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ABSTRACT

This paper presents an algorithm of simultaneous localization and mapping (SLAM) with a scanning laser range finder
and radiofrequency identification technology (RFID) to include landmarks of an object or place within a generated
map. For the testing phase was used of simulation software Anykode’s Marilou and was used to build a virtual mobile
robot with the features of the Pionner 3-AT, including a Hokuyo URG-04X scanning laser range finder and an
Innovations RFID ID-12 reader. Validation of results was carried out with the cycle closure process to obtain the
average error of the navigation path, resulting on an error of less than 50mm.

Keywords: SLAM, Mobile Robot, RFID, Navigation, Simulation.

RESUMEN

Este articulo presenta un algoritmo de localizacién y mapeo simultaneos (SLAM) con telémetro laser y un
identificador de radiofrecuencia (RFID), con el propésito de incluir la referencia de un objeto o lugar dentro del mapa
generado. Para la experimentacion se utilizé el software de simulacién Anykode Marilou, mediante el cual se
construyd un robot movil virtual con las caracteristicas del Pionner 3-DX, con un telémetro laser Hokuyo URG-04X y
el lector RFID ID-12 de Innovations. La validacion de los resultados se realizd con el proceso de cierre de ciclo, con el
fin de obtener el error promedio del recorrido de navegacion, logrando un error menor a los 50 mm.

1. Introduction

indoor and outdoor environments. Table 1 includes
some of those algorithms.

For decades, research has focused on
attempting to simulate common human actions
like walking, running, talking and even thinking.

One of the qualities of humans that has gathered  The creation of SLAM resulted in various research

the most attention from scientists is their ability
to move around in different settings, making
researchers focus on navigation techniques that
transfer this ability to artificial entities. In 1986,
Peter Cheeseman, Jim Crowley and Hugh
Durrant-Whyte talked about the topic of
simultaneous localization and mapping applying
probability (SLAM), during the IEEE Robotics
and Automation conference held in San Francisco,
United States [1].

The creation of SLAM resulted in various research
that tried to determine which action would be
carried out first, localization or mapping [2]-[8].
Multiple algorithms allowing for the simultaneous
navigation and localization (SLAM) of mobile
robots have been developed since then, both for

that tried to determine which action would be
carried out first, localization or mapping [2]-[8].
Multiple algorithms allowing for the simultaneous
navigation and localization (SLAM) of mobile
robots have been developed since then, both for
indoor and outdoor environments. Table 1 includes
some of those algorithms.

A description of each algorithm included in Table 1
follows. Algorithm GMapping [9] is a particle filter-
based online algorithm with Rao-Blackwellization
proposing distribution of probabilities that consider
the last measure taken by the laser device, and not
just odometry. This is done by searching the region
closer to the estimated location, defining the
probability of each landmark associated to the
measure and adding the odometry information;
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from this, K samples are extracted to estimate a
Gaussian distribution matching the mean and
variance with the estimated distribution. The
particle’s new position is obtained from the
resulting distribution. Before resampling, a
measure inversely proportional to the variance of
particle’s estimations is calculated to assess the
need of resampling. This algorithm was tested with
data from Intel, Freiburg2 and MIT®, with good
results, generating maps without inconsistencies
for each tested data, including analysis from
different researchers. One of the setbacks of the
algorithm is dynamic objects, as well as objects
with complex modeling like grass, wires, etc.

Calculation

Algorithm Map method Sensors
. . . ) Laser and
GMapping Grid maps Particle filter odometry
Laser or
CEKF-SLAM | Fealre- — yiman fiter  Ultrasound
based maps and
odometry
DP-SLAM Grid maps Particle filter Laser
Monocular
EKFM- . )
SLAM Grid maps Kalman filter camera
images
tinySLAM Grid maps Particle filter Laser and
odometry

Table 1. SLAM Algorithms.

