A Parameter Free BBN Discriminant Function for Optimum Model
Complexity versus Goodness of Data Fitting

M. Naeem*' and S. Asghar2

' Department of Computer Sciences, Faculty of Computing
Mohammad Ali Jinnah University

Islamabad Pakistan

*naeems.naeem@gmail.com

2 COMSATS Institute of Information Technology
Islamabad Pakistan

ABSTRACT

Bayesian Belief Network (BBN) is an appealing classification model for learning causal and noncausal dependencies
among a set of query variables. It is a challenging task to learning BBN structure from observational data because of
pool of large number of candidate network structures. In this study, we have addressed the issue of goodness of data
fitting versus model complexity. While doing so, we have proposed discriminant function which is non-parametric, free
of implicit assumptions but delivering better classification accuracy in structure learning. The contribution in this study
is twofold, first contribution (discriminant function) is in BBN structure learning and second contribution is for Decision
Stump classifier. While designing the novel discriminant function, we analyzed the underlying relationship between the
characteristics of data and accuracy of decision stump classifier. We introduced a meta characteristic measure
AMfDS (herein known as Affinity Metric for Decision Stump) which is quite useful in prediction of classification
accuracy of Decision Stump. AMfDS requires a single scan of the dataset.

Keywords: machine learning, Bayesian network, decision stump, K2, data characterization.

1. Introduction

the joint probability distribution of X with p(x)=
[, A(x, X, Where  ,x x , shows a

conditional distribution and pavis the set of
parents of v.

Bayesian Belief Network (BBN) is a notable
formalism in structure learning. It is based on joint
probability distribution in which every question is
submitted to the network in a probabilistic mode
and the user can receive the answer with a certain

confidence level. A BBN in short is composed of BN has proven its usefullness in the diversified

three components. <G,®,D >in which Gis a
Directed Acyclic Graph (DAG). As from the graph
theory we know that each graph is composed of
two elements and same is true for G such that
G=(V,E).The DAG technically reprents the
quality of a model rendered by the structure
learning procedure because it is comprised of all of
the dependent and independent nodes. Infact the
absence of certain arcs realize the conditional
independence of the nodes. Moreover G posses a
probability o which is a quantitative component of
structure learning, an indicative of implicit degree
of association between the random variables. The
vertices in G usually denotes the random variables
such that X =(X,),,and P represents

veV

domains such as bioinformatics, natural language
processing, robotics, forecasting and many more
[11-[3]. The popularity of BBN stems from its
generatlity in formalis and amenable visualization
because it enables the viewers to render any
expert based modification. The process of
structure learning is comprised of two major
components  excluding setting of external
parametres. However both of these steps are
layered in onion style structure. The first
component is a traversing algorithm which takes
input variables and formulates a structure in shape
of a Directed Acyclic Grapg (DAG).This structure is
handed over to the second component. The
second component is a discriminant function
which evaluates the goodness of the structure
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under inspection. The discriminant function in BBN
captures the assumption during learning phase that
every query variable is independent from the rest of
the query variables, given the state of the class
variable. The goodness of the structure is produced
in form of a numeric value. The search algorithm
caters for the comparison of last value and current
value produced by the discriminant function and
marks one of them as the latest posible structure. In
a simple brute force searching mechanism, every
candidate of BBN structure is passed to evaluate its
discriminant function after which the BBN with
highest discriminant function is chosen.

Although brute force provides a gold standard,
however it is restricted to dataset with only a very
small number of features as otherwise generating
a score (output of discriminant function) for each
possible candidate is NP hard with the increasing
count of nodes in structures. A solution to tackle
this NP-hard issue is to restrict the number of
potential candidates for parent nodes and
employing a heuristic searching algorithm such as
greedy algorithm [4], [5]. In the greedy search
algorithm, the search is started from a specific
structure which initially takes the input variables in
a predefined order. The obtained structure is
analyzed by the discriminant function which results
in adding, deleting or reversing the direction of the
arc between two nodes. The ordering of the query
nodes is characterized by the prior knowledge or
by means of sophisticated techniques such as
defined by [6].The search continues to the
adjacent structure reaching to the maximum value
of a score if this value is greater as compared to
the current structure. This procedure, which is
known as hill-climbing search halts when
culminating to a local maxima. One way of
escaping local maxima is to employ greedy search.
While employing greedy search, random
perturbation of the structure is the way through
which local maximum can be avoid off. Apart from
this approach, there are alternate approaches
escaping of local maxima problem. These include
simulated annealing introduced by [7], [8] and
best-first search [4]. In other words, if one
describes the procedure of K2 [9] in simple words
then pursuit of an optimal structure is more or less
equivalent to selecting the best set of parents for
every variable but avoiding any circular
dependency. This is the basic concept behind the
K2 algorithm.

However, it is an interesting question whether
classification accuracy or error rate is sufficient
enough for introduction of a new data model
learner. There are situations when large number
of variables degrades the performance of the
learnt network by increasing the model
complexity. This issue has motivated us to
investigate the behavior of model complexity for
various discriminant functions.

