
Augmented Network (TAN). 

 
Table 1. Summary of discriminant functions. 
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query variable 1f and class variableC , then 
Affinity Measure (AM) can be mathematically 
expressed as below: 
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The above equation can be generalized to any of 
two features where the second argument  can be 
replaced by other query variable. Affinity 
Measure (AM) is a bounded valued metric, the 
upper bound and lower bound with specific 
conditions are expressed as below: 
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Where 

ija denotes the joint probability with 

variable 1 in its ith state and variable 2 in jth state.  

ija


and ija


represents the minimum and 

maximum joint probability among all of the possible 
states of two variables. ),( cfAM i denotes the 
bounded value of Affinity Measure which is 
explained by the states of feature variable with 
respect to the class. However, if we swap the 
position of feature and class variable then a new 
meaning is raised where class variables are 
explaining the value of features.  In fact, such a 
notion also explains the child parent relationship 
between two features in a given graph or tree 
based classifier. 
 
At this point we proceed for two different 
discriminant functions. if we normalize the Affinity 
Measure (from equation 2) by dividing the count 
of non class features then we get a discriminant 
feature which is useful for prediction in a famous 
weak classifier Decision Stump. Its mathematical 
equation is as below. 
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Decision Stump is one of the tree classifiers which 
are termed as weak classifiers. It was originally 
introduced by Iba et al., [25]. This falls under the 
breed of classifiers in which one level tree is used to 
classify instances by sorting them, while the sorting 
procedure is based on futuristic value. Each node in 
a decision stump dictates a query variable from an 
instance which is to be classified. Every branch of 
the tree holds the value of the corresponding node. 
Although decision stump is widely used classifier; 
yet it is assumed as a weak classifier. In this 
threshold oriented classification system, sample 
instances are classified beginning from the root 
node variable. The sorting is carried out on their 
feature values which a node can take on. If the 
selected feature is specifically informative, this 
classifier may yield better results, otherwise it may 
lead generating the most commonsensible baseline 
in the worst situation. The weak nature of the 
classifier lies in its inability to tackle the true 
discriminative information of the node. Although to 
cope up this limitation, the single node, multi-
channel split decision criteria is introduced to 
accentuate the discriminative capability; nonetheless 
its results are still not as appealing as compared to its 
peer classifiers. some empirical results supporting 
the usefulness of the Affinity Measure for Decision 
Stump will shown in the result section. 
 
Now we shall move towards the derivation of an 
optimized discriminant function for the BBN in such 
a way that it keeps the model complexity at lower 
level while delivering equal or better results as 
compared to its peer techniques. The discirminant 
functions in general are based on Log Likelihood 
(LL) drawn from the dataset given network 
structure G as indicated by the equation 29. 
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Where Nijk indicates that ith feature is instantiated 
with kth state along with the jth state of qth parent of 
ith feature. It can be observed from this frequentist 
approach that addition of an arc to such network  
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always leads to increases the value of LL. Keeping 
in view of it, several penality terms were introduced 
to adjust it. However fixing an optimized penality 
factor has been a research problem for the experts 
in data mining community. Motivated by this fact, 
we tailored the Affinity Measure in such a way that 
it is free of any implicit or explicit penality factor 
such that 
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Let )(F denote the marginal probability of the 
feature. The potential shown in the above equation 
can be converted into conditional probability by 
placing the marginal probability as the denominator 
factor in the above equation such that 
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While generalizing NPFLDF , we have n number 
of non-class feature variables and a single class 
variable within the dataset D. We can easily 
reduce this simple point estimation into a 
generalized maximum a posterior inference 
notation as below: 
 





n

i
ii DCXPaX

GDNPFLDF

1
),),(,arg(max

),(
                     (32)

 

 
A discriminant function is decomposable if its 
expression is convertible to a sum of local scores, 
where local score refer to a feature (query) 
variable in pursuit of drawing graph G. The simple 
calculation between two feature variable is shown 
in equation 29. An extended version of this 
equation can be expressed as
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 Where i is 

feature iterator, j is parent iterator, k is feature 
state iterator and c is class iterator. If we include 
the factor of class variable, a minor change will be 
developed into 
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. Plugging this value into 

equation 32, we can express as  
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If the feature set is denoted by },...,,{ 321 nffffF   
then ordering weight of any feature will be 
determined by weight factor shown in equation 34. 
 