The Kalman filter-based algorithm CEKF-SLAM
[10] maps using environment features; it also
optimizes algorithrm EKF-SLAM by using a
compressed filter, which delays updates of
covariance, associated to a set of non-local labels.
This increases the algorithm’s efficiency without
diminishing the accuracy that characterizes full
SLAM algorithms. This algorithm was tested
outdoors using a car with encoders and a laser
telemeter that followed a path during 20 minutes.
Results were favorable and demonstrated the
optimization of the original algorithm; however, the
problem of cycle closure in maps still persists.

"Intel (American multinational semiconductor chip maker
corporation):
http://kaspar.informatik.unifreiburg.de/~slamEvaluation/datasets
/intel.clf

2 Freiburg (Universitat Freiburg)
http://kaspar.informatik.unifreiburg.de/~slamEvaluation/datasets
[fr079.clf

3 MIT (Massachusetts Institute of Technology)
http://kaspar.informatik.unifreiburg.de/~slamEvaluation/datasets
/mit-csail.clf

The DP-SLAM [11] is a particle filter online
algorithm that generates grid maps. Its purpose
is to reduce the use of computer resources by
avoiding the successive copy of maps per each
particle generated at the resampling stage. This
algorithm generates a single map, therefore
keeping the data structure, and allows knowing
at all times the changes made by it and by
previous particles. This decreases the computer
load by reducing the time it takes to copy data
when new particles are created. The algorithm
was tested using data sets created with an
iRobot ATVR platform and a SICK sensor, in a
60m long, 24m wide environment and a 12m by
40m cycle.

Results were good, but they were not evaluated
with existing data sets.

The algorithms previously described use laser
sensors and odometry for their explorations, but
there is currently algorithm research using stereo
and monocular cameras, like algorithm EKFM-
SLAM [12], which is totally based on algorithm
EKF-SLAM but with a camera added as single
sensor. To integrate the camera’s information, the
RANSAC (RANdom SAmple Consensus) method
was used, which estimates the camera’s motion
(Visual Odometry); this method also allows using
algorithm EKF with cameras to get estimations of
initial parameters, using less landmarks from the
camera. Tests were done with a person carrying a
camera to simulate the robot and circling the
laboratory twice, satisfactorily closing the loop.
Research mentions that information processing
may be carried out in real time, and testing may
be done outdoors, without offering too much
information about results.

Lastly, the list on Table 1 also integrates one of
the smallest algorithms, tinySLAM  [13],
implemented with only 200 lines of code in C, and
based on a particle filter with a single high
resolution occupation grid (1cm). The laser scan
updates more than one landmark per line falling
on a surface, implementing a function that
generates holes in the map to enhance
verisimilitude function. With this algorithm, the
odometry calculation is used to correlate scans
and determine a constant speed for the robot.
This algorithm was tested at Paris’s Mines Tech
laboratory with a single cycle and the map did not
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offer favorable results, as it only offered the
enhancements obtained only from odometry.

SLAM algorithms may be classified in three: by
sensors used, by calculation methods used or by
structure. Algorithms classified by sensors include
those based on artificial vision [14], range
measurement devices (laser or ultrasound) [15]
and odometry. Algorithms based on calculation
methods may use the Kalman filter or the particle
filter; currently, there are hybrid algorithms using
both filters, like FastSLAM [16], with its different
versions (refer to Table 1). Lastly, algorithms
classified by structure are: on the one hand, online
SLAM, which stores only the necessary
environment landmarks, resulting in fast
calculations; however, errors grow exponentially
with time. On the other hand, fullSLAM stores each
landmark during navigation, causing multiplication
of the information with each position prediction.

In the classification based on sensors, different
devices are used to implement SLAM, like CCD
cameras, which operate in a way similar to the
human eye, making them useful to identify objects
with artificial vision techniques; however, one of
their drawbacks when implementing SLAM is that
they obtain extensive features from the
environment, turning real time processing and data
calculation into slow, complex tasks. This device
was, therefore, not used in this research. This work
focused on looking for alternatives that would
replace a CCD camera, and for environment
perception we used a laser telemeter, which
collects information through distances within a
specified range. This device has the advantage of
obtaining only the information that is required to
detect the objects in front of the robot; the
drawbacks are reflections on clear surfaces and
limited angle/range. Therefore, this device is useful
for 2D navigations.

