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ABSTRACT

The zones design occurs when small areas or basic geographic units (BGU) must be grouped into acceptable zones
under the requirements imposed by the case study. These requirements can be the generation of intra-connected
and/or compact zones or with the same amount of habitants, clients, communication means, public services, etc. In
this second point to design a territory, the selection and adaptation of a clustering method capable of generating
compact groups while keeping balance in the number of objects that form each group is required.

The classic partitioning stands out (also known as classification by partition among the clustering or classification
methods [1]). Its properties are very useful to create compact groups.

An interesting property of the classification by partitions resides in its capability to group different kinds of data.
When working with geographical data, such as the BGU, the partitioning around medoids algorithms have given
satisfactory results when the instances are small and only the objective of distances minimization is optimized. In
the presence of additional restrictions, the K-medoids algorithms, present weaknesses in regard to the optimality
and feasibility of the solutions.

In this work we expose 2 variants of partitioning around medoids for geographical data with balance restrictions over
the number of objects within each group keeping the optimality and feasibility of the solution. The first algorithm
considers the ideas of k-meoids and extends it with a recursive constructive function to find balanced solutions. The
second algorithm searches for solutions taking into account a balance between compactness and the cardinality of the
groups (multiobjective). Different tests are presented for different numbers of groups and they are compared with
some results obtained with Lagrange Relaxation. This kind of grouping is needed to solve aggregation for Territorial
Design problems

Keywords: Cardinality, grouping, k-medoids.

RESUMEN

El disefio de zonas ocurre cuando pequefas areas o unidades geograficas basicas (UGB) deben ser agrupadas en
zonas que resulten aceptables segun los requerimientos impuestos por el problema estudiado. Estos requerimientos
pueden ser la generacién de zonas conexas y/o compactas o con la misma cantidad de habitantes, clientes, medios
de comunicacién, servicios publicos, etcétera. En este punto, es exigido para el disefio de un territorio, la seleccién y
adaptacion de un método de agrupamiento que genere grupos compactos satisfaciendo también balanceo en el
numero de objetos que integran los grupos.

Dentro de los métodos de agrupamiento o clasificacion, destaca el particionamiento clasico (llamado también
clasificacion por particiones [1]). Sus propiedades son muy utiles en la creacién de grupos compactos.
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Un aspecto importante de la clasificacion por particiones reside en su capacidad para agrupar distintos tipos de
datos. Si de datos geograficos se trata, como lo son las UGB, los algoritmos particionales alrededor de los medoides
han dado resultados satisfactorios cuando las instancias son pequefias y solo el objetivo de minimizaciéon de
distancias es optimizado. En presencia de restricciones adicionales, los algoritmos K medoides, presentan
debilidades en la optimalidad y factibilidad de la solucién.

En este trabajo exponemos 2 variantes de particionamiento sobre medoides para datos geograficos con restricciones
de balanceo en el numero de objetos que forman los grupos manteniendo optimalidad y factibilidad. EI primer
algoritmo considera los principios de k-medoides y lo extiende con una funcidon recursiva y constructiva para
encontrar solucione balanceadas. El segundo algoritmo se ocupa en la bisqueda de soluciones considerando un
esquema de equilibrio entre compacidad y balanceo (multiobjectivo). Se presentan distintas pruebas para el tamafio
de los grupos y se comparan con algunos resultados obtenidos por Relajacién Lagranjeana. Este tipo de
agrupamiento se hace necesario en la resolucion de agregacion con homogeneidad en la cardinalidad de los grupos

para problemas de Disefio de Territorio.

1. Introduction

The zones design problem can be approached as
a combinatory optimization problem, where the
objective function searches for the best
combination between the balance for a certain
property of the zones and geometrical
compactness whereas the restrictions guarantee
the connectivity within the zones. Many efforts
about the solution of TD problems have been
reported: The zones design appears in diverse
application such as districts design [2, 3, 4, 5],
sales territories [6, 7], service and maintenance
areas [8, 9] and use of lands [10, 11, 12.].

In the algorithms implicit to solution of TD
problems, is desired that all the zones are
balanced in regard to one or many properties of
the geographic units that form them. For example,
zones that have the same workload can be
designed, same transfer times or the same ethnic
or socio-economical representation percentage. In
general, it isn’t possible to achieve the perfect
balance; therefore the deviation with respect to the
ideal arrangement is calculated. The bigger the
deviation, the worse the balance of the zone or the
generated zoning plans.

On the other hand, geometric compactness is
understood as a condition that tries to avoid the
creation of zones with irregular shapes and
pursuits the generation of zoning plans with clear
boundaries. In the practice it has been observed
that the compact zones are easier to manage and
to analyze due to the fact that the transfer times
and the communication issues are decreased
(sampling, districting, location-allocation, etc.). It
must be observed that the population balance and

the geometric compactness are objectives that are
opposed, because an improvement in one of them
can cause the other to deteriorate.