This study discusses the issue of formally
defining ‘effective number of parameters’ in a
BBN learnt structure which is assumed to be
provided by a sampling distribution and a prior
distribution for the parameters. The problem of
identifying the effective number of parameters
takes place in the derivation of information criteria
for model comparison; where notion of model
comparison refers to trade off ‘goodness of data
fitting’ towards ‘model complexity’.

We call our algorithm Non Parametric Factorized
Likelihood Discriminant Function ( NPFLDF').
The proposed discriminant function is designed to
increase the prediction accuracy of the BBN
model by integrating mutual information of query
variable and class variable. We performed a
large-scale comparison with other similar
discrattempt functions on 39 standard benchma
UCI datasets. The experimental results on a large
number of UCI datasets published on the main
web site of Weka platform show that NPFLDF
significantly outperforms its peer discriminant
function in model complexity while showing
almost same or better classification accuracy.

2. Model Complexity

The BBN model complexity has been
conceptualized in many ways. One simple
concept is the frequentist approach of dependent
and independent query variables. Another
approach is related to the joint distribution of the
observed query variables and the random
parameters (varies from one discriminant function
to another). However we argued for the second
approach as in case if the distinct states are few
or features are binary in nature then frequentist
approach becomes the lonely dominant criteria for
explaining the model complexity. Keeping in view
of this assumption we shall introduce the
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mathematical formulation for model complexity
along this line.

Lemma 1. The maximum links in a directed
acycle graph can be termed as the model
complexity. The problem of model complexity is a
frequentistic solution.

Proof. Let N be the total number of nodes in a
DAG excluding class attribute, then problem of
finding the maximum possible nodes is equivalent
to the 'How to sum the integers from 1 to N'
problem and can be expressed as.

_NWV+D) 1)
2

C)

Let P be the constraint of maximum links a node
can have in terms of its parent nodes. We can
divide all of the links in two sets, one set ®”
belongs to the arcs realized by the nodes with

constraint and the second set ®” represents all
other arcs. We express it as:

0=0"+0" ()

Certainly, if the constraint is in its first value
(level); that is each node can have maximum one
and only one arc then the BBN model will be a
simple BBN structure. A higher value of constraint
will lead towards more arcs in the second set. Let
P denotes the constraint such that each node can
have maximum P nodes as its parent nodes with
whom the node is independent of, then the

second set O can further be divided into two
sub sets ®F, and O, such that:

0" =01, +07 ®

The count of the maximum links for the first subset
®f, can be defined as:

Y, =P(N-P+1) 4)

The second subset comprised of the links in
which first node can have maximum one parent
node, second node can have maximum two

parent nodes, third node can have maximum
three parent node. If we continue this pattern then
last node can have maximum P-1 parent nodes
such that.

o = PP=D (5)
2

Notice that if value of P is one, then the above

subset is an empty subset. Now based on the

above last three equations, we can re write the

equation of set of links with constraint such as:

o :P(N—P+1)+P(};_1) (6)

From the above equation, we can derive a simple
mathematical formula such as:

2
o —1+pN-L*F (7)

Where P is the constraint on count of maximum
parents, a node can have and N is the total number
of non class features or query variables. The
equation 5 is a frequentistic representation of model
complexity. At this point it is quite easy to calaculate
the model complexity in percentage as below.

@cn

¥ =100x% (8)
[e)

The above equation is quite useful for calaculating
the numeric value of the model complexity in this
study. The detailed result will be discussed in
empirical validation section.

3. Related work

There are two essential properties associated with
any discriminant function to optimize the structural
learning [10]. The first property is the ability of any
discriminant function to balance the accuracy of a
structure keeping in view of the structure
complexity. The second property is computational
tractability of any discriminant function (metric).
Bayes [9], BDeu [11], AIC [12], Entropy [13] and
MDL [14], [15] and fCLL [16] have been reported to
satisfy these characteristics. Among these
discriminant functions, AIC, BDeu and MDL are
based on Log Likelihood (LL) as given below:
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n_ 49 N nijk
LI(G|D)= n, logl —~ (9)
i 1

Where G denotes directed acyclic graph given
dataset D .Other three counters include n, g;and

r,indicate number of cases, number of distinct

states of a query variable and number of distinct
states of parent variable of a it query variable. The
log likelihood tends to promote its value as the
number of features increases. The phenomenon
occurs because addition of every arc is prone to
pay contribution in the resultant log likelihood of
final structure. This process can be controlled
somewhat by means of introduction of penalty
factor or otherwise restricting the number of
parents for every node in the graph. The
mathematical detail of the discriminant functions in
this study are as follow.

3.1 AIC

Akaike Information Criterion (AIC) originally
defined by Akaike [12] is defined mathematically:

AIC =-2xIn(LL)+2x K (10)
In the equation 10, K denotes the number of
parameters in the given model. However, [17]
decompose AIC into a discriminant function which
can be used in BBN. AIC is established on the
asymptotic behavior of learnt models and quite
suitable for large datasets. Its mathematical
equation has been transformed into.

AIC(B|T)=LL(B|T)-|B)| (11)

Where |B| is length of network, number of
parameters for each variable.

