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ABSTRACT

Assuming that the thermo-creep response of the material is governed by Norton’s law, an analytical solution is
presented for the calculation of time-dependent creep stresses and displacements of homogeneous thick-walled
cylindrical pressure vessels. For the stress analysis in a homogeneous pressure vessel, having material creep
behavior, the solutions of the stresses at a time equal to zero (i.e. the initial stress state) are needed. This
corresponds to the solution of materials with linear elastic behavior. Therefore, using equations of equilibrium, stress-
strain and strain-displacement, a differential equation for displacement is obtained and then the stresses at a time
equal to zero are calculated. Using Norton’s law in the multi-axial form in conjunction with the above-mentioned
equations in the rate form, the radial displacement rate is obtained and then the radial, circumferential and axial creep
stress rates are calculated. When the stress rates are known, the stresses at any time are calculated iteratively. The
analytical solution is obtained for the conditions of plane strain and plane stress. The thermal loading is as follows:
inner surface is exposed to a uniform heat flux, and the outer surface is exposed to an airstream. The heat conduction
equation for the one-dimensional problem in polar coordinates is used to obtain temperature distribution in the
cylinder. The pressure, inner radius and outer radius are considered constant. Material properties are considered as
constant. Following this, profiles are plotted for the radial displacements, radial stress, circumferential stress and axial

stress as a function of radial direction and time.
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1. Introduction

Axisymmetric component such as a cylindrical
vessel is more often used as the basic process
component in various structural and engineering
applications such as pressure vessels (e.g.
hydraulic cylinders, gun barrels, pipes, boilers, fuel
tanks and gas turbines), accumulator shells,
cylinders for aerospace industries, nuclear reactors
and military applications, pressure vessel for
industrial gases or a media transportation of high-
pressurized fluids and piping of nuclear reactors [1,
2]. In most of these applications, the cylinder has
to operate under severe mechanical and thermal
loads, causing significant creep and thus reducing
its service life [1, 2, 3, 4]. Therefore, the analysis of
long term steady state creep deformations is very
important in these applications. [1, 2].

Weir [5] investigated creep stresses in pressurized
thick walled tubes. Bhatnagar and Gupta [6]
obtained solution for an orthotropic thick-walled
internally pressurized cylinder by using constitutive

equations of anisotropy creep and Norton’s creep
law. Yang [7] obtained an analytical solution to
calculate thermal stresses of thick cylindrical shells
made od functionally graded materials with elastic
and creep behavior. Creep damage simulation of
thick-walled tubes using the theta projection
concept investigated by Loghman and Wahab [8].
Gupta and Pathak [9] studied thermo creep
analysis in a pressurized thick hollow cylinder.
Assuming that the creep response of the material
is governed by Norton’s law, Zamani Nejad et. al.
[10] presented a new exact closed form solution for
creep stresses in isotropic and homogeneous thick
spherical pressure vessels. In this paper all results
have been obtained in nondimensional form.
Hoseini et. al. [11] presented a new analytical
solution for the steady state creep in rotating thick
cylindrical shells subjected to internal and external
pressure. In this paper the creep response of the
material is governed by Norton’s law and exact
solutions for stresses are obtained under plane
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strain assumption. Wah [12] developed a theory for
the collapse of cylindrical shells under steady-state
creep and under external radial pressure and high
temperature (300 to 500 F). Pai [13] studied the
steady-state creep of a thick-walled orthotropic
cylinder subjected to internal pressure. They
observed that the creep anisotropy has a
significant effect on the cylinder behavior
particularly in terms of creep rates which may differ
by an order of magnitude compared to an isotropic
analysis. Sankaranarayanan [14] studied the
steady creep behaviour of thin circular cylindrical
shells subjected to combined lateral and axial
pressures. The analysis is based on the Tresca
criterion and the associated flow rule. Assuming
that the total strain is consist of elastic and creep
components, Murakami and Iwatsuki [15]
investigated the transient creep analysis of circular
cylindrical shells on the basis of the strain-
hardening and time-hardening theories. Murakami
and Suzuki [16] developed a numerical analysis of
the steady state creep of a pressurized circular
cylindrical shell on the basis of Mises’ criterion and
the power law of creep. Sim and Penny [17]
studied the deformation behaviour of thick-walled
tubes subjected to a variety of loadings during
stress redistribution caused by creep. Murakami
and Iwatsuki [18] investigated the steady state
creep of simply supported circular cylindrical shells
with open ends under internal pressure by using
Nortons'’s law. Using finite-strain theory Bhatnagar
and Arya [19] studied the creep bchaviour of a
thick-walled cylinder under large strains. Murakami
and Tanaka [20] investigated the creep buckling of
clamped circular cylindrical shells subjected to
axial compression combined with internal pressure
with special emphasis on the concept of creep
stability and the accuracy of the analysis. Jahed
and Bidabadi [21] presented a general
axisymmetric method for an inhomogeneous body
for a disk with varying thickness. An approximation
has been employed during their solution algorithm.
It means that they avoid considering the
differentiation constitutive terms of governing
equations for creep analysis. Chen et al. [22]
studied the creep behavior of a functionally graded
cylinder under both internal and external
pressures. They observed that an asymptotic
solution can be derived on the basis of a Taylor
series expansion if the properties of the graded
material are axisymmetric and dependent on radial
coordinate. In order to investigate creep