Attaining homogeneity in TD is very important in
diverse applications that demand an equal
resources proportion allocated to every zone. For
example, in our population sampling the
homogeneity is related to the samplers’ effort, in
sales this is understood as the fair demand of the
salespeople for every sale point, in logistics, as the
effort to distribute the products to the clients.

In TD problems, the clustering algorithm has the
job to create groups of compact and balanced
zones with regards to the specific same number of
geographic units in every group (zone) criterion.
The procedure to group data is also known as
cluster analysis.

The importance of cluster analysis resides in
finding clusters directly in the data without using
any previous knowledge. The use of clustering in
diverse areas is beneficial, however, in order to
have efficient cluster analysis techniques; there
must be some kind of similarity between the data.
Several researchers propose its use in spatial
data, given the existence of distance notions and
partitioning around medoids algorithms, they are
adapted with ease to this kind of data [13]. In
particular, the model PAM (Partitioning Around
Medoids), has been important in the latest works
about territorial partitioning [14]. PAM achieves this
purpose determining an object, representative for
each cluster to find k clusters (groups) [14]. This
representative object, called medoid, is the one
located closer to the center of the cluster. Once the
medoids have been selected, each unselected
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object is grouped with the medoid that is more
similar to itself. In this point, an evident weakness
of PAM is the process of repeated and long local
searches in the solution space; however, it obtains
a good “optimum” solution. On the other hand,
when additional restrictions are incorporated, the
complexity nature increases considerably.

In this work, we have adapted to PAM a
homogeneity restriction to balance the number of
objects in each cluster. Two algorithms have been
implemented: 1) PAM-RH (ALGORITHM 1):
Recursive PAM with homogeneity, where the
objects are assigned as usual to the medoids (the
closest one) and once every object is assigned, a
recursive and constructive procedure is run over
this compact solution to adjust it to the desired
balance restriction, this implies that the stronger
the restriction the higher the complexity of this
procedure will be and therefore the computing time
will increase considerably in exchange for a well-
balanced solution. This adjust looks for the clusters
which size is under the ideal size (the number of
geographical units, divided by the number of
groups to form) and proceeds move objects from
the closest group to the group that needs them to
achieve balance, but if this group is also under the
ideal size then the algorithm will have to move
objects from another nearby group to this group.
This implies a recursive procedure that will be
executed until there is a balance in the number of
objects assigned among the clusters.

2) Bi-Objetive PAM (ALGORITHM 2):  This
algorithm uses a multiobjective function, following
the principle of the weighted sum, where each of
the objectives has a weight or priority. The
extension to PAM is over the objective function
that now employs a heterogeneity minimization
strategy, this is, the minimization of the standard
deviation of the number of objects in each groups
to the ideal size of the groups. This will be further
explained later in the paper. In accordance to
above the present work is organized as follows:
this introduction as section 1, section 2 deals with
the general aspects of partitioning around the
medoids, in section 3 a partitioning algorithm
around medoids under a recursive scheme is
exposed to continue with section 4 that covers the
partitioning with a multiobjective perspective:
geometric compactness and balance. Section 5

gathers the final results of the computational
experience. Finally the conclusions are presented.

2. Preliminaries: Partitioning

Clustering is the process of grouping a set of
objects into classes or clusters so that objects
within a cluster have similarity in comparison to
one another, but are dissimilar to objects in other
clusters. K-means clustering and Partitioning
Around Medoids (PAM) are well known techniques
for performing non-hierarchical clustering [14].

Let us describe the clustering problem formally.
Assume that S is the given data set S =
{X1,...,%,}, where X; € R"™. The goal of clustering is
to find K clusters C;, C,, ..., C; such that C; # @ for

i=1,...k (1)
k
Uuc=Ss ©)

and the objects belonging into same cluster are
similar in the sense of the given metric, while the
objects belonging into different cluster are dissimilar
in the same sense. In other words, we seek a
function f:S-{1,...,k} such that for i=
1,...,k:C; = f~1(i), where (;satisfy the above
conditions.

f= argfminEVQ(El,...,fK) (4)

k
f= argminz”fi - Cf(%i)”2
U

Where C, = ﬁzxieck Z,k=1,.,K (5)

Therefore instead of function f directly, one can
search for the centers of the clusters, i.e, vectors
¢y,...,C, and implement the function f as

N . N > 12
fx) = argmln”x — Ci|| (6)
L

that is, assign the point to the cluster

corresponding to the nearest center [15].
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2.1 Sensibility of the partitioning in K-Medoids

When the clustering is not of the hierarchical kind,
it is known as automatic classification or group
analysis. The partitioning methods are also known
as optimization methods due to the fact that they
reach a unique classification that optimizes a
predefined criteria or objective function, without
producing a series of nested groups.