3.2 Bayes

We earlier mentioned that Cooper and Herskovits
introduced an algorithm K2 in which greedy search
was employed while a discriminant function of
Bayes was used [9]. It was described that the
structure with highest value of Bayes metric was
considered the best representative of the underlying
dataset. It motivates us to describe Bayes metric
formally expressing in mathematical notations.

Let there is a sequence of n instances such that

2: d\d,d,.....d, the Bayes discriminant function of
structure g eGcan be formulated in form of the
equation.

((;_ 1)].H nla,s, j,g]")
P.2=P@]I TI

i
el | ssGe) (ns.j.g]+a—1)!

(12)

Where Py, (g) is the prior probability of full network
g € G .The prior probability can be omitted in the

computation. The notation j € J ={L,...., N} is the
count of the variable of the network g, and
s€S(j,g)is the counting of the set from all sets

of values obtained from the parents of the jth node
variable. The expansion of the denominator factor
can be expressed mathematically as below.

n J
n[q,s,j,g]zZI(lgzq,ﬂzS) (13)
i=1 i

s gl=2 1 r=5) (14)

i
Where 7 =11 the function I(E) = 1 given E is
true, and I(E)=0 if E is false. The K2 learning
algorithm uses Bayes as its core function in its

each iteration enumerating all potential candidate
graphical structure. The outcome of this
enumeration is an optimal learnt structure which is

stored in 8 . This optimal structure possess

highest value of F,(&,2) suchthat Vg € G — g,,,
if (8,2)>F,(g",2), theng < g.

The above equation is required to be decomposed
simply into a computational model; otherwise this
theoretical model requires a very large number of
computations involving factorial. It means score
value for a network g can be enumerated as the
sum of scores for the individual query variables
and the score for a variable is calculated based on
that variable alone and its parents.
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The approach in the “discriminant function inspired
learning” performs a search through the space of
potential structures. These include Bayes, BDeu,
AIC, Entropy and MDL, all of which measures the
fitness of each structure. The structure with the
highest fitness score is finally chosen at the end of
the search. It has been pointed out that Bayes often
results in overly simplistic models requiring large
populations in order to learn a model which holds
the capability to capture all necessary dependencies
[18]. On the other hand, BDeu tends to generate an
overly complex network due to the existence of
noises. Consequently, an additional parameter is
added to specify the maximum order of interactions
between nodes and to quit structure learning
prematurely [19].As noted in another research that
the choice of the upper bound given the network
complexity strongly affects the performance of BOA.
However, the proper bound value is not always
available for black box optimization [20].

Nielsen and Jensen in 2009 discussed two
important characteristics for discriminant function
used in the belief network [10]. The first
characteristic is the ability of any score to put the
accuracy of a structure in-equilibrium in context of
complexity of structure. The second characteristic is
its computational tractability. Bayes has been
reported to satisfy both of the above mentioned
characteristics. Bayes denotes the measurement of
how well the data can be fitted in the optimized
model. The decomposition of Bayesian Information
Criterion [21] can be preceded as below:

BIC(S | D)=log, P(D|6;,S)— Sizezi(s)logz(N) (15)
A
Where @ is an estimation of the maximum

likelihood parameters given the underlying structure
S. It was pointed out that in case of completion of
the database, Bayesian Information Criterion [21] is
reducible into problem of determination of frequency
counting [10] as given below:

BIC(S | D) =

335 v, o, ()-8 N

i=1 j=1 k=1

Zq. r=1 (16)

where Nji indicates the counts of dataset cases
with node Xi in its ky, configuration and parents
M(Xi) in ji, configuration, g; denotes the number of

configurations over the parents for node Xi in
space S and r; indicates the states of node Xi.

3.3 BDeu

Another scoring measure which depends only on
equivalent sample size N’ is Bayesian Dirichlet for
likelihood-equivalence for uniform joint distribution
(BDeu) introduced by [11]. Later on, researchers
have provided and discussed its decomposition as
below in mathematical form [16]:

BDeu(B,T) = log( P(B)) +

3.4 MDL

Minimum Description Length (MDL) introduced by
[14] initially and then refined by [22], and [15]. It is
mostly suitable to complex Bayesian network. We
shall formally define it as below. Let sequence

;Czdldzd3 ..... d, of n number of instances, the

MDL of a network g € G can be enumerated as
below.

L(g,x) H(g,x)+ (g) -log(n) Where the function

k(g) represents the independent conditional

probabilities in the network. H(g,;c) is entropy of

structure with respect to the variable x which can

be expanded into the following notation.
H(g.2)=> H(j.2,2)3M Kk(g)=>K(j.9)
jel jel

Given the jth node variable, the value of MDL can
be enumerated as below:
L(j,g,fc):H(j,g,fc)+7k(fz’g) ‘log(n)Where k(j, &)

is the count of independent conditional
probabilities of j" variable. This value can be
expressed in more detail as below.

J k
kep’

is a set given ﬁ:{)k(:kegaf}
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Given the jth node variable, the entropy can be
expanded into the following expression.