performance of thick-walled cylindrical vessels or
cylinders made of functionally graded materials,
You et al. [23] proposed a simple and accurate
method to determine stresses and creep strain
rates in thick-walled cylindrical vessels subjected
to internal pressure. Based on the power law
constitutive equation, Altenbach et al. [24]
presented the classical solution of the steady-state
creep problem for a pressurized thick-walled
cylinder. In this paper they applied an extended
constitutive equation which includes both the
linear and the power law stress dependencies.
Singh and Gupta [25-28] developed a
mathematical model to describe the steady-creep
behaviour of functionally graded composite
cylinders containing linearly varying silicon carbide
particles in a matrix of pure aluminum involving
threshold stress-based creep law. The model
developed is used to investigate the effect of
gradient in distribution of SiCp on the steady-state
creep response of the composite cylinder.
Assuming total strains to be the sum of elastic,
thermal and creep strains, Loghman et al. [29]
studied the time-dependent creep stress
redistribution analysis of a thick-walled FGM
cylinder placed in uniform magnetic and
temperature fields and subjected to an internal
pressure. Following Norton’s law for material
creep behavior and using equations of equilibrium,
strain displacement and stress-strain relations in
the rate form and considering Prandtl-Reuss
relations for creep strain rate-stress equation, they
obtained a differential equation for the
displacement rate and then calculated the radial
and circumferential creep stress rates. Sharma et
al. [30] investigated the creep stresses in thick-
walled circular cylinders under internal and
external pressure, using transition theory, which is
based on the concept of ‘generalized principal
strain measure’. Jamian et al. [31] investigated the
creep analysis for a thick-walled cylinder made of
functionally graded materials (FGMs) subjected to
thermal and internal pressure. Singh and Gupta
[32] studied the steady state creep behavior in a
functionally graded thick composite cylinder
subjected to internal pressure in the presence of
residual stress. Hoffman'’s vyield criterion is used,
to describe the yielding of the cylinder material in
order to account for residual stress. In this article,
assuming that the thermo-creep response of the
material is governed by Norton’s law, an analytical
solution is presented for the calculation of time-
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dependent creep stresses and displacements of
thick-walled cylindrical pressure vessels under
internal heat flux.

2. Heat conduction formulation

In the steady state case, the heat conduction
equation for the one-dimensional problem in polar
coordinates simplifies

ﬁ[ma—ﬂ:o (1)
or or

where T=T(r) is temperature distribution in the

thick cylindrical pressure vessel. We may
determine the temperature distribution in the
cylindrical vessel by solving Eq. 1 and applying
appropriate boundary conditions. Eq. 1 may be
integrated twice to obtain the general solution

T(r)=4nr+4, (2)

The boundary conditions for when that inner
surface is exposed to a uniform heat flux ¢, , and

the outer surface is exposed to an airstream
temperature, are as follows

-AT'=gq, , r=a
-AT'=h,(T-T,) , r=b (3)
=4
dr

Here A, T, and h,Z are thermal conductivity,

temperatures and heat transfer coefficient of the
surrounding media, respectively. Substituting Eq. 2
into Eq. 3 yields