One of the most known methods in the literature is
k-medoids, and just like dynamic clouds, they are
based on the principle that a class can be
represented by an object, being this an average
point, and individual or group of individuals of the
class, a set of parameters, etc; this representative
is usually known as kernel. The first algorithm of
this kind was proposed by Forgy (1965) [16]. The
underlying idea is that given a set of kernels, the
following steps must be done: ¢ assign the
individuals to the closest kernel, thus forming the
classes to proceed with the calculation of the new
kernels with the formed classes, ¢ iterate the
previous steps until stability is achieved. It parts
from an initial configuration of kernels, and the
method converges to a partition that doesn’t
improve the criteria anymore. Depending on the
context and the kind of kernel, a criterion to be
improved is defined.

In general, k-medoids is fragile in regard to: 1) the
sensibility of the initial selection of the centroids, 2)
the prior selection of the value of k, 3) Handling of
non-numerical attributes, 4) poor efficiency in the
groups of different size, different density and non-
convex clusters and 5) with the use of a measure
to calculate the centroids, the method is sensitive
to outliers.

2.2 K-Medoids algorithm

One of the answers to the weaknesses of k-means
has been the proposals of algorithms over
medoids: instead of using the vector of means as
centroids, a vector corresponding to a real data (a
representative) is used where k-medoids uses
medians instead of means to limit the influence of
the outliers.

Due to fact that the K-means algorithm is sensitive
to outliers since an object with an extremely large
value may substantially distort the distribution of

data. How could the algorithm be modified to
diminish such sensitivity? Instead of taking the
mean value of the objects in a cluster as a
reference point, a Medoid can be used, which is
the most centrally located object in a cluster. Thus
the partitioning method can still be performed
based on the principle of minimizing the sum of the
dissimilarities between each object and its
corresponding reference point. This forms the
basis of the K-Medoids method. The basic strategy
of K-Mediods clustering algorithms is to find k
clusters among n objects by first arbitrarily finding
a representative object (the Medoids) for each
cluster. Each remaining object is clustered with the
Medoid that is the most similar. K-Medoids method
uses representative objects as reference points
instead of taking the mean value of the objects in
each cluster. The algorithm takes the input
parameter k, the number of clusters to be
partitioned in a set of n objects. A typical K
Mediods algorithm for partitioning based on
Medoids or central objects is as follows:

Input:

K: The number of clusters

D: A data set containing n objects

Output:

A set, of k clusters, that minimizes the sum of
the dissimilarities of each object to its
nearest medoid.

Method: Arbitrarily choose k objects in D as
the initial representative objects;

Repeat:

Assign each remaining object to the cluster

with the nearest medoid;

Randomly select a non medoid object Oiandom’
compute the total points S of swap point Oj
with Oramdom

if S < 0 then swap O; with Oiinaom to form the
new set of k medoid

until no change

Like this algorithm, a Partitioning Around Medoids
(PAM) was one of the first k-Medoids algorithms
introduced. It attempts to determine k partitions for
n objects. After an initial random selection of k
medoids, the algorithm repeatedly tries to make a
better choice of medoids [17].

3. Recursive partitioning around medoids

The majority of the problems of territorial design
TD demand geographical clustering. This kind of
clustering pursues the compactness, contiguity,
convexity and homogeneity of the groups to be
created for restrictions that define a specific
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problem [18, 19, 20]. Different authors have
adapted clustering algorithms to solve the TD
problems, however, we have focused on taking
advantage of the properties of the partitioning
around medoids to solve the compactness and in
this section we present a partitioning algorithm
over medoids that considers in the clustering,
geographical data known as Agebs. To answer to
the compactness, each geographical unit i is
assigned to the closest group representative
(medoid). Seen as an optimization problem, the
objective function is minimizing the total distance,
that is, the sum of the distances of each
geographical unit to its respective centroid [20].
Treating the problem in this way the formation of
compact groups of geographical units is achieved,
however, some problems require a balance on the
number of objects that form the groups (groups
with the same amount of elements). Then, for n
geographical units and k groups to form, each
group must have n/k members when n can be split
exactly into k groups or |n/k] + 1 otherwise. We
denominate this problem as homogeneity in the
number of elements. The combination of
compactness and homogeneity is treated in this
section in an algorithm around medoids with a
recursive approach.

3.1 PAM-Recursive Homogeneous: Algorithm for
compactness and homogeneity in the number of
objects (PAM-RH)

Considering the capabilities of PAM an algorithm
has been built that acts as a post-process in the
objective function of PAM, this is, a process that
will rearrange the solutions obtained to force the
desired balance in the solution.

