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ABSTRACT 
Estimation of distribution algorithms (EDAs) constitute a new branch of evolutionary optimization algorithms that were 
developed as a natural alternative to genetic algorithms (GAs). Several studies have demonstrated that the heuristic 
scheme of EDAs is effective and efficient for many optimization problems. Recently, it has been reported that the 
incorporation of mutation into EDAs increases the diversity of genetic information in the population, thereby avoiding 
premature convergence into a suboptimal solution. In this study, we propose a new mutation operator, a transpose 
mutation, designed for Bayesian structure learning. It enhances the diversity of the offspring and it increases the 
possibility of inferring the correct arc direction by considering the arc directions in candidate solutions as bi-directional, 
using the matrix transpose operator. As compared to the conventional EDAs, the transpose mutation-adopted EDAs 
are superior and effective algorithms for learning Bayesian networks. 
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1. Introduction 
 
Estimation of distribution algorithms (EDAs) 
constitute a new branch of evolutionary algorithms for 
machine learning and data mining, more recently, 
optimization techniques [1,2,3]; their basic workflow is 
identical to that of genetic algorithms (GAs), which 
repeat a set of genetic operations (e.g., selection, 
crossover, and mutation) until a stopping criterion 
(e.g., the number of generations, a running time, and 
a specific fitness value) is satisfied [4,5,6]. The 
distinction between EDAs and GAs is based on the 
manner in which the genetic information is 
reproduced for offspring. GAs rely on crossover and 
mutation operators to generate offspring from two or 
more individuals, whereas EDAs use a probabilistic 
model estimated from the selected individuals. The 
advantages of EDAs over GAs are the absence of 
variation operators to be tuned and the 
expressiveness of the probabilistic model that drives 
the search process. Owing to these advantages, 
EDAs have been widely used as intuitive alternatives 
to GAs. EDAs can be grouped according to the 
manner in which they address dependencies among 
variables: independence among all variables 

 
 
(Univariate Marginal Distribution Algorithm (UMDA), 
Population-Based Incremental Learning (PBIL), 
Compact Genetic Algorithm (cGA)), pairwise 
dependencies (Mutual Information Maxminization for 
Input Clustering (MIMIC), Bivariate Marginal 
Distribution Algorithm (BMDA), Dependency-Trees 
based EDA (DTEDA)), and multiple dependencies 
(Extended Compact Genetic Algorithm (EcGA), 
Estimation of Bayesian Networks Algorithm (EBNA), 
Bayesian Optimization Algorithm (BOA)). 
 
With regard to Bayesian structure learning, Blanco 
et al. [7] first used EDAs to learn the structure of 
Bayesian networks, and they showed that the 
results yielded by EDAs were superior to those 
yielded by GAs. It has been proved that the 
heuristic scheme of EDAs is effective and efficient 
for learning Bayesian networks. Recently, it has 
been reported that the incorporation of the 
mutation operator in EDAs can increase the 
diversity of genetic information in the generated 
population [8,9,10,11]. The incorporation of bitwise 
mutation makes it possible to avoid premature 
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convergence to a sub-optimal solution, especially 
when the population size is not sufficiently large or 
if an initial population bias exists; its effectiveness 
has been shown in several optimization problems 
such as the Onemax function, the four-peaks 
problem, and the max-sat problem. However, the 
effectiveness of mutation-based EDAs in terms of 
the structure learning of Bayesian networks has 
not been investigated extensively. 
 
We first present a new mutation operator, a matrix 
transpose, specifically designed for Bayesian 
structure learning; a matrix transpose mutation is a 
closed operator when the Bayesian network is 
described by a matrix representation. A transpose 
mutation enhances the diversity of the offspring 
and increases the possibility of inferring the correct 
arc direction by considering the direction of edges 
in candidate solutions as bi-directional. 
 
By exploiting a transpose mutation, we investigate 
the extent to which the performance of EDAs can 
be improved, and we try to determine the most 
improved EDA algorithm for learning Bayesian 
networks. To the best our knowledge, this study 
involves the first such comparison of EDAs with 
mutation for Bayesian structure learning. To this 
end, we compare the performance of four standard 
EDAs with that of their mutation-adopted versions; 
the bitwise and transpose mutation versions are 
tested. Section 2 briefly provides background 
information on the EDAs. Section 3 describes the 
issues of EDAs associated with mutations and 
presents the proposed transpose-adopted EDAs. 
Section 4 highlights the potential of the proposed 
approach through various experimental examples. 
Concluding remarks are presented in Section 5. 
 