Alz_aqa
4 (4)
1 Inb
:T B — _
4, w+aqa[bhw+ /J
Therefore:
aq aq r
T(r)=T +—%——%In| — 5
( ) ? bh, A (bj ®)

3. Linear elastic behavior analysis of the cylinder

For the stress analysis in a cylinder, having
material creep behavior, the solutions of the
stresses at a time equal to zero (i.e. the initial
stress state) are needed, which correspond to
the solution of materials with linear elastic
behavior. In this section, equations to calculate
such linear stresses in cylinder analytically will
be given briefly for two cases: (a) plane strain;
(b) plane stress. Consider a thick-walled cylinder
with an inner radius a, and an outer radius b,

subjected to internal pressure P and external
pressure P, that are axisymmetric (Figure 1).

3.1 The case of plane strain

The displacement in the r-direction is denoted by
u, . Three strain components can be expressed
as

du

= r 6

"= (6)
u

Egg = — (7)
r

6. =0 (®)

where ¢, , ¢, and ¢_ are radial, circumferential

and axial strains. The stress-strain relations for
homogenous and isotropic materials are

E(I_V) |:8 + d &
o,=——"— —
" (1+v)(1—2v) Ty
—t—:aT} )

o E(1-v) [5 LV,
vy (1-2v) T -

1
~ +VaT}

- (10)
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o.=v(o,+0,)—EaT

(1)

where ¢, , o, and o_ are radial, circumferential
and axial stresses, respectively. Here E, v and
« are the Young's modulus, Poisson's ratio and
thermal expansion coefficient, respectively.

Figure 1. Configuration of the cylinder.

The equilibrium equation of the cylindrical
pressure vessel, in the absence of body forces, is
expressed as

do, 0,—0,

s rr
+

=0 12
dr r (12)

Using Egs. 5-12, the essential differential equation
for the displacement u, can be obtained as

d*u, du |1 d(InE)
dr’ dr|r dr

+&{LM—1}

r|il-v dr r
d(InE
_l+vipda  dT | od(nE) (13)
1-v dr dr dr

For a homogenous and isotropic material, Young's
modulus, Poisson's ratio V, and the thermal
expansion coefficient &, are constant, therefore,
Eqg. 13 on simplifying yields

2
dL;r+1dur_u_;:(1+v)ad(T) (14)
dr rdr r (1—v)r dr

The general solution of the displacement u, is

C, al+v

u, =C1r+—+——errdr (15)
r rl-v-
The corresponding stresses are
__E e _q-a&
O-”_(1+v)(1—2v)[cl (1-2) (16)
+%—V(1+V)J.rTrdr}
r o 1l-v -
E C
=—— I C +(1-2v)2
0-99 (1+V)(1—2V)|: 1 ( V) 7‘2 (17)
1 1-2 1 ,
—( +V)( V)aT+a( jv)j Trdr}
1-v r a
o.=v(o, +O'rr)—E05T (18)

To determine the unknown constants C, and C, in

each material, boundary conditions have to be
used, which are

O-rr:_Pi °
o.=—-P ,

rr o

(19)
The unknown constants C, and C, are given in
Appendix.

3.2 The case of plane stress

For the case of plane stress the stress-strain
relations are

[grr +ve, —(1+ v)aT] (20)
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E
O =ﬁ[8‘% +ve,, —(l+v)aT:| (21)

c.=0 (22)

zz

For The case of plane stress the differential
equation for displacement u, is

2 1+
d’u, ”2 +lﬂ_”_;:—( v)adr (23)
dr rdr r r dr
The solution of Eq. 23 is
! 1+ P
e ed L [ Trar (24)
r r a
The corresponding stresses are
1_ ’
o, =-Ll-UMG (25)
1-v (1+v) r
Va ¢r
+r—2L Tl’dl"jl
E (1-v)c;
= C/+ 2
o l—v{ C(l+v) 7 (26)

—(1-v aT+1 "Trdr
pria

To determine the constants C| and C;, boundary
conditions have to be used which are the same as
those for the case of plane strain (see Eqg. 19).
The unknown constants C/ and C, are given in