For n elements to group and k groups to form,
having each group with % elements is desired when
these n elements can be split exactly into k groups
or in a maximum of |%| + 1 otherwise. For a group

j €10,...,k — 1} let size E; be the expected size of j
which is calculated with the principle of
homogeneity described above. If size; is the
current size of the group j, the group with the least
amount of elements is selected (in order to choose
the group that will need the most elements to
achieve its expected size) to continue with the
procedure recursiveHomogeneityAdjust() that is
described in the following algorithm:

ALGORITHM 1
PAM RECURSIVE HOMOGENEOUS (PAM-RH)
INPUT the centroid j of the group found with
the least elements
INPUT array of centroids
INPUT toSteal - the amount of elements that the
group Jj needs to “steal” to Dbecome of the
expected size.
INPUT cost - the current cost
the unbalanced solution
PROCEDURE recursiveHomogeneityAdjust (j,
centroids, toSteal, cost)
Get the centroid i closest to j;
surplus€size; - sizeE;;
IF toSteal< surplus THEN
Stack.push(j, toSteal);
WHILE !stack.empty () DO
Node €<stack.pop();
FOR h € 0 TO h <node.toSteal DO
Move an object from i to j;
//The closest one. Update the cost
solution;

(compactness) of

of the

END LOOP
END LOOP

ELSE

Stack.push(j, toSteal);

toSteal = toSteal - surplus;

recursiveHomogeneityAdijust (i, centroids,
toSteal, cost);

END IF
END PROCEDURE

The algorithm does the following: It takes as input,
the centroid j of the group found with the least
elements (this will ensure the complete balance of
the solution after the procedure ends), the array of
centroids (the current solution), the elements that
the cluster j needs (to reach the ideal size) and the
current cost of the solution. The first step is to find
the closest centroid to the cluster j, this will tell us
which one is the closest cluster. Then the surplus
of i will be calculated, if the expected size is bigger
than the current size of cluster | (size; — sizeE))
then we’ll have a surplus of elements in that group,
otherwise the value will be negative and therefore
this group will need to get more elements from
another group as well. Next if the elements that
cluster j needs to “steal” are less than the surplus
of cluster i then we employ an auxiliary stack to
store the number of cluster (centroid) and the
number elements it needs, this step is done so
when the recursion occurs we will have the
clusters that need elements stored in here. The
following step is a cycle that will finish when this
stack is empty. Inside this cycle we take out the
element at the top of the stack to move the
elements from i to j that are needed and then the
cost of the solution is updated.
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This is the basic case if the procedure is executed
once, the other case is when the elements needed
by j can’t be taken from the closest group i, and in
this case we store the cluster j and the elements
needed. Note that with a negative surplus the new
value of toSteal will be increased, this means that
cluster i will need to get enough elements from
another group to satisfy its own need and the need
of cluster j but when the value of surplus is positive
but still less than toSteal, this last one decreases
because now cluster i will give its surplus of
elements to cluster j but will need some more to
keep its balance. After this calculation the
recursion takes place, now cluster i will be the new
cluster used as parameter along with its elements
needed. Following this example, let's assume that
we have a total of 3 clusters, so the next cluster,
closest to i, let's call it h has the biggest surplus
and therefore has enough elements to give to i and
j, this means that toSteal is less than surplus and
now we push cluster i to our stack, the cycle will
run two times (the size of our stack that right now
contains clusters j and i). We take out cluster i and
move enough elements from cluster h to i so i can
have enough to give to cluster j and remain
balanced. Finally cluster j is removed from the
stack and we assign the nodes needed to j from
the surplus of cluster i and we finish by updating
the cost of the solution accordingly.

A vulnerable aspect of this algorithm lies in the
dispersion of elements due to those cases where a
group that contains many elements (in a much
bigger proportion to the other groups) must lend a
great percentage of objects to other groups. The
implication of this conflict is centered in this big
group that will give away many of its objects and
until after several iterations the problem seems to
invert itself due to the fact that the centroid starts
to be surrounded by objects that now belong to
other clusters because a cluster can’t give away its
own centroid. This case is distinguished as the
group formed by objects taken from other groups
that in the first iterations had more objects than the
rest of the groups. The problem of dispersion
occurs usually for cases of 40 groups or more and
it is possible to notice that the computational cost
increases in function of the number of groups. For
this algorithm PAM-RH, good optimal and feasible
results have been achieved with a satisfactory
homogeneity for no more than 40 groups but the

homogeneity achieved has a precise balance over
the cardinality of the groups.

The following Table 1 concentrates the results
between 4 and 40 groups where 469 objects were
grouped; the results that don’t go beyond 800
seconds. The data correspond to the Metropolitan
Zone of the Toluca Valley in Mexico (ZMVT). In
this table we included two results obtained with
PAM alone for 14 and 40 groups to show that PAM
on its own can’t reach a satisfying balance or
homogeneity. In this table the nomenclature is the
following: G (number of groups), Smallest (The
size of the smallest group obtained), Biggest (The
size of the biggest group obtained), Time
(Execution time of the algorithm in seconds).