H(j.g.%) =
_n[qss,jag]'
18
z z 1Ogn[Q’s’j:g] ( )
et T als, 8]
R J
n(s, j,g) = Z[l(@r = S)} (19)
i=1
n j
n(g,s, j,g) = Z[l (=g 7= S)} (20)
i=l1

J J JooJ .
where 7 =Ilindicates that X =xVk € ¢’; the
function I(E) yields a positive identity number

when the predicate E is true and the function I(E)
becomes false when I(E)=0.

MDL differs from AIC by the log N term which is a
penalty term. As the penalty term is smaller than
that of the MDL, so MDL favors relatively simple
network as compared to AIC. The mathematical
formulation is composed of explanation of Log
Likelihood (LL) as given below:

(21)

n_ 4 _ _n N
LL(B|T)=>_>'>'N, log(N’]kj
i

i=1 j=1 k=1

The value of LL is used
decomposition of MDL as below:

in obtaining the

MDL(B|T) =

LL(B|T)—(1/2)log(N)| B| (22)
[B] denotes the length of network which is
achieved in terms of frequency calculation of a
given feature’s possible states and its parent’s
state combination with feature as following:

n

|BI=Y(r-1) g,

i=1

(23)

3.5fCLL

In BBN, several algorithms have been introduced
to improve classification accuracy (or error rate) by
weakening its conditional attribute independence
assumption. Tree Augmented Naive Bayes (TAN)
in terms of conditional log likelihood (CLL) is a
notable example under this category while
retaining simplicity and efficiency.

Another Likelihood based discriminant function
was introduced known as factorized Conditional
Log Likelihood (fCLL) [16] which was optimized
particularly for TAN. Its mathematical detail is as
below.

f CLI(G | D) = (a + B) LL(B | D) —

mifii%ﬁ%ﬁf}mvﬂJ(m

il j=l k=1 c=0 Myjee My

Table 1 provides the brief summary of these
notable discriminant functions. These scores
formulate propositions for well-motivated model
selection criteria in structure learning techniques.

The noteworthy issue by employing these well-
established scores, however, is that they are
prone to intractable optimization problems. It was
argued that it is NP-hard to compute the optimal
network for the Bayesian scores for all consistent
scoring criteria [23]. AIC and BIC are usually
applied under the hypothesis that regression
orders k and | are identical. This assumption
brings extra computation and also come up with
an erroneous estimation with theoretical
information measure in structured learning.
Recently a research was conducted which shows
the linear impact of improvement in model quality
within the scope of exercising Bayes function
score in K2 [9], [24]. However, it was arguable
that there must be intelligent heuristics to sharply
extrapolate the optimized size of the training data.
We are of the view that exploiting various
intelligent algorithms for tree and graph, an
optimized solution can be achieved.
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Discr.
) Description
Function
AIC Its penalty term is high. AIC tends to favor more complex networks than MDL. AIC’s behavior was
[12] erratic when sample size is enlarged. AIC was observed to favors to over-fitting problem in most
cases.
Entropy . . e -
No penalty factor was involved. The joint entropy distribution always favors for over-fitting. Its
[13] behavior was also erratic like AIC.
Bayes The quantities of interest are governed by probability distribution. These probability distribution and
[9] prior information of observed data leads to reason and optimal decision on the goodness of model.
BDeu

The density of the optimal network structure learned with BDeu is correlated with alpha; lower a
(1] value typically results in sparser networks and higher value results in dense network. The behavior
of BDeu is very sensitive to alpha parameter.

MDL
The large penalty factor is good if gold standard network is thick network
[14], Its penalty factor was higher as compared to AIC. It gives better results as compared to AIC and
[15] Entropy discriminant function.
fCLL fCLL involves approximation of the conditional log-likelihood criterion. These approximations were

formulated into Alpha, Beta and Gamma. However fCLL is mostly suitable (Restricted) towards Tree
Augmented Network (TAN).

[16]

Table 1. Summary of discriminant functions.

4. Towards a novel discriminant function Vx = {vx,,vX,,vX,,..vx, } , where vy, is the value

of vxrelated to the feature set. Given an instances
of training dataset” = D(F,C), the objective of
learning technique is to induce a hypothesis

We start with 7= D(F,C) as a sampling space
of training dataset. The dataset D contains g

number of query variables and 4 number of

sample instances for ftraining model. The
parameter F denotes the number of query
variables or features such that

F={f,, f,, f;»--f,} while the sample instances in
training dataset can be represented as:
D={d,,d,,d,,..d,} . Furthermore, the n number
of target class concepts can be described as:
C={c,c,,c5,..C,}.