Appendix.
4. Creep behavior analysis of the cylinder

For materials with creep behavior, we use Norton’s
low to describe the relations between the rates of

stress (&, ) and strain (¢ ) in the multi-axial form

. 1+v

. 1% . 3 (N—l)
'_Eo-kké‘ij +5DO'€ Sij

S; =0y —50',{,(5!./ (28)
3 1

Oy = ES,-,S,-]- :ﬁx

J6, ~0) +(0, ~0.) +(0.~0u) (29)

where D and N are material constants for creep.
Oy is the effective stress, Sl.j is the deviator stress

tensor. The relations between the rates of strain
and displacement are

= 30
5, =L 30)
. u
Egg = (31)

r

And the equilibrium equation of the stress rate is

do, G, —0,

rr rr
+

=0 32
dr r (32)

For the case of plane strain (¢, =0), the relations
between the rates of stress and strain are

6, -—L0v) {g e
"_(1+v)(1—2v) Ty ?

3 N-1) | or V o
2oy 5,015 (33)
Pl Gl B {g g
T +v)-20) 7 1=v T
Speti|g + Vg (34)
2 eff 00 1_V i
where
S"‘V =Srr +VSZZ
Spo =Spe +VS.. (3%)
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For the case of plane stress (o,. =0), the relations
between the rates of stress and strain are

. . . 3 (N-1) orr
O-rr = _ V2 {grr + VEGH _EDo-eff Srr} (36)
. E . . 3 N-1) anrr
O =m{ge9 +Vve, —EDO';]- )Sea} (37)
where
S:: = Srr + VStglg
Séo; = SBH + VSrr (38)

4.1 The case of plane strain

Substituting Eqgs. 30 and 31 into Egs. 33 and 34
and then into Eqg. 32 gives the differential equation

for 4, in cylinder

d*u, du |1 d(InE)
dr? dr | r dr

+£{V,d(lnE) l}

r dr r
3 d(lnE) (N-1) ' rar
ZETDO-%‘ (Srr+VS9€)
3 d (N—l) 2 ror
+EE|:DO'eff (SW+VS,99):|
RER v')(ﬂj (39)
2 ’ r
where
v (40)
1-v
For a homogeneous and isotropic material,

Young's modulus ( £ ) is constant, also the case of

v, D and N being constant is studied in this
article, therefore, Eq. 39 on simplifying yields

2. . .
dur+dur u,

2 2
dr rdr r

3d - ’ rQr
ZE—F[DO'E;\; 1)(Srr +VS95)i|

+%Do-$l)(1—v')(—s” _Sggj (41)
r

. S, and S;, are very
complicated functions of the coordinate », even in
an implicit function form. Therefore, it is almost
impossible to find an exact analytical solution of Eq.
41. We can find an asymptotical solution of Eq. 41.
At first, we assume that o, S/ and S,, are

constant, i.e. they are independent of the coordinate
r. Then, the solution of Eq. 41 is

In general, the quantities o

D -
i, :D1r+—2+l><§Do$ )
r

’ 1o’ a2
x3(8) +v Sgg)(r—TJ

(42)

where the unknown constants D, and D, can be

determined from the boundary conditions. The
corresponding stress rates are
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(43)

) {D, +=2(1- 2v)} (44)

+(1+v)(1—2v

. 3 o) E T
O-zz ZV{EDO-S,};] ) 1—V2 [(Srr _SHH)

xln(r)—S56,]+

2E
(1+v)(1—2v)D1}

3

—EDagf’fV YES (45)

zz

To determine the unknown constants D, and D,

in each material, boundary conditions have to be
used. Since inside and outside pressures do not
change with time, the boundary conditions for
stress rates at the inner and outer surfaces may
be written as

(46)

Using these boundary conditions the constants D,
and D, are obtained

1 3 ) (e ,
D, =_EXEDJ§QT (s -58;,)

-2y {2(1—1/)1“(“){1_17217—2 2}

1-v a

(47)

2
D, =lx§D0'(N_l) (ab)

~(1-20){($, - 8} )[2(1-v)Ina)
xZ—jln(a) +ln(b)}

1 ’ ’ ?
_E(S,, + Sgg)[z—z - 1)}

When the stress rate is known, the calculation of
stresses at any time ¢ should be performed

(48)

iteratively

o (rt)=0,""(rt ) +6," (rt)a" (49)

where

(=Y di (50)
k=0

To obtain a generally useful solution, a higher
order approximation of o, S| and S, should

be made
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(51)

(52)

45w ()]

r=rF —\3 53
= (r=7) +.. (53)

+

where 7 is the center point of the wall thickness in
the following analysis.