The hardware used for the tests has the following
characteristics:

CPU: Dual Core AMD E-350 at 1.6 Ghz.
RAM: 2GB DDR3.
HDD: SATA-II 320GB 5400 RPM

OS: Windows 7 Ultimate 32bits

G | Smallest | Biggest | Cost Time Algorithm
4 117 118 |27.385883 | 4.107 | PAM-RH
8 58 59121.229193| 17.174 | PAM-RH
12 39 40| 15.595103 | 53.385 | PAM-RH
14 34 35|15.056902 | 79.536 | PAM-RH
16 29 30| 15.912905 | 54.236 | PAM-RH
20 23 241 13.539497 | 175.536 | PAM-RH
24 19 20| 13.045602 | 240.692 | PAM-RH
28 16 17 | 11.656398 | 229.474 | PAM-RH
32 14 15]10.739399 | 337.512 | PAM-RH
36 13 14| 9.507203 | 483.711 | PAM-RH
40 12 11]10.689795 | 715.477 | PAM-RH
4 51 172 | 27.17601| 0.0257 | PAM

14 10 64| 12.985695| 3.604 | PAM

Table 1. Test runs for algorithm PAM-RH
(Algorithm 1) and two example runs with PAM.
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The algorithmic proposals around the Medoids with
restrictions over the cardinality of the clusters that
we have exposed have produced good results for
small instances.

Figure 1. Result for 40 groups (Algorithm 1: PAM-RH).

Bi-
the

4. Partitioning around medoids with
Objective Function (BI-Objective on
standard deviation)

The PAM-RH algorithm has many limitations,
mainly its complexity for bigger problems because
it forces the solutions to be balanced, therefore we
can say that it works under hard restrictions and
this implies a high computing cost. Due to the fact
that we are trying to reach a small fragment of the
solution space that contains the desired feasible
homogeneous solutions, we have decided to turn
this hard restriction into a soft one in order to
improve the computing times and to actually guide
the search process towards this fragment of the
solution space but of course this change implies a
penalization over the homogeneity objective since
it won't be a demanded characteristic of the
solutions attained [21]. Now our combinatory
problem will have two objectives and we have
taken the model proposed in [20] to revise it and
adapt it to our new need for homogeneity and
below we present the definitions of interest along
with the adapted model.

Definition 1. Compactness
If we denote Z = {1,2,...,n} as the set of n objects

to classify, it is wished to divide Z into k
groups {G,, G, ... , G} with k < n in such a way that:

k
Gi:Z
=1

l

4

GNG =0,i+#]
G/l =1,i=12,..,k
A group G, with |G,,| > 1 is compact if for every
objectt € G, meets:

min;eg, d(t,i) < minjez_g, d(t,j),i #t (7)

A group G,, with |G,,,| = 1 is compact if its object t
meets:

ienle?t}d(t' )< jr}g(glfd(], D, Vf#+m
The criterion of neighborhood between objects to

achieve compactness is given by the pairs of
distances described in 1.

Definition 2. Homogeneity
elements)

(in the number of

Let T; =|G;| fori=1,2,..,k y M =n/k where n is
the number of geographical units and k the number
of groups to form. M is the mean or the average
amount of elements that correspond to each group
(+1 when the n objects can’t be split into k groups
exactly). Then the standard deviation is given by:

k M2
g = l=1(Tl M) (8)

n

The standard deviation indicates how deviated
from the average size M are the values of the set
T;. Therefore by minimizing the standard deviation,
we minimize the unbalance of the solution rather
than building already balanced solutions as it is
done in the PAM-RH algorithm. The algorithm
standard deviation is shown below:

4.1 Algorithm standard deviation o (SD)

This algorithm can be seen as a complement or
extension that can be wused with several
algorithms, for our work we chose PAM because of
reasons explained in section 1. It can be deduced
from our previous section (our definitions) that this
algorithm is an implementation of a Bi-objective
function formed by equation (7) and (8).
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The following procedure is the new proposal itself;
it is a simple calculation of the standard deviation
of an array that contains the sizes of the entire
cluster in the partition.

Procedure CalculateSD (procedure 1)
Input: array T that stores the sizes of the
groups.
Input: M average size of the groups (n/k).
Output: o the standard deviation of the array T

op =0

fori = 0 hasta k do

op = (T; - M)°

end for
S2 =op / n
Return VS2

This algorithm can be incorporated to any objective
function as a homogeneity measure, for example a
tabu search algorithm for clustering could add this
procedure as an objective of the objective function.
This means that with the proper strategies: initial
solution and neighborhoods and search techniques
this small procedure could be exploited to achieve
even better solutions. In the following section we
present our implementation with a simple PAM
algorithm to show how it can be embedded in any
algorithm and the results we achieved.