Exemplifying the individual data instance as:
d . € D: obviously it can be decomposed into a

vector of array \Y such that

hy:F — C\Twhere Fis the value domain of

f € F . After this brief mathematical terminology,

we shall head towards inscribing the degree of
relationship between two variables specifically in
context of classification; this relationship must
need to be described between a query variable
and a class variable. Let the distinct state of the
query variable are denoted as

fi =115 fi2s fizo---fi,,  While the unique states of
the class variable can be expressed as
C={c.,c,,c;,..c,}. We already defined the
value of /i as the count of instances in the dataset.
Now we denote a;as the joint probability between
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query variable f,and class variableC, then

Affinity Measure (AM) can be mathematically
expressed as below:

AM (f,,C) = ;|:[maxarg[au ]]/} (25)

The above equation can be generalized to any of
two features where the second argument can be
replaced by other query variable. Affinity
Measure (AM) is a bounded valued metric, the
upper bound and lower bound with specific
conditions are expressed as below:

U
AM . <0 [ a;l- [ a;: ] -0 (26)
i=l1, j=1 ‘] i=l,j=1
[ m,n f m,n v
1. (27)
AMmaX < i= 1[1 la']] i= 1[] lal'] ]:|

Where (. denotes the joint probability with
y

variable 1 in its i state and variable 2 in j" state.
Y f
aij and aij represents the minimum and

maximum joint probability among all of the possible
states of two variables. AM(f,,c)denotes the

bounded value of Affinity Measure which is
explained by the states of feature variable with
respect to the class. However, if we swap the
position of feature and class variable then a new
meaning is raised where class variables are
explaining the value of features. In fact, such a
notion also explains the child parent relationship
between two features in a given graph or tree
based classifier.

At this point we proceed for two different
discriminant functions. if we normalize the Affinity
Measure (from equation 2) by dividing the count
of non class features then we get a discriminant
feature which is useful for prediction in a famous
weak classifier Decision Stump. Its mathematical
equation is as below.

118
AMfDS = b{z [PM (fi,c)]} (28)

Decision Stump is one of the tree classifiers which
are termed as weak classifiers. It was originally
introduced by Iba et al., [25]. This falls under the
breed of classifiers in which one level tree is used to
classify instances by sorting them, while the sorting
procedure is based on futuristic value. Each node in
a decision stump dictates a query variable from an
instance which is to be classified. Every branch of
the tree holds the value of the corresponding node.
Although decision stump is widely used classifier;
yet it is assumed as a weak classifier. In this
threshold oriented classification system, sample
instances are classified beginning from the root
node variable. The sorting is carried out on their
feature values which a node can take on. If the
selected feature is specifically informative, this
classifier may yield better results, otherwise it may
lead generating the most commonsensible baseline
in the worst situation. The weak nature of the
classifier lies in its inability to tackle the true
discriminative information of the node. Although to
cope up this limitation, the single node, multi-
channel split decision criteria is introduced to
accentuate the discriminative capability; nonetheless
its results are still not as appealing as compared to its
peer classifiers. some empirical results supporting
the usefulness of the Affinity Measure for Decision
Stump will shown in the result section.

Now we shall move towards the derivation of an
optimized discriminant function for the BBN in such
a way that it keeps the model complexity at lower
level while delivering equal or better results as
compared to its peer techniques. The discirminant
functions in general are based on Log Likelihood
(LL) drawn from the dataset given network
structure G as indicated by the equation 29.

LI(G|D)= ZZZNW log£ J (29)
i=1 j=1 k=1

Where Nix indicates that i feature is mstantlated

W|th K" state along with the j' " state of q" parent of

™ feature. It can be observed from this frequentist

approach that addition of an arc to such network
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always leads to increases the value of LL. Keeping
in view of it, several penality terms were introduced
to adjust it. However fixing an optimized penality
factor has been a research problem for the experts
in data mining community. Motivated by this fact,
we tailored the Affinity Measure in such a way that
it is free of any implicit or explicit penality factor
such that

Ser = Z[max arg[; P(C,.F, )H (30)

©

Let 9(F)denote the marginal probability of the

feature. The potential shown in the above equation
can be converted into conditional probability by
placing the marginal probability as the denominator
factor in the above equation such that

—_ P(Caf)
ﬂc,p—z{maxarg[; 5 H (31)
While generalizing NPFLDF , we have n number
of non-class feature variables and a single class
variable within the dataset D. We can easily

reduce this simple point estimation into a
generalized maximum a posterior inference
notation as below:
NPFLDF (D,G) =

(32)

Zmaxarg(Xi,Pa(X,.),C,D)

i=1

A discriminant function is decomposable if its
expression is convertible to a sum of local scores,
where local score refer to a feature (query)
variable in pursuit of drawing graph G. The simple
calculation between two feature variable is shown
in equation 29. An extended version of this

. qi rl ..

equation can be expressed asz;; Ny Where i is
=

feature iterator, j is parent iterator, k is feature

state iterator and c is class iterator. If we include

the factor of class variable, a minor change will be

developed into qZZ]lN . Plugging this value into

equation 32, we can express as

NPFLDF(D,G) =

Z{ : (33)

<€

gi rl
maxarg[ ZN‘MH

j=1 k=1

If the feature set is denoted by F ={f,, f,, fs,...f,,}

then ordering weight of any feature will be
determined by weight factor shown in equation 34.