2. Related work 
 
The basic workflow of EDAs is similar to that of 
conventional GAs. After randomly reproducing 
chromosomes for the first generation, it repeats a set 
of genetic operations, i.e., selection, estimation, and 
reproduction, until a stopping criterion is fulfilled. A 
new population of individual solutions is generated by 
sampling a probabilistic model, which is estimated on 
the basis of representative individuals selected from 
the previous population. The dependencies among 
variables in each individual are expressed by the joint 
probability distribution of the individuals selected at 
each generation. 

Because the solutions of EDAs are evolved 
through a probabilistic model, the main issue is the 
construction of an effective probabilistic model. 
Many studies have proposed a variety of 
probabilistic models; they can be categorized into 
three approaches according to the manner of 
capturing the dependencies among variables: 
univariate, bivariate, and multivariate approaches. 
 
The univariate model is based on the assumption of 
independence among variables; it factorizes the joint 
probability of the selected individuals as a product of 
univariate marginal probabilities. UMDA uses the 
simplest approach to estimating the joint probability 
distribution [13]; each univariate marginal distribution 
is estimated from the marginal frequencies of the 
selected individuals. In contrast, PBIL uses the 
probability distribution of the previous generation, in 
addition to that of recently sampled individuals, to 
calculate a new probability distribution [14]. The cGA 
is a tournament-based incremental algorithm; it 
updates the probability distribution using the winner 
of two competing individuals [15]. 
 
Bivariate EDAs consider the dependencies among 
pairs of variables by using efficient data structures. 
MIMIC searches for the best permutation among 
variables by using a chain structure to capture the 
pairwise dependencies among the variables [16]. 
BMDA factorizes the joint probability distribution for 
second-order statistics by using an acyclic 
dependency graph [17]. DTEDA uses a tree structure 
to represent dependency relationships [18]. 
 
Multivariate EDAs factorize the joint probability 
distribution by using statistics of order greater than 
two. The probabilistic model complexity and the 
computational cost of determining the model are 
greater than those in the cases of univariate and 
bivariate EDAs. Thus, such approaches require a 
more complex learning process. EcGA divides the 
variables into a number of groups, and then 
factorizes the joint probability distribution as a product 
of marginal distributions of variable size [19]. EBNA 
uses the Bayesian information criterion (BIC) score to 
learn the joint probability model of the selected 
individuals [20]. BOA uses the Bayesian Dirichlet 
equivalent (BDe) measure to compute the quality of 
each candidate dependency [21]. 
 
Bayesian networks are graphical structures for 
representing the probabilistic relationships among 
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variables [22]. The structure learning of Bayesian 
networks is an NP-Hard optimization problem 
because the number of structures grows 
exponentially with the number of variables [23]. It has 
been shown that the heuristic approach of EDAs is 
effective and efficient because of the extremely high 
cardinality of the search spaces. With regard to the 
application of EDAs for learning Bayesian networks, 
Blanco et al. used the UMDA and PBIL to infer the 
structure of Bayesian networks [7]. MIMIC was used 
to obtain the optimal ordering of variables for 
Bayesian networks [24]. The Bayesian networks 
learned using UMDA, PBIL, and MIMIC were more 
accurate than those learned using GAs, as compared 
to the original networks. 
 
3. Proposed method 
 
3.1 Rationale 
 
As mentioned previously, EDAs assume that it is 
possible to build a probabilistic model of the 
promising areas of the search space, and they use 
this model to drive the search for the optimum 
solution. To validate this assumption, it is important 
to maintain the diversity of individuals in the 
generated populations in order to avoid premature 
convergence to a sub-optimal solution. For 
example, the search space for EDAs can be 
reduced to only those solutions that are locally 
optimal with respect to the probabilistic model 
when the population size is not sufficiently large or 
when an initial population bias exists; the absence 
of genetic operators makes it difficult to explore the 
uncharted search space in next generations. 
 
Recent studies have proposed new EDAs that 
employ mutation operators in standard EDAs to 
increase the population diversity. Handa used a 
bitwise mutation in UMDA, PBIL, MIMIC, and 
EBNA [8]; it was shown that the mutation operator 
improved the quality of solutions for the four-peaks 
problem, Fc4 function, and max-sat problem. 
Gosling et al. used a guided mutation in PBIL for 
the IPD strategy problem [9]; the mutation operator 
constrained the variation to solutions that were 
shown to be effective in the previous generation. 
Heien et al. compared the effectiveness of the 
bitwise mutation operator in BOA [10]; the mutation 
increased the success rate and reduced the 
minimum required population size in four function 
problems (Onemax, 5-trap, 3-deceptive, and 6-

bipolar). Pelikan et al. analyzed the effects of 
bitwise mutation on improving the performance of 
UMDA through two test problems (Onemax and 
noisy Onemax) [11]. 
 