4.2 Bi-Objective Proposal for compactness +
homogeneity partitioning around medoids

Let UG be the total number of Agebs. Let G =
{x1,x,,...,x,} be the initial set of geographical
units, where: x; is the i" geographical unit, (i is the
index of the UG), and k is the number of zones
(groups). Given that it is wished to form groups
and to refer to these, we define:

Z; as the set of UG that belong to the zone | and
C; is the centroid, and d(i,j) is the Euclidean
distance from node i to node j (from one Ageb to
another).

Then we have as restrictions: Z; # @ fori =
1,..,k (the groups are empty), Z,NZ; = @ fori +
j (there no repeated Agebs in different groups),
and UX_, Z; = UG (the union of all the groups is all
the Agebs).

Once the number k of centroids has been
decided¢;, t =1, ..,k, to use they must be
selected in a random way and next assign the

Agebs to the centroids in the following way: for
each Ageb i

10 )

Each Ageb is assigned to the closest centroid c,.
To achieve homogeneous cardinality in the groups
to form, a weighted sum is done where each value
of k is calculated in accordance to the sum of the
distances of the AGEBS assigned to each
centroid. The obtained value is weighted with w1
and the standard deviation of the sizes of each
group represented by T; is weighted with a value
w2 such that the minimum of the sum of both
weighted values is chosen. This can be expressed
as the equation (9):

ming=1,_ nie {wl(min {Zh Siee, 4 COY) + w2 ( w» (9)

This weighed objectives strategy is common in
the multiobjective literature, usually the weights
of all the objectives should add up to 1. The
values of each weight can be determined by
means of experiment designs, shadowing,
manual setting, etc. [21]. In our case we have
experimented with manual tuning to determine
that the most adequate weights for our desired
goals are .7 for the homogeneity objective and .3
for compactness.

With this new strategy, in each movement, we
achieve a minimization of the unbalanced groups
and at the same time the compactness. It can be
seen as a process that tries to locate the
homogeneous solutions in the space where the
compactness plays a tie breaker role to determine
the best solution from very similar ones in regard
to the standard deviation value. The only extension
in this case is only over the objective function;
therefore the usual assignation of objects to
medoids that PAM employs remains the same.

Based on equation (9) (The multiobjective function
of compactness plus homogeneity) the following
algorithm is built (procedure 2), which is the
calculus of the weighted sum of the distances
between objects and medoids plus our new
homogeneity measure proposal, the standard
deviation (procedure 1).
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Procedure Bi-objective PAM Function (Procedure
2)
Input: array T that stores the sizes of the
group.
Input: array C of centroids.
Input: weights wl y wZ2.
Output: cost the cost of the weighted sum of
objectives.

cost = 0

for i = 0 until n do

j = ClosestCentroid(i,C)
cost = cost + d(i,7)
T, =T; + 1

end for

return wl*CalculateSD(T) + w2*cost

The algorithm returns the value of the weighted
sum, over which a search procedure like PAM can
be guided towards the desired homogeneous
solutions without overlooking the compactness
needs of many TD problems.

We show bellow how we incorporate this strategy
to a PAM algorithm.

(ALGORITHM 2)
Algorithm PAM with Standard Deviation o: Bi-
Objetive PAM
Input: Dissimilarity matrix of size n x n.
Input: integer k number of groups to form.
Output: A compact and balanced solution.
1: Initialize: Select k of the n objects
as medoids
2: Associate each object to the closest

medoid

3: for each medoid m do

4: for each object no-medoid o do

5: exchange m with o and
compute the total cost of
the configuration using
Bi-Objetive Function.

6: end for

7: end for

8: Select the configuration with the

lowest cost
9: Repeat 2 and 8 until there 1is no
change in the medoids

It's easy to observe that algorithm 2 is the same as
PAM but in line 5 we employ Procedure 2 as an
objective function (line 5), this will make the search
process to revolve around this value and will lead
the process to balanced solutions eventually.

The following table 2 gathers some important test
runs of our Bi-Objective PAM approach in the
standard deviation assuming that it makes sense

to grant to the weighted sum a partial treat to the
homogeneity. In this table 2 a value of .9 for
homogeneity has been specified and .1 for
compactness. Even though an experiment design
wasn’t done, some tests were, taking into account
some values for the weights that could be
important for a decision maker with regards to
each criterion.

It was assumed that due to the important role of
homogeneity in this study case, that it should have
a bigger weight. It's important to note in this table
that the difference of homogeneity (DH) consists in
subtracting the size of the smallest group to the
size of the biggest one.