FCFCF ,,                                              (34)
 

 
The terms FC ,  and FC ,

 
play the role of 

existence restrictions. We shall consider both of 
them as existence restrictions such that 

:),( ,FCCF  the link F C explains the 
discriminant objective with respect to the class 
and :),( ,CFCF  the link F C means the 
discriminant score with respect to the feature. In 
our earlier research, we highlighted the correct 
topological ordering between two features. This 
was shown by an earlier version of the proposed 
discriminant function in which we highlight that 
majority of the   discriminant   functions   can’t  
precisely capture the casual relationship between 
two variables in pursuit of true topology in 
numerous situations; this ultimately leads to the 
selection of potential neighbor and parents 
becoming unreasonable. However Integration to 
Segregation (I2S) is capable of rightly identify it in 
majority of the cases as compared to BIC, MDL, 
BDeu, Entropy and many more [26], [27]. 
Moreover, Naeem et al. [26], [27] described that a 
structure in which class node is placed at the top 
most may lead to higher predictive accuracies. 
This  type  of  scheme  was  termed  as  ‘‘selective  BN  
augmented   NBC’’   [26],   [27].   It   means   that   the  
later score value must be eliminated from the first 
value which will result into a weighted score 
vector as shown in the equation 35. 
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A function for simple descending order is applied 
to the weights achieved from the equation 35 
which results into an ordered list of input variables. 
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Plugging this ordered set into the equation 33 will 
give result in 
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the equation three gives us the discriminant 
function to be used in the BBN structure learning. 
In the next section we shall discuss about its 
performance comparison. 
 
5._Empirical Validation of Proposed 
Discriminant Function 
 
We first obtain thirty nine natural dataset from 
UCI [20]. These datasets were quite diversified  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

in their specifications. The number of attributes, 
instances, classes were ranging from small to  
large value so that any possibility of biasness in 
the dataset in favor of the proposed metric can 
be avoided off. The detail is shown in the table 
1. We in this experimental study select some of 
basic meta characteristic and then two enhanced 
meta characteristics and one of our proposed 
metrics. The simple meta characteristics include 
number of attributes, class count and size of 
cases which are also shown in the table 1. The 
advanced meta characteristics of dataset include 
Entropy, Mutual Information and our proposed 
measure (AMfDS) also technically falls in this 
category. Before we proceed for analysis, it is 
mandatory to pre process or transform the data, 
there are many transformations applicable to a 
variable before it is used as a dependent 
variable in a regression model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

20 Iris 4 10 
21 kdd_synthetic_control 61 238 
22 Labor 16 58 
23 Letter 16 58 
24 mfeat-fourier 76 298 
25 mfeat-karhunen 64 250 
26 mfeat-morphological 6 18 
27 mfeat-pixel 240 954 
28 molecular-biology_promoters 58 226 
29 Mushroom 22 82 
30 page-blocks 10 34 
31 Pendigits 16 58 
32 postoperative-patient-data 8 26 
33 Segment 19 70 
34 Sonar 60 234 
35 Spect_test_train 22 82 
36 Sponge 45 174 
37 Trains 32 122 
38 waveform-5000 40 154 
39 Zoo 16 58 

 

DB ID Dataset Nodes Max_Links 
1 Arrhythmia 279 1110 
2 Audiology 69 270 
3 Autos 25 94 
4 balance-scale 4 10 
5 breast-cancer 9 30 
6 breast-w 9 30 
7 bridges_version1 12 42 
8 bridges_version2 12 42 
9 Car 6 18 

10 Colic 22 82 
11 credit-a 15 54 
12 credit-g 20 74 
13 Dermatology 34 130 
14 Diabetes 8 26 
15 Flags 29 110 
16 Glass 9 30 
17 Haberman 3 6 
18 heart-h 13 46 
19 heart-statlog 13 46 

 

Table 2. Description of dataset used in this study [Parent count constratint (P)=4]. 
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These transformations can not only restrict 
towards changing the variance but may incur 
alteration in the units of variance to be measured. 
These include deflation, logging, seasonal 
adjustment, differencing and many more. 
 