CCD cameras are useful to identify objects but, as
mentioned before, their use is not viable, so their
function was replaced with a RFID (Radio
Frequency IDentification) device. This electronic
device is wused to collect data through
radiofrequency waves; it has labels and a
transponder (transmitter-receiver) that
communicate between them and exchange
information to obtain a label’s ID.

This article describes a system based on algorithm
tinySLAM, called SLAM-R, integrating the RFID
device to the original algorithm. The main idea of
this research came from the way humans move in
unknown environments, usually taking features
from the environment (objects) as landmarks,
which later helps to remember locations. In a
similar way, the purpose is for robots to not only
generate a map and simultaneously locate their
position, but also to obtain environment features
that allow defining a location within the map, so the
robot can move by reminding it the ID (objects) of
the RFID label placed on the environment. By
using algorithm tinySLAM, a high-resolution map is
generated, allowing for faster mapping and less
computer resources.

The project scope included the creation of the
algorithm only for indoor locations, due to
limitations derived from using low-range sensors
and the complexity of outdoor environments. In
addition, the resulting algorithm is prepared for
environments with semi-dynamic objects
(occasional movement), as dynamic objects may
produce inconsistent maps.

This article is structured as follows: Section 2
describes works related with this research. Section
3 shows the algorithm and diagram used for
experimentation. Section 4 shows the design of the
robot and navigation circuits to test the algorithm.
Section 5 integrates experimentation results and
tests. Section 6 details the results. Section 7
exposes conclusions and, finally, section 8
describes the structure of future works.

2. Related Work

Matthai Philipose’s research [17] used the RFID
technology to improve the position of a mobile
robot using a laser telemeter by implementing an
algorithm that determines the exact location of the
RFID label; however, multiple labels must be
placed on the mobile robot’s path for the algorithm
to work properly. The research offers no additional
information about the environment and only
improves the stage of position prediction.

In the article published by Vladimir Kulyukin [18], a
landmark-based  navigation technique was
developed, which is used to help blind people in
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indoor environments with a robot detecting RFID
labels and indication of the person’s location. This
research does not use SLAM, but it is one of the
few that has implemented RFID.

3. Algorithm

Unlike the state-of-the-art algorithms described
that have used RFID in navigations systems,
SLAM-R generates a 2D map through a particle
filter that uses only the laser telemeter information,
and adds environment information like position and
RFID-object recognition. The navigation system
developed consists in 4 stages:

» Stage of prediction and resampling used to
determine the robot’'s position through the
verisimilitude function.

* Map update function through Simple DirectMedia
Layer (SDL).

» The RFID label searching system, which infers
over the map creation function and prediction, only
in case this exists.

* Control system created with commands to
determine the robot’s direction.

The navigation system was built using tinySLAM,
and a RFID reader was added to the robot,
resulting in a diagram as the one depicted in
Figure 1.

®

Figure 1. SLAM-R dynamic Bayesian network.

To estimate the robot’s current position within a
semi-dynamic  environment, odometry, laser
readings and RFID labels are used as additional
information to recognize objects within the map
through a single identifier (ID). Figure 1 depicts the

dynamic Bayesian network model used to
represent connections between the environment’s
map (M), the laser data (Z), the use of RFID
labels as landmarks (R), the robot’s position (S)
and odometry (U), all of these arranged in a
determined time (t). To estimate the robot’s
position, the stage of prediction must be
implemented through the following equation (1):

q (Sl:t Ry |U1:thI:t—1) =
p (Rt |Rt—1) Xp (St | Se-1, Ut)X p (Sl:t—l JRieoq |U1:t—1izl:t—1)
(1)

Equation (2) is used at the stage of weights
updates and resampling:

p(sl:t Rt | Ul:tvzl:t)

Q(51:t Rt | Ul:trzl:t—l)

)

W =

A priori labeling of each object or place passed by
is necessary for the navigation algorithm to
recognize them; however, the SLAM functioning
with not be affected by the lack of labels, as they
work independently

Map =p (Mt(i) | Xt(i) 21t Ure Rl:t) (3)

Equation (3) is used at the stage of the map
generation.