4.2. The case of plane stress

The differential equation for 4, is

dzl;lr dur L'[r _ 3D (N-1)

-——L==—0

(54)
ar* rdr 1 21 7

(s7-55)

The solution of Eq.54 is

) . Dy 13 vy
u(r)=D1r+72+5xEDO'eﬁ-

(59)

(s +s;;)[rln(r)_aln(a)_%(r—a)}

where the unknown constants D, and D) can be

determined from the boundary conditions. The
corresponding stress rates are

o - EZ{D;(HV)_Z;@_V)
r

+%Dagf¢-l> (574 Sp)[(1+v)In(r)

—%(1—v)—v£ln(a)+v—a}

r 2r

—%Dagj;f‘”S”} (56)

rr

<ol (s +S;;)[(1+V)ln(r)—%(l—v)

3

a a (N-1) grr
—7ln(a)+;:|—EDO'eﬁ S&Q} (57)

-b’ 3 -
D=— """ «2ps¥ 1) Sy S
1 (az_bz)(1+v)x4 O-ej/ ( rr+ 4919)

(GREH Gy ERC)

1 3 - " " 1
e s, +S,%,){ln(a)+5}
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1 3

+ Z Do s 58
(1 + V) 2 O-eff Y ( )
D - —(ab)2 XEDG(NJ)(S” LS )
2 (a2 —bz)(l—v) 4 eff " 00

{(Hv)ln(%jw[b;“]G—ln(a)ﬂ (59)

5. Numerical results and discussion

In the previous sections, the analytical solution
of creep stresses for hemogeneous thick-walled
cylindrical vessels subjected to uniform
pressures on the inner and outer surfaces were
obtained. In this section, some profiles are
plotted for the radial displacement, radial stress,
circumferential stress and axial stress as a
function of radial direction and time.

A cylinder with creep behavior under internal and
external pressure is considered. Radii of the
cylinder are =20 mm, »=40 mm. The other
data are

E=207 GPa, v=0292 a=10.8x10° K,
N=225  A=43 W/m'C, P=80 MPa,
P =0 MPa, D=14x10" ¢,=3000 W/m’,
h,=65 W/m>°C,T, =25 °C

The thermal loading is as follows: inner surface
is exposed to a uniform flux, ¢,, and the outer

surface is exposed to an airstream at 7.

5.1 The case of plane strain

The stress distribution after 10h of creeping are
plotted in Figure. 2, Figure 3 and Figure 4 for the

stress components o, o, and o

o zz

respectively. It must be noted from Figure. 2,
Figure 3 and Figure 4 that, all three stresses
are comperesive and the values of all three
stresses decreases as radius increases. The
absolute maximums of radial, circumferential and

axial stresses occur at the inner edge. It means
the  maximum shear stress which s

T =04 —0, /2 Will be very high on the inner

max
surface of the vessel.

. r/a .
1 1.2 14 1.6 1.8 2

-0.50 |
-0.60 |
-0.70 ]
-0.80 ]

-0.90

O/ Py

-1.00 -

Figure 2. The radial stress calculated from the
asymptotic solution after 10 h of creeping.

r/a
1 1.2 1.4 1.6 1.8 2
‘]“4 3 Il 1 Il 1 Il 1 1 1 1 J

4.4 -
7.4 -

-10.4

-13.4 4

Ogg/ P;

-16.4

Figure 3. The circumferential stress calculated from
the asymptotic solution after 10 h of creeping.

r/a
1 1.2 1.4 1.6 1.8 / 2

-10.5 -

Jzz/Pi

-12,5 -

Figure 4. The axial stress calculated from the
asymptotic solution after 10 h of creeping.
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The time dependent stresses at point are plotted in
Figure. 5, Figure 6 and Figure 7. Radial,
circumferential and axial stresses decreases as
time increases.