However, the nature of data in our study require to 
adopt the normalization transformation of the 
accuracy measures and the specific characteristics 
for which analysis is required. Let ix  denotes the 
accuracy of ith dataset by any classifier then the 
normalized accuracy  can be obtained by the 
equation as below: 
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The next step is to obtain a pair wise list with 
sorting performed on iy such that we denote the 

sorted list as 


iy . With the application of this 
normalization, a set of normalized characteristics 
was prepared which was used later on to generate 
a regression model. A linear regression model is 
quite useful in order to express a robust 
relationship between two random variables. The 
linear equation of regression model indicates the 
relationship between two variables in the model. 
Y  is regressand or simply a response variable 
whereas X  is regressor or simply an explanatory 
variable. The output regression line is an 
approximate acceptable estimation of the degree 
of relationship between variables. One important 
parameter in linear regression model is co efficient 
of determination also known as R-squared. The 
closer this value to 1, the better the fitting of 
regression line is represented. R-squared dictates 
the degree of approximation of the line passing 
through all of the observation. 
 
Wolpert and Macready [28] stated in their 'No Free 
Lunch Theorem' that no machine learning 
algorithm is potent enough to be specified 
outperforming on the set of all natural problems. It 
clearly points out that every algorithm possesses 

its own realm of expertise albeit two or more 
techniques may share their realm in partial. Ali et 
al., [29] shows that classifiers C4.5, Neural 
Network and Support Vector Machine were found 
competitive enough based on the data 
characteristics measures. 
 
The significance of R-squared is dictated by the 
fraction of variance explained by a data model but 
question arises what is the possible relevant 
variance requiring a suitable explanation. 
Unfortunately it is not easy to fix a good value of R-
squared as in most of the cases, it is far off to get a 
value of 1.0. In general it is assumed that a value 
greater than 0.5 indicates the noticeable 
worthiness of the model. However, still it is a 
matter of choice as in case of comparison between 
various models (such as in ours) a more higher 
value of R-squared counts. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 shows the R-Squared values of various 
linear regression model using specific meta 
classifiers. Two highest values plotted against 
AMfDS show the substantial model fitting.  These 
curve fitting were tested with many flavors of 
regression models ranging from 1st degree to 10th 
degree order polynomial, 1st order logarithm to 5th 
order logarithm, polynomial inverse and a lot of 
special cases data fitting model provided in the 
commercially available tool DataFit [30]. We 
noticed that the best curve fitting was found for 
tenth order degree polynomial regression model. 

 
 

Figure 1. Polynomial regression analysis  
of Decision Support classifier accuracy   
using simple and information  theoretic  

data characteristics and AMfDS. 
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Decision Stump and Adaboost Decesion Stump 
both can be explained by the number of classes, 
joint entropy and proposed metric AMfDS. One the 
other hand, the data characteristics such as 
number of attributes and Mutual Information 
(natural   logarithm)   can’t   explain   it   properly.  
Moreover, the number of cases (instances) can 
also explain the accuracy of these classifiers for all 
of the natural dataset used in this study. We 
calculated the average joint entropy of each 
attribute with class attribute; hence the final score 
is indicative of a score of entropy towards the 
class variable. The root cause lies in the splitting 
criterion which is characterized by entropy 
inspired measure. 
 
Mutual Information (MI) which is an information 
theoretic measure. MI is basically an intersection 
of entropy of two features. MI strictly defines the 
mixed relationship of two variables by which both 
of them are bound to each other. However we 
noticed that it did not show up better as compared 
to other meta characteristics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Moreover, it is noticeable that AMfDS metric incur 
significant R-squared value in case of Decision 
Stump (DS) and its implementation with Ada Boost 
DS. The R-squared value was 0.875 and 0.836 
respectively. It clearly indicates that the  
 
 
 

classification accuracy of both of these classifiers 
can be greatly predicted a prior by using AMfDS. It 
is noticeable that no other meta feature deliver this 
level of R-squared confidence of determination. 
The regression model parameters were obtained 
with 99% confidence interval. The tenth degree  
regression model defined by AMfDS is shown by 
the equation six as below: 
 

8910 1332784.2542855.9 96271.29Y XXX   
567 967218.971659092.14 1871297.69- XXX   

234 14683.8994164.7373928.28 XXX   
45.761268.53- X                                             (40) 