Compactness cost (CC) is the compactness cost
and time (T) is the time that the algorithm needed
to find a solution and is given in seconds. Lower
bound (LB) is the lowest bound obtained with
Lagrange Relaxation and Best feasible solution
(BFS) is the best solution found [22].

G |DH|CC T LB BFS

2 1 37.36047363 | 0.03 36.09367 | 36.0995
4 3 |31.2165947 |0.24 27.21939 | 27.2244
6 3 |31.01499748 | 0.776 22.74695 | 22.8878
8 7 | 25.82069206 | 1.311 18.97615 | 19.4539
10 |14 | 26.65379524 | 1.456 16.25054 | 16.3904
15 |7 | 14.69729328 | 8.547 13.1308 | 13.7122
20 |10 | 16.01709747 | 6.059 11.222 11.3802
40 |9 |7.332001686 | 142.823 | 7.1723 8.9053
60 |7 |5.056399345 |382.308 |5.55026 |6.6463
80 |10 |3.856300831 | 672.112 |4.45614 |6.4801
100 | 10 | 3.037899256 | 1047.046

120 |8 | 2.572799206 | 1258.085

140 |8 | 2.191200495 | 1745.663

160 | 8 | 1.880400062 | 2427.552

180 |6 | 1.622200251 | 2334.863

200 {6 | 1.41950047 |2552.976

Table 2. Test runs for PAM with Standard
Deviation with weights .9 and .1 respectively:
Bi-Objective PAM (ALGORITHM 2).
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5. Compilation of results of the computational
experiments.

For the test runs of the algorithm, the map ZMVT
has been chosen and a Lagrange Relaxation (LR)
approach has been used to obtain the lower
boundaries of the optimal solution, based on a
10% tolerance of unbalance in the number of
elements in each group, this tolerance represents
the elements above or below the ideal mean
permitted in any given group.

For example, if we have a problem with 500
geographical units and we want to form two
groups, this means that the ideal size should be
500 divided by 2 which is 250, then the 10%
tolerance means that any of the groups could
have a size of +%10 of 250, this is, one group
could have 225 elements and the other one 275.

Thereafter that the optimal values found by the
LR are feasible only for this tolerance restriction.
The scheme of LR considered was developed for
the p-median problem and to get Ilower
boundaries and it was developed in previous
works and it is used in this paper due to the
strong similarities between the p-median problem
and the partitioning problem, not even in the
model but also in the results found [22].

In table 3 the test runs for PAM-RH (algorithm 1)
and Bi-Objective PAM (algorithm 2) have been
gathered. It's possible to assume that by
assigning .9 as a weight to the homogeneity
objective, the results could be better, just as we
did on the experiments exposed in table 2, but the
randomness of the solutions doesn’t help to emit
a safe conclusion like that.

Then, after diverse experimental trials for the map
that has been used, it has been decided that a
good balance for the values of the weighted sum
is .7 for homogeneity and .3 for compactness.
The results are presented in the following table.

This table deserves different explanations: The
gap value is calculated as the compactness cost of
the solution minus the lower boundary and this is
divided by the lower boundary again.

PAM RH Bi-Ob_jetive PAM LR
(Algorithm 1) (Algorithm 2)
G
cc GZP Dl cc cf,zp oy | LB | BFS
2(36.73| 1.76| 1| 37.22| 3.12 1] 36.09| 36.09
4|2738| 0.63| 1| 30.95]| 13.75 5(27.21| 27.22
6|24.32| 6.88| 1| 29.46| 29.46 62275 22.77
812122 | 11.54 | 1| 24.44 | 28.44 6119.03| 19.30
10| 17.86 964 |1 | 17.12| 5.11 12 16.29 | 16.30
15| 1467 | 1154 | 1| 14.32| 8.92 4113.15| 13.78
20| 13.53 | 19.96 | 1| 13.08 | 15.91 411128 11.91
40| 10.68 | 47.71| 1| 7.520| 3.93 8| 7.236 7.96
60| 8.894 | 61.65| 1| 5.113| -7.06 7| 5.502 6.47
80| 6.156 | 39.83 1 3.888 11.69 10 4.403 5.12
100 | 8.454 | 126.3 1 3.049 18.35 9 3735 4.88
120 2.588 8
140 2.194 8
160 1.878 6
180 1.621 6
200 1.420 4
220 1.241 4
240 1.089 4
260 0.949 4
280 0.807 4
300 0.680 4

Table 3. Test runs for Algorithms 1 and 2.