Op =Acr—Aer (34)

The terms A., and A., play the role of

existence restrictions. We shall consider both of
them as existence restrictions such that

F.C)eA..:the link F> C explains the
(5 C,F

discriminant objective with respect to the class
and (F,C)e,IF,C;the link F& C means the

discriminant score with respect to the feature. In
our earlier research, we highlighted the correct
topological ordering between two features. This
was shown by an earlier version of the proposed
discriminant function in which we highlight that
majority of the discriminant functions can’t
precisely capture the casual relationship between
two variables in pursuit of true topology in
numerous situations; this ultimately leads to the
selection of potential neighbor and parents
becoming unreasonable. However Integration to
Segregation (I12S) is capable of rightly identify it in
majority of the cases as compared to BIC, MDL,
BDeu, Entropy and many more [26], [27].
Moreover, Naeem et al. [26], [27] described that a
structure in which class node is placed at the top
most may lead to higher predictive accuracies.
This type of scheme was termed as “selective BN
augmented NBC” [26], [27]. It means that the
later score value must be eliminated from the first
value which will result into a weighted score
vector as shown in the equation 35.

Arc= Z{max arg(z P;{C’;) H

f c

(35)

A function for simple descending order is applied
to the weights achieved from the equation 35
which results into an ordered list of input variables.

Feioi=1.n} (36)
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Plugging this ordered set into the equation 33 will
give resultin

e
NPFLDF(D,G,X) =

(37)

1 qi rl
ZL 1™ Mg[ZZN“‘* H
the equation three gives us the discriminant
function to be used in the BBN structure learning.
In the next section we shall discuss about its
performance comparison.

5. Empirical Validation of
Discriminant Function

Proposed

We first obtain thirty nine natural dataset from
UCI [20]. These datasets were quite diversified

DB ID Dataset Nodes | Max Links
1 Arrhythmia 279 1110
2 Audiology 69 270
3 Autos 25 94
4 balance-scale 4 10
5 breast-cancer 9 30
6 breast-w 9 30
7 bridges_version1 12 42
8 bridges_version2 12 42
9 Car 6 18
10 Colic 22 82
11 credit-a 15 54
12 credit-g 20 74
13 Dermatology 34 130
14 Diabetes 8 26
15 Flags 29 110
16 Glass 9 30
17 Haberman 3 6
18 heart-h 13 46
19 heart-statlog 13 46

in their specifications. The number of attributes,
instances, classes were ranging from small to
large value so that any possibility of biasness in
the dataset in favor of the proposed metric can
be avoided off. The detail is shown in the table
1. We in this experimental study select some of
basic meta characteristic and then two enhanced
meta characteristics and one of our proposed
metrics. The simple meta characteristics include
number of attributes, class count and size of
cases which are also shown in the table 1. The
advanced meta characteristics of dataset include
Entropy, Mutual Information and our proposed
measure (AMfDS) also technically falls in this
category. Before we proceed for analysis, it is
mandatory to pre process or transform the data,
there are many transformations applicable to a
variable before it is used as a dependent
variable in a regression model.

20 Iris 4 10
21 kdd_synthetic_control 61 238
22 Labor 16 58
23 Letter 16 58
24 mfeat-fourier 76 298
25 mfeat-karhunen 64 250
26 mfeat-morphological 6 18
27 mfeat-pixel 240 954
28 | molecular-biology promoters 58 226
29 Mushroom 22 82
30 page-blocks 10 34
31 Pendigits 16 58
32 postoperative-patient-data 8 26
33 Segment 19 70
34 Sonar 60 234
35 Spect_test train 22 82
36 Sponge 45 174
37 Trains 32 122
38 waveform-5000 40 154
39 Zoo 16 58

Table 2. Description of dataset used in this study [Parent count constratint (P)=4].
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These transformations can not only restrict
towards changing the variance but may incur
alteration in the units of variance to be measured.
These include deflation, logging, seasonal
adjustment, differencing and many more.

However, the nature of data in our study require to
adopt the normalization transformation of the
accuracy measures and the specific characteristics
for which analysis is required. Let x; denotes the
accuracy of ith dataset by any classifier then the
normalized accuracy can be obtained by the
equation as below:

n

n X
ye o (38)
i m
Where
m = max arg(;c) (39)

The next step is to obtain a pair wise list with
sorting performed on y,such that we denote the

«
sorted list as y,. With the application of this

normalization, a set of normalized characteristics
was prepared which was used later on to generate
a regression model. A linear regression model is
quite useful in order to express a robust
relationship between two random variables. The
linear equation of regression model indicates the
relationship between two variables in the model.
Y is regressand or simply a response variable
whereas X is regressor or simply an explanatory
variable. The output regression line is an
approximate acceptable estimation of the degree
of relationship between variables. One important
parameter in linear regression model is co efficient
of determination also known as R-squared. The
closer this value to 1, the better the fitting of
regression line is represented. R-squared dictates
the degree of approximation of the line passing
through all of the observation.

Wolpert and Macready [28] stated in their 'No Free
Lunch Theorem' that no machine learning
algorithm is potent enough to be specified
outperforming on the set of all natural problems. It
clearly points out that every algorithm possesses

its own realm of expertise albeit two or more
techniques may share their realm in partial. Ali et
al,, [29] shows that classifiers C4.5, Neural
Network and Support Vector Machine were found
competitive enough based on the data
characteristics measures.