 
The proposed metric is useless unless it is utilized 
in a framework. The figure 2 is a typical framework 
of machine learning in which AMfDS has been 
plugged. The first two components are preliminary 
and essential pre requisite for making any data 
suitable for a machine learner. Once the data is 
fully prepared, the meta analysis is an essential 
and novel component where AMfDS will yield an 
approximated value for the classification accuracy 
of decision stump. Once the decision is obtained, 
the end user can find it easily whether this dataset 
is suitable for this classifier. The regression model 
gives the accuracy of 87.5% within the confidence 
interval of 99%. Table 3 is indicating the result we 
obtained frm our proposed discriminant function 
NPFLDF . Table 3 indicates that the introduced 
discriminant function exhibits better in numerous 
cases. The average accuracy of the proposed 
function is also better than the other discriminant 
functions.  The  last  row  of  the  table  3  (‘w’  stands  for  
win   and   ‘n’   stands   for   neutral)   points   out   that 
NPFLDF delivers best result for eleven dataset 
and for five datasets it shares the best result status 
with other peer functions. The performance of 
other functions is quite inferior to that of the 
proposed function. However if we analyse the 
results in term of the average accuracy of the 
functions over all of the datasets then a cynical 
view on these results indicate that the average 
accuracy for NPFLDF , AIC, MDL, Bayes and 
BDeu is almost close to each other but what is 
the point of difference? The difference is in the 
model size. The model size in the table 3 ranges 
from 1 to 100. 
 
 
 

 
 

Figure 2. Framework utilizing AMfDS. 
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DB 
ID 

NPFLDF Bayes AIC BDeu MDL Entropy Fcll 
Acc Den Acc Den Acc Den Acc Den Acc Den Acc Den Acc Den 

1 70.80 25.50 70.80 44.41 70.80 28.65 69.91 44.86 71.02 26.40 66.15 58.02 71.68 45.05 
2 78.76 20.00 76.11 42.22 76.11 25.56 73.01 45.19 76.11 25.56 75.22 83.70 75.66 51.85 
3 80.98 18.09 80.49 61.70 74.63 40.43 83.90 69.15 74.63 32.98 79.02 89.36 76.10 55.32 
4 72.64 50.00 70.88 100.00 70.88 100.00 71.84 40.00 72.00 60.00 70.88 100.00 74.24 70.00 
5 70.98 40.00 70.28 50.00 68.53 53.33 69.58 43.33 70.63 40.00 62.94 100.00 73.08 56.67 
6 96.71 40.00 96.71 53.33 96.85 56.67 96.57 46.67 97.00 46.67 96.42 100.00 96.42 56.67 
7 65.71 16.67 65.71 47.62 65.71 30.95 65.71 42.86 65.71 28.57 41.90 52.38 60.95 52.38 
8 63.81 16.67 64.76 45.24 62.86 30.95 64.76 40.48 60.95 28.57 41.90 54.76 61.90 52.38 
9 91.61 38.89 90.80 44.44 92.65 50.00 90.80 44.44 85.71 33.33 88.25 100.00 88.72 61.11 