4. Tests and Experimentation

To test the navigation system, a search for a
system that could simulate a virtual mobile robot
was carried out. Several simulators were obtained
from this search, amongst them Webots [19],
Eyesim [20], Mobs [21], Marilou [22]. Based on the
devices integrated in simulation and the modeling’s
versatility, Anykode’s Marilou simulation software
was chosen because, among its advantages, it
offers licenses to students, allowing for testing the
system for a determined time; it also offers a wide
array of virtual devices with the manufacturer’s
properties to create a more realistic simulation.
This simulator was used for testing by creating
both a virtual model of the environment and of the
mobile robot to be used. This software allows
simulating the behavior of sensors and actuators
with a high level of realism; it also allows modeling
environments and includes a package of libraries
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(MODA, Marilou Open Devices Access) to program
robots in different languages.

To test the algorithm, a 3D model of the Pioneer 3-
AT robot, manufactured by ActivMedia, was
created, using the actuators, kinematics and
sensors of the real-life model, with limit speeds of
2m/s; a Hokuyo URG-04X laser sensor with a 240
degree radius and up to 4.0m range was added to
the model. Figure 2 depicts the Pioneer 3-AT
mobile robot virtual model.

Figure 2. Anykode’s Marilou-modeled
Pioneer 3-AT virtual mobile robot.

Different environments were created to experiment
with the virtual mobile robot, randomly placing
objects with different textures and adding factors
like wind speed and gravity exerted on the robot,
controlled by its weight. Figure 3 depicts one of the
environments developed to verify the values of
sensors and the bearing mechanism by testing, for
the first time, the SLAM-R navigation system.

Figure 3. Anykode’s Marilou-
modeled virtual environment.

One of the limitations of simulating the navigation
algorithm is that the simulation software does not
have readers, much less the ability to label objects
through RFID; the option was to enable obstacle

detection by plugging an ID-12 RFID reader,
manufactured by Innovations, to the computer's
serial port, therefore adding a physical device to
the simulation through the virtual serial ports of
Marilou. Figure 4 depicts the circuit and labels
used for the RFID system.

ID-12
innovations,

Figure 4. Circuit used for simulation with Marilou.

The general process of simulation includes a C++
and MODA programmed system to obtain data
from the odometry, laser telemeter and RFID
devices; the navigation system also included a
class responsible for map construction using SDL
libraries. Figure 5 depicts the general process of
the simulation system.

AnyKode Marilou fa&.lSLAM C++

1D: 126EE234567 .>—> )

Figure 5. General simulation process.

Data storage was included in the navigation
system using plain text files to save the odometry
information, the laser telemeter readings and the
labels found on the robot’s path, which would be
used later to produce the map from a file. The
purpose of this stage is to provide a dataset that
can be used as a study tool by the scientific
community, reproducing the simulations created in
this research.
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5. Results

Evaluation of results was carried out by generating
a virtual map, which was then compared with the
SLAM-R-generated map (both were similar); the
robot’s position was monitored to make it match as
much as possible with the position offered by the
simulation using a cycle closure algorithm, which
determines the deviation error accumulated during
the circuit’'s path. Tests were carried out using 3
different environments and different types of
objects, both labeled and unlabeled; the system
was also tested without labeling objects to confirm
that labels were not indispensable.

Figure 6a shows a simple, obstacle-free scenario
to test SLAM, while Figure 6b shows the SLAM
results using odometry and laser data only. This
environment serves as a basis to analyze behavior
in future environments.

(a) Marilou virtual environment

(b) SLAM-R result

Figure 6. SLAM-R system result
without objects in environment.

Figure 7a shows the simulated environment with
objects of different sizes and shapes, keeping the
squared structure of the environment from Figure
6a, in order to highlight the difference in behavior
of the SLAM when adding RFID labels. For this
particular environment, numbers 1 to 8 were used
to identify objects. Figure 7b includes the map
showing only 7 of the 8 objects labeled; this was,
however, done on purpose because the
corresponding label was not placed at the reader’s
range when the robot approached the object; in
this system, it is possible to exclude certain objects
and label only those that are of interest to
researchers. Labels were placed on the map as
the reader detected the labels, and these were
placed immediately on the generated map;
therefore, labels have different positions.