The significance of R-squared is dictated by the
fraction of variance explained by a data model but
question arises what is the possible relevant
variance requiring a suitable explanation.
Unfortunately it is not easy to fix a good value of R-
squared as in most of the cases, it is far off to get a
value of 1.0. In general it is assumed that a value
greater than 0.5 indicates the noticeable
worthiness of the model. However, still it is a
matter of choice as in case of comparison between
various models (such as in ours) a more higher
value of R-squared counts.

0,9
0.8
0,7
0,6
0,5
04
0,3

R

0

R-Squared Level of cofidence by regression

Attribute Classes Cases AMTDS Mi(log) Joint
s Entropy

[IDecision

0,222 0,798 0,626 0,875 0,206 0,75
Stump

O Adahoost

0,212 0,775 0,617 0,836 0,249 0,725
Dec. Stump

Figure 1. Polynomial regression analysis
of Decision Support classifier accuracy
using simple and information theoretic

data characteristics and AMfDS.

Figure 1 shows the R-Squared values of various
linear regression model using specific meta
classifiers. Two highest values plotted against
AMDS show the substantial model fitting. These
curve fitting were tested with many flavors of
regression models ranging from 1st degree to 10th
degree order polynomial, 1st order logarithm to 5th
order logarithm, polynomial inverse and a lot of
special cases data fitting model provided in the
commercially available tool DataFit [30]. We
noticed that the best curve fitting was found for
tenth order degree polynomial regression model.
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Decision Stump and Adaboost Decesion Stump
both can be explained by the number of classes,
joint entropy and proposed metric AMfDS. One the
other hand, the data characteristics such as
number of attributes and Mutual Information
(natural logarithm) can’t explain it properly.
Moreover, the number of cases (instances) can
also explain the accuracy of these classifiers for all
of the natural dataset used in this study. We
calculated the average joint entropy of each
attribute with class attribute; hence the final score
is indicative of a score of entropy towards the
class variable. The root cause lies in the splitting
criterion which is characterized by entropy
inspired measure.

Mutual Information (MI) which is an information
theoretic measure. Ml is basically an intersection
of entropy of two features. MI strictly defines the
mixed relationship of two variables by which both
of them are bound to each other. However we
noticed that it did not show up better as compared
to other meta characteristics.

[ Preprocessing ]

l

[ Data Collection ]

Optimized
Model

______

[ Dataset Unsuitable ]

Figure 2. Framework utilizing AMfDS.

Moreover, it is noticeable that AMfDS metric incur
significant R-squared value in case of Decision
Stump (DS) and its implementation with Ada Boost
DS. The R-squared value was 0.875 and 0.836
respectively. It clearly indicates that the

classification accuracy of both of these classifiers
can be greatly predicted a prior by using AMfDS. It
is noticeable that no other meta feature deliver this
level of R-squared confidence of determination.
The regression model parameters were obtained
with 99% confidence interval. The tenth degree
regression model defined by AMfDS is shown by
the equation six as below:

Y =96271.29 X'° —542855.9X° +1332784.2X ¢
-1871297.69 X7 +1659092.14X ° —967218.97X°

+373928.28X* —94164.7X° +14683.89X*
-1268.53X +45.76 (40)
The proposed metric is useless unless it is utilized
in a framework. The figure 2 is a typical framework
of machine learning in which AMfDS has been
plugged. The first two components are preliminary
and essential pre requisite for making any data
suitable for a machine learner. Once the data is
fully prepared, the meta analysis is an essential
and novel component where AMfDS will yield an
approximated value for the classification accuracy
of decision stump. Once the decision is obtained,
the end user can find it easily whether this dataset
is suitable for this classifier. The regression model
gives the accuracy of 87.5% within the confidence
interval of 99%. Table 3 is indicating the result we
obtained frm our proposed discriminant function
NPFLDF . Table 3 indicates that the introduced
discriminant function exhibits better in numerous
cases. The average accuracy of the proposed
function is also better than the other discriminant
functions. The last row of the table 3 (‘w’ stands for
win and ‘n’ stands for neutral) points out that
NPFLDF delivers best result for eleven dataset
and for five datasets it shares the best result status
with other peer functions. The performance of
other functions is quite inferior to that of the
proposed function. However if we analyse the
results in term of the average accuracy of the
functions over all of the datasets then a cynical
view on these results indicate that the average
accuracy for NPFLDF , AIC, MDL, Bayes and
BDeu is almost close to each other but what is
the point of difference? The difference is in the
model size. The model size in the table 3 ranges
from 1 to 100.
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w
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Table 3. Accuracy and Density of BBN learnt model.
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A value of 100 means that the model is composed
of all of the posible links. For example the dataset
‘arrhythmia’ contains 279 attributes (query variables
or nodes in BBN) and one class variable. If we keep
the constraint of four as the maximum number of
parent nodes then the DAG will have 1110 links. A
value of 44.86% (BDeu) means that the model
produced by BDue contains 1110 X 44.86% = 498.