10 82.34 36.59 81.79 56.10 82.07 48.78 82.07 37.80 81.52 35.37 72.01 85.37 82.07 58.54 
11 85.94 37.04 85.07 53.70 85.51 62.96 85.80 46.30 86.23 42.59 81.16 96.30 85.07 53.70 
12 74.60 33.78 74.50 45.95 74.70 52.70 75.00 35.14 75.30 35.14 69.60 79.73 74.70 62.16 
13 97.54 23.08 98.09 36.92 97.54 26.15 97.54 26.92 97.54 26.15 89.62 100.00 96.45 51.54 
14 74.74 30.77 74.48 46.15 74.09 50.00 75.13 38.46 74.87 38.46 72.53 76.92 73.70 61.54 
15 61.34 20.91 57.22 53.64 61.34 36.36 57.22 42.73 62.37 27.27 35.57 50.00 64.95 51.82 
16 71.03 30.00 72.43 50.00 70.56 36.67 69.16 40.00 70.56 30.00 72.43 80.00 72.43 60.00 
17 73.86 50.00 72.55 50.00 72.55 50.00 72.55 50.00 72.55 50.00 73.86 66.67 73.86 83.33 
18 84.69 21.74 85.03 36.96 84.35 34.78 85.03 32.61 84.01 30.43 81.97 73.91 84.35 65.22 
19 81.48 21.74 81.85 47.83 82.59 52.17 80.74 36.96 80.37 39.13 81.85 73.91 81.11 65.22 
20 92.67 40.00 92.67 50.00 92.67 40.00 92.67 60.00 92.67 40.00 90.67 100.00 93.33 70.00 
21 98.67 16.81 98.83 44.96 98.00 30.67 97.67 30.25 97.17 25.63 16.67 50.42 96.83 50.42 
22 94.74 25.86 92.98 62.07 91.23 51.72 89.47 50.00 91.23 36.21 87.72 89.66 91.23 55.17 
23 84.53 29.31 86.48 62.07 83.97 51.72 81.71 46.55 76.62 34.48 87.51 94.83 82.33 53.45 
24 79.85 20.13 80.25 72.82 80.15 67.11 77.80 34.90 78.05 37.25 76.75 100.00 77.95 50.67 
25 92.75 16.80 92.95 47.20 93.15 53.60 92.10 25.60 92.05 26.40 85.70 100.00 91.75 50.80 
26 70.20 33.33 69.85 66.67 67.95 50.00 68.85 66.67 68.20 38.89 68.85 94.44 69.50 61.11 
27 94.75 20.96 94.55 60.48 94.00 50.21 93.55 50.42 93.40 26.21 92.00 100.00 92.85 67.61 
28 80.19 22.12 82.08 88.94 82.08 40.27 95.28 47.79 89.62 25.66 47.17 50.88 81.13 50.44 
29 99.74 51.22 100.00 93.90 100.00 90.24 100.00 96.34 99.99 78.05 100.00 93.90 99.22 52.44 
30 95.47 52.94 96.46 88.24 95.30 55.88 96.33 76.47 95.63 50.00 96.62 100.00 94.24 55.88 
31 94.78 44.83 96.56 65.52 95.26 53.45 95.14 51.72 93.25 46.55 95.60 100.00 94.78 53.45 
32 64.44 30.77 64.44 42.31 65.56 30.77 64.44 30.77 64.44 30.77 62.22 100.00 62.22 57.69 
33 95.32 25.71 95.28 52.86 94.85 48.57 94.63 48.57 91.39 28.57 94.85 95.71 94.59 52.86 
34 77.88 27.35 78.37 37.18 77.40 40.60 76.92 34.19 79.81 32.48 75.00 50.00 80.77 82.91 
35 73.75 36.59 68.98 67.07 67.38 62.20 68.42 60.98 71.66 50.00 62.56 100.00 63.78 79.27 
36 94.74 28.74 93.42 64.94 93.42 44.25 94.74 63.22 93.42 36.78 90.79 51.15 92.11 51.15 
37 60.00 24.59 50.00 57.38 60.00 33.61 70.00 65.57 60.00 32.79 60.00 54.92 80.00 60.66 
38 82.60 25.97 81.72 36.36 81.36 38.96 81.48 35.71 81.54 35.71 72.22 59.09 80.30 76.62 
39 97.03 25.86 95.05 48.28 96.04 31.03 100.00 46.55 94.06 27.59 96.04 82.76 96.04 53.45 

Avg 82.14 30.03 81.55 55.78 81.39 46.97 81.99 46.82 81.11 36.32 74.67 81.76 81.60 58.99 
w/n 11/5 
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Table 3. Accuracy and Density of BBN learnt model. 
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A value of 100 means that the model is composed 
of all of the posible links. For example the dataset 
‘arrhythmia’  contains  279  attributes  (query  variables  
or nodes in BBN) and one class variable. If we keep 
the constraint of four as the maximum number of 
parent nodes then the DAG will have 1110 links. A 
value of 44.86% (BDeu) means that the model 
produced by BDue contains 1110 X 44.86% = 498. 
 
If we proceed for further analysis then we noticed 
that the model size for MDL is small (Average is 
36.2) but this size is even more smaller in case of 
the proposed function where the average model 
size is 30.03. The worst performance in  this 
dimension of analysis is exhibited by Entropy 
(Average size is 81.76) wherein this factor is in the 
range of 50% for the rest of the discriminant 
functions. The reason behind it is that whenever a 
new arc is included then the increase in the 
disciminant effect is only affected if the contributor 
query variable can increase the class-variable-
explanatory effect significantly. However, the 
searching algorithm K2 also suffers from feature 
ordering problem. It is a good practice if a feature 
ranker can order them in such a way that the 
explanatory features gets more close to the 1st 
layer of the dag. Here we asume that the top most 
layer of the DAG is comprised of only class 
variable; wherein the second layer is comprised of 
all features. If the process of additions of layers is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

stopped here then such a BBN is a simple 
network and it usually gives reduced classification 
accuracy because of por goodness of data fitting. 
We in previous sections demonstrated that 
addition of new arcs (in further layers) influence 
the goodness of data fitting abruptly. The 
discriminant functions such as Entropy and AIC 
usually prone in this category and produce dense 
network. The problema with such dense network 
is two folded. Firstly, it requires more 
computational resources during parameter 
learning for the sake of inference from BBN. The 
second problem is model overfitting problem 
which sharply reduces the classification accuracy. 
Table  3  shows  the  same  in  case  of  dataset  ‘flags’  
and   ‘kdd_synthetic_control’   where   phenomenon  
of overfitting has explicitly reduced the 
classification accuracy of test instances. 
 