This value indicates how worse the solution in
regard to the lower boundary is. In general, the
gap is used to measure the improvement that a
boundary cost has over another. In the literature in
a wide sense, GAP means Generalized
Assignment Problem and to be able to do a
numerical study for algorithms like the ones we
have developed, the GAP adapts in order to
incorporate the LR boundaries and to compare the
relationship between the quality of the boundaries
and the feasibility of the solution with regards to
the exact optimal solution. The value of the
boundaries is previously calculated and they are
included in the quotient of the gap equation for this
purpose. In previous works we obtained the
boundaries for compactness [22]. In this article we
have included the homogeneity and the
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compactness gap. In our study case, we have
focused on the upper and lower boundaries
through the formula gap = (z* — zLP)/zLP * 100,
where z* denotes the solution and zLP denotes the
lower boundary that corresponds to the linear
relaxation of the problem (measures the quality of
the solutions found). A very interesting
postgraduate document shows good details about
LR and GAP [23].

The contrast between algorithm 1 and LR with
respect to compactness indicates that they are very
close to the lower boundary and it's also possible to
observe that the homogeneity or balance difference
for PAM-RH is only of one object between the
groups. On the other hand, as it was explained
above, the values obtained with LR obey a 10%
tolerance of unbalance for all of the tests; therefore
we don’t know the optimal values for a less flexible
tolerance like the results generated by algorithm 1.
In other words a first look to the results seems to
show that algorithm 1 reaches to a solution far from
the lower boundary in some cases, however it
achieves the “perfect” balance for this case due to
the fact that the 469 objects can’t be split into
equally sized groups, otherwise the homogeneity
difference for this algorithm would be 0. With these
results we suggest PAM-RH as an algorithm for
small problems where the balance is not an option
but a necessity.

For bigger problems we have designed a faster but
flexible approach, a homogeneity measure that
can be implemented in any clustering optimization
algorithm to minimize the unbalance of the
solutions. Up until 40 groups the results found are
within the 10% tolerance boundaries and as the
problem grows it seems that the compactness cost
improves with respect to the results of algorithm 1
and the most important feature is the capability to
work with bigger problems, unlike algorithm 1 that
was problematic to keep testing for more than 100
groups due to the heavily increased computing
times. With this we conclude that algorithm 2 is a
very strong option when a decision maker needs to
work with a big clustering problem and a greater
tolerance for unbalanced solutions is acceptable.
The issues with the unbalance are not unexpected,
it is known that in multiobjective problems, a
constant struggle between the objectives exists
and some will be affected and others benefited.

The following figure shows a graphical
representation of a solution for 40 groups obtained
with Bi-Objective PAM.

Figure 2. Map for 40 groups (Algorithm 2).

This map in figure 2 reveals the problem of
homogeneity over 10%. Some groups lose balance
not only because of the conflict between the two
objectives but also due to the geographical
conditions of the data complicate the clustering
with the two objectives (compactness and
homogeneity), some of the objects are dispersed
and not connected

6. Conclusions

The compactness implied in the classification by
partitions has been discussed due to its high
computational cost, and in this work we have
proven that the complexity is greater when
additional restrictions are incorporated to this kind
of partitioning. Therefore we propose two
solutions, one to deal with the problem in a strict
way and another to deal with the high complexity
of this problem.

Both algorithms, 1 and 2, are better than the
original PAM in regard to homogeneity, attaining
compactness just above the ones that PAM
obtains without balancing restrictions and in
general terms Bi-Objective PAM compared to
PAM-RH can work with problems that require a
number of groups higher than 100 in an instance of
469 objects.

Algorithm 1 employs PAM improving its objective
function with a post-processing of the solution to
rearrange it in a balanced one in an iterative and
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recursive way. This procedure is complex and
requires a high computing time as can be
observed in table 1. For this, algorithrm 2 was
developed, that uses a combined objective
function where the homogeneity restriction
becomes a soft requirement to obtain better
solutions for bigger problems in a smaller time (the
maximum time is just over 2500 seconds for the
biggest instance with an exhaustive algorithm like
PAM). This second algorithm can be extended
easily to applications with more than 2 criteria; this
makes it a very flexible approach.

A not serious flaw from both algorithms is that they
barely reach the compactness cost given by LR,
however LR has issues to work with the instances
of 100 or more groups as well, and in this point our
algorithm 2 is a good contribution to achieve bigger
groupings. Furthermore algorithm 2 reaches a
better compactness for more than 40 groups
sacrificing the homogeneity a little.

From the results obtained we have concluded that
it is possible to obtain better results in both aspects
(compactness and homogeneity) with algorithm 2 if
we implement it along with a custom clustering
algorithm based on a metaheuristic technique, due
to the fact that PAM works with a random initial
solution and its search strategy is exhaustive but
not necessarily fit to find balanced solutions. Better
strategies and techniques adapted to our study
case promise better results for our algorithm 2 that
has obtained promising solutions with a basic
algorithm such as PAM. Also for PAM-RH there’s
room for improvement through coding optimization
to reduce its complexity.

Currently, we are working with other peers to
compare our results with other approaches.
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