If we proceed for further analysis then we noticed
that the model size for MDL is small (Average is
36.2) but this size is even more smaller in case of
the proposed function where the average model
size is 30.03. The worst performance in this
dimension of analysis is exhibited by Entropy
(Average size is 81.76) wherein this factor is in the
range of 50% for the rest of the discriminant
functions. The reason behind it is that whenever a
new arc is included then the increase in the
disciminant effect is only affected if the contributor
query variable can increase the class-variable-
explanatory effect significantly. However, the
searching algorithm K2 also suffers from feature
ordering problem. It is a good practice if a feature
ranker can order them in such a way that the
explanatory features gets more close to the 1st
layer of the dag. Here we asume that the top most
layer of the DAG is comprised of only class
variable; wherein the second layer is comprised of
all features. If the process of additions of layers is

stopped here then such a BBN is a simple
network and it usually gives reduced classification
accuracy because of por goodness of data fitting.
We in previous sections demonstrated that
addition of new arcs (in further layers) influence
the goodness of data fitting abruptly. The
discriminant functions such as Entropy and AIC
usually prone in this category and produce dense
network. The problema with such dense network
is two folded. Firstly, it requires more
computational resources during parameter
learning for the sake of inference from BBN. The
second problem is model overfitting problem
which sharply reduces the classification accuracy.
Table 3 shows the same in case of dataset ‘flags’
and ‘kdd_synthetic_control’ where phenomenon
of overfitting has explicitly reduced the
classification accuracy of test instances.

The figure 3 gives the explanation from different
angle in which we obtained the ratio of
classification accuarcy and mode density (both in
percentage). The calculation was obtained from
the equation eight where the value of the
constraint (maximum parent node) was set to
four. It is evident from the figure 3 that the
proposed discriminant function outperforms the
other functions (the top curve). The behaviour of
entropy was not much promising wherein MDL
also give better result after the proposed function.
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0,00

=== NPFLDM ====Bayes ====AIC

1234567 89101112131415161718192021222324252627282930313233343536373839
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Figure 3. Ratio of Accuracy and Density of the model for 39 dataset.
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We have discussed large number of results with
various possibilities. However, it is required that we
address two simple questions. Why NPFLDF
fails in some datasets? What is the justification of
results when NPFLDF outperforms? We shall
discuss four dataset. These datasets include flags,
mfeat-morphological, mfeat-pixel and waveform-
5000. All of them vary in their characteristics
including attributes, size of the datasets and
number of classes. We observed that the datasets
with more than two dozen attributes pose
computational problems if we set the limit of
maximum parent nodes of more than four. The
experiment has been performed with setting of
maximum node of two, three and four. The
noteworthy aspect is that accuracy of NPFLDF
was constant in all of the cases. The underlying
reason is that the likelihood factor is never getting
increased quickly. Usually every segment of the
DAG is restricted to two or three nodes while the
value of NPFLDF reaches its culmination point.
Here the culmination point refers the highest value
of NPFLDF for which the goodness of the model
is achieved. When we examine the other
discriminant functions, this is not the case in most
of the situations. We observed that two
discriminant functions AIC and Entropy both are
drastically  accepting nodes under  the
independence assumption. The performance of
entropy in datasets flag (features = 30) and mfeat-
pixel (features = 241) is suffering from very large
size of conditional probability table. However, the
performance of MDL, BDeu and BIC is different.
Although these discriminant functions control the
unnecessary addition of arcs but usually
elimination of wrong orientation is not guaranteed.
The behavior of these discriminant functions is
implicitly a function of count of parents and
unluckily in most of the cases it is erratic. This
leaves the problem of “selection of best maximum
size of set of parent nodes/features”. However in
case of NPFLDF , its embedded characteristics of
ordering features ensure to provide the best
features for maximizing the discriminant objective.
On the other hand, there are situations when
NPFLDF did not give better results in comparison
to other discriminant functions. The reason can be
explained from the figure 3 in which slope of
NPFLDF is drastically declining but up to two or

three best features. If we reduce the sharpness of
this slope then NPFLDF will start tend to go in
favor of more features (in this case more than
three). However what is the trade between reducing
the degree of slope of NPFLDF versus increasing
the links to more features. The answer lies in the
experimental evaluation. The experimental results in
this section point out that if we chose datasets with
varying meta characteristics then sharp slope of
NPFLDF is more favorable in most of the cases
dealing real datasets.

6. Conclusion

BBN has shown its appealing characterstics in
data modeling for causal and noncausal
dependencies among a set of data variables.
Learning structure out of observational dataset is
challenging because of the the model
misspecification and nonidentifiability of the
underlying structure. In this study, we first tweaked
out the affinity relation between two dataset which
determines how much one variable can explain the
other variable. Keeping in view of it, we fomalized
an Affinity Measure which can serve as a meta
characteristics for the prediction of classification
accuaracy of Decison Stump. the crux of this study
was the introduction of a better discriminant
function which can learn the BBN structure giving a
smart model (reduced complexity in terms of
number of arc) while keeping the same or better
accuaray of the BBN classifier.
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