The figure 3 gives the explanation from  different 
angle in which we obtained the ratio of 
classification accuarcy and mode density (both in 
percentage). The calculation was obtained from 
the equation eight where the value of the 
constraint (maximum parent node) was set to 
four. It is evident from the figure 3 that the 
proposed discriminant function outperforms the 
other functions (the top curve). The behaviour of 
entropy was not much promising wherein MDL 
also give better result after the proposed function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 
Figure 3. Ratio of Accuracy and Density of the model for 39 dataset. 
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We have discussed large number of results with 
various possibilities. However, it is required that we 
address two simple questions. Why NPFLDF
fails in some datasets? What is the justification of 
results when NPFLDF  outperforms? We shall 
discuss four dataset. These datasets include flags, 
mfeat-morphological, mfeat-pixel and waveform-
5000. All of them vary in their characteristics 
including attributes, size of the datasets and 
number of classes. We observed that the datasets 
with more than two dozen attributes pose 
computational problems if we set the limit of 
maximum parent nodes of more than four. The 
experiment has been performed with setting of 
maximum node of two, three and four. The 
noteworthy aspect is that accuracy of NPFLDF
was constant in all of the cases. The underlying 
reason is that the likelihood factor is never getting 
increased quickly. Usually every segment of the 
DAG is restricted to two or three nodes while the 
value of NPFLDF reaches its culmination point. 
Here the culmination point refers the highest value 
of NPFLDF for which the goodness of the model 
is achieved. When we examine the other 
discriminant functions, this is not the case in most 
of the situations. We observed that two 
discriminant functions AIC and Entropy both are 
drastically accepting nodes under the 
independence assumption. The performance of 
entropy in datasets flag (features = 30) and mfeat-
pixel (features = 241) is suffering from very large 
size of conditional probability table. However, the 
performance of MDL, BDeu and BIC is different. 
Although these discriminant functions control the 
unnecessary addition of arcs but usually 
elimination of wrong orientation is not guaranteed.  
The behavior of these discriminant functions is 
implicitly a function of count of parents and 
unluckily in most of the cases it is erratic. This 
leaves  the  problem  of  “selection  of  best  maximum  
size   of   set   of   parent   nodes/features”.   However   in  
case of NPFLDF , its embedded characteristics of 
ordering features ensure to provide the best 
features for maximizing the discriminant objective. 
On the other hand, there are situations when 
NPFLDF did not give better results in comparison 
to other discriminant functions. The reason can be 
explained from the figure 3 in which slope of 
NPFLDF is drastically declining but up to two or  
 
 

three best features. If we reduce the sharpness of 
this slope then NPFLDF will start tend to go in 
favor of more features (in this case more than 
three). However what is the trade between reducing 
the degree of slope of NPFLDF versus increasing 
the links to more features. The answer lies in the 
experimental evaluation. The experimental results in 
this section point out that if we chose datasets with 
varying meta characteristics then sharp slope of 
NPFLDF is more favorable in most of the cases 
dealing real datasets. 
 
6. Conclusion 
 
BBN has shown its appealing characterstics in 
data modeling for causal and noncausal 
dependencies among a set of data variables. 
Learning structure out of observational dataset is 
challenging because of the the model 
misspecification and nonidentifiability of the 
underlying structure. In this study, we first tweaked 
out the affinity relation between two dataset which 
determines how much one variable can explain the 
other variable. Keeping in view of it, we fomalized 
an Affinity Measure which can serve as a meta 
characteristics for the prediction of classification 
accuaracy of Decison Stump. the crux of this study 
was the introduction of a better discriminant 
function which can learn the BBN structure giving a 
smart model (reduced complexity in terms of 
number of arc) while keeping the same or better 
accuaray of the BBN classifier. 
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