According to Figure. 5 to Figure 7, all three
stresses are comperesive. The radial displacement
along the radius for the condition of plane strain is
plotted in Figure 8. It must be noted from Figure. 8
that the maximum value of radial displacement is
at the inner surface.

5.2 The case of plane stress

The stress distribution after 10h of creeping are
plotted in Figure. 9 and Figure 10 for the stress

components o, and o,, respectively. It must be
noted from Figure. 9, that for r/a <1.08, the value

time, hour
0 2 4 6 8 10

-0.74 T T T T T T T T

Figure 5. Time-dependent radial
stress at the point » =30 mm.

time, hour
0 2 4 6 8 10
37c R T A T

_5 .
-6.25 A
_75 .
&GS
N |
L -10 -

Figure 7. Time-dependent axial
stress at the point » =30 mm.

of radial stress increases as radius increases while
for r/a>=1.08, The value of radial stress decreases

as radius increases. According to Figure 10, the
value of circumferential stress decreases as radius
increases. It can be seen that, radial and
circumferential stresses are compressive.

The time dependent stresses at point » =30
mm, are plotted in Figure. 11 and Figure 12. The
radial and circumferential stresses decreases as
time increases.
According to Figure. 11 and 12, radial and
circumferential stresses are compressive. The
radial displacement along the radius for the
condition of plane stress is plotted in Figure 13.
There is an decrease in the value of the radial
displacement as radius increases.

time, hour

0 2 4 6 8 10
-3.25 1
-4.50 A
-5.75 -
-7.00 1

Figure 6. Time-dependent circumferential
stress at the point » =30 mm.

0.000406 -

-0.00004 Hf—————

r/a

-0.00054 4

-0.00104 -

-0.00204 -

Figure 8. The radial displacement calculated from
the asymptotic solution after 10 h of creeping.
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1.6

1.8

r/a

2

the asymptotic solution after 10 h of creeping.

Figure 11. Time-dependent radial
stress at the point » =30 mm.

S
~
-
b= |

-0,0003

-0,.0009

-0.0015

-0.0021

-0.0027

-0.0033

1.6 1.8 g 2

,_.
=
N
-
=

Figure 10. The circumferential stress calculated
from the asymptotic solution after 10 h of creeping.

i time, hour
Btrme' horfg 0 2z 4 6 8 10
5 2 —3.1 N 1 1 1 1 1 1 1 L 1 J

-4.6 1
-6.1 1
_76 m

& 91 4

2

© 106

Figure 12. Time-dependent circumferential
stress at the point mm.
T T T T T T T T
1.2 1.4 1.6 1.8 y

Figure 13. The radial displacement calculated from
the asymptotic solution after 10 h of creeping.
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6. Conclusions

In the present study, an analytical solution
procedure has been developed for the time-
dependent creep analysis of an internally and
externally pressurized, thick-walled cylindrical
pressure vessel subjected to internal heat flux. For
the stress analysis in a cylinder, having material
creep behavior, the solutions of the stresses at a
time equal to zero (i.e. the initial stress state) are
needed, which correspond to the solution of
materials with linear elastic behavior. The
analytical solution is obtained for the conditions of
plane strain and plane stress. Norton's power law
of creep is employed to derive general expressions
for stresses and strain rates in the thick cylinder.
The pressure, inner radius and outer radius are
considered constant. Material properties are
considered as constant. The heat conduction
equation for the one-dimensional problem in polar
coordinates is used to obtain temperature
distribution in the cylinder.

According to stress distribution after 10h of creeping
for the case of plane stress, both radial and
circumferential stresses remains compressive over
the entire cylinder radius. It must be noted that for
the case of plane stress, the maximum value of
circumferential stress at the point mm, is at a time
equal to zero (i.e. the initial stress state) and it
decreases as time increases. According to stress
distribution after 10h of creeping for the case of
plane strain, the maximum value of all three
stresses are at a time equal to zero, in other word
all three stresses decreases as time increases.
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Appendix
The unknown constants in Egs. 16 and 17 are

C - -P(1+v)(1-2v)
: E
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The unknown constants in Egs. 25 and 26 are
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