(a) Marilou virtual environment (b) SLAM-R result

(c) Object labeled with number 3 (box)

Figure 7. SLAM-R system results with
number-labeled objects in environment.

Figure 8a’s third environment shows a semi-
rectangular map with realistic objects, like boxes
and plant pots, to assign real names to objects and
test for correct labeling. Figure 8b shows each
labeled object. As a result, the label’s position was
improved; it was placed at the center of the object
by calculating the distance provided by the laser
and the average range of the RFID reader. Figure
8c only shows a zoom image of the name
assigned to a SLAM-R-build map object.

To evaluate results, the cycle closure technique
was used, which consists on moving on the path
with the SLAM-R system and storing data files
collected during navigation (odometry, laser and
RFID labels), with the purpose of moving on that
same path again but in the opposite direction, that
is, readings are collected from the last to the first
one, and the same navigation algorithm is used.
During the process, the SLAM-R algorithm
positions are stored in a plain-text file, so that the
degree of error obtained during the circuit’'s path
can be later analyzed. To analyze results, the
robot’s positions during the path are graphed, both
for its forward and backward motions, and the
degree of error between the initial and final points
of the path is calculated in millimeters, in order to
define how far they are from each other.
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(b) SLAM-R result

(c) Object labeled with the Spanish word “planta”

Figure 8. SLAM-R system result with
word-labeled objects in environment.

Figure 9 depicts the robot’s paths for each virtual
map used for tests; Figure 9a corresponds to
Figure 6a’s environment; Figure 9b corresponds to
Figure 7a’s environment and, finally, Figure 9c
corresponds to Figure 8a’s environment. These
graphs represent forward motion with a solid line
and the backward motion with a dotted line; the
error between both paths can be seen between
both lines. Table 2 shows error results in
millimeters for each environment.

(a) Cycle closure graph for Figure 6a environment

___HH‘"‘\-\
et

(b) Cycle closure graph for Figure 7a environment

(c) Cycle closure graph for Figure 8a environment

Figure 9. Graphs of position errors obtained
from SLAM-R navigation algorithm
of different virtual environments.

Environment # of

figure Graph readings Error in mm
Environment 6a Graph 9a 432 47.3904 mm
Environment 7a Graph 9b 221 21.3676 mm
Environment 8a Graph 9c 92 25.2865 mm

Table 2. SLAM-R Algorithm Position Error.
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6. Conclusions and Future Work

The results obtained by simulation prove that the
developed algorithm is suitable to generate 2D
maps in small indoor environments, and that RFID
labels help to improve the robot’s final position
because they are landmarks with more relevance
to calculate the algorithm; this is demonstrated
with an error of less than 50 mm. It was also
determined that the SLAM-R navigation algorithm
identifies labels with 100% accuracy during
simulation, because measurement conditions are
ideal — there are no factors preventing the reader
from reaching the manufacturer’s specified range.
Therefore, it is important to test the algorithm on a
real robot, confirming that simulation-obtained
results are the same as real life results. A
simulated system, however, always has constant
variables and conditions are ideal for tests,
whereas real-life tests may face factors that
change results. A relevant example for this would
be the RFID measurement distance; this device
was simulated in a physical form and, at times, the
reader could not detect the label, which may be
caused by environmental interferences or noise.

One of the limitations of the proposed algorithm is
the dependence on RFID labels, placed on the
environment for object identification; however, this
does not hinder the algorithm from continuing with
the navigation because, if an object is unlabeled, it
will be represented as an object without its
particular features, indicating the robot that it
cannot go through that place.

In future works, an environment resembling the
features of the Electronics Laboratory of the Institute
will be created to test the SLAM-R algorithm on a
physical robot, using the same devices of the
simulation herein described. The purpose of these
works would be to evaluate results from both cases
and establish the causes and factors influencing
real-life environments not included in simulations for
this type of navigation systems.
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