The benefits of mutation-based EDAs have 
inspired some researchers to investigate the 
effectiveness of mutation-based EDAs in learning 
the optimal structure of Bayesian networks. 
Furthermore, conventional bitwise mutations are 
not closed operators from the viewpoint of the 
acyclicity of Bayesian networks; they can generate 
illegal solutions with cycles. Thus, in this study, we 
investigate the effectiveness of mutation-adopted 
EDAs in identifying an optimal Bayesian network 
structure. To this end, we propose a new mutation 
operator, a transpose mutation, designed for 
Bayesian structure learning; it enhances the 
diversity of offspring and increases the possibility 
of inferring the correct arc direction by considering 
the arc directions in candidate solutions as bi-
directional, using a matrix transpose operator. 
 
3.2 Matrix transpose mutation 
 
When developing a mutation operator, it is often 
recommended that small variations should be used to 
engender small changes in the resulting offspring’s 
quality [25]. From this point of view, we find that a 
bitwise mutation in Bayesian Networks can greatly 
impact the offspring’s quality because it introduces 
new random arcs between nodes that were not 
considered in the probable solutions. Therefore, we 
tried to design a mutation operator to work within the 
current form of nodes and arcs in a candidate 
solution. To achieve this, we propose a matrix 
transpose mutation that generates offspring by 
inverting arcs in the current probable network. This 
variation can inherit informative information from 
previous solutions to guide the search over the 
probable solution space, and explore new states for 
offspring by changing the direction of arcs. By 
considering the arc as bi-direction, the candidate 
solutions are evolved by reproducing arcs for new 
offspring based on a probability distribution with 
contributions from all arcs to infer the most probable 
arc direction probabilistically. 
 
In general, the choice of variation operators should 
follow intuitively from the problem representation. To 
introduce randomness that was not considered in the 
probable solutions, we propose a matrix transpose 
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mutation that is appropriate for a matrix 
representation. The operator generates offspring by 
inverting the arc direction in the individuals, which 
can inherit the information of solutions to drive the 
search over probable solutions and explore new 
states for offspring by changing the arc directions. 
 
To represent a Bayesian network, we use a matrix 
representation, the most intuitive representation of 
a Bayesian network (an individual chromosome). 
We represent a network as an n  n connectivity 
binary matrix M. The matrix element M(i,j) in row i 
and column j is 1 if and only if variable i is a parent 
of variable j in the network. For example, the 
network in Fig. 1 (left) is represented in matrix form 
in Fig. 1 (right). 

 
On the basis of the matrix representation, we build 
a probability matrix P that indicates the probability 
distribution of arcs among nodes in the selected 
individuals; it estimates the probability distribution 
of dependencies among variables. 
 
Definition (Probability Matrix). Let M = {M1, M2, 
…, Md} be a given population of individuals 
(networks). Let S = {S1, S2, …, Sh} (S  M) be a 
subset of representative individuals selected from 
M using their fitness ranks. Then, the n  n binary 
matrix P is defined by estimating the probability 
distribution of S. The matrix element P(i,j) in row i 
and column j is 0 when i and j are equal; 
otherwise, it is defined as: 
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Figure 1. Matrix representation of a Bayesian network. 

To construct P, a set of individuals (S) is selected 
according to the ranking of their fitness scores. 
Using h individuals, the occurrence frequency, and 
the average of each arc linking two nodes i and j, 
P(i,j) is calculated as shown in Eq. (2).  
 
Hence, each P(i,j) (0   P(i,j)   1) represents the 
frequency with which an arc occurs in the selected 
individuals that were evaluated as promising 
individuals, and the importance of the arc in 
constructing an optimal structure. 
 
For the next generation, the offspring O is 
generated by the probability matrix and transpose 
mutation until the number of offspring becomes d.  
 
To generate an element O(i,j) of an offspring O, 
two probability values, i.e., P(i,j) and a random 
number, are compared. Specifically, the element 
O(i,j) is assigned a value of 1 if P(i,j)  
random[0,1); otherwise, it is assigned a value of 0. 
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In the case of a matrix representation, a variation 
operator has the choice of reversing the direction 
of arcs between two nodes with a simple matrix 
transpose; it replaces O(i,j) with O(j,i) according to 
a mutation rate (r). Specifically, the element O(i,j) 
is assigned a value of O(j,i) if r  random[0,1); 
otherwise, it is assigned a value of O(i,j).  
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Fig. 2 shows the resulting matrix of an offspring 
before and after the transpose mutation, Obefore and 
Oafter, respectively. 
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Figure 2. Offspring before (left) and after (right) a matrix 

transpose operator. 
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The matrix transpose mutation follows intuitively 
from the matrix representation, while preserving 
the necessary properties of the matrix, and it 
explores the conditional dependencies among 
variables in reverse order. A reversal operator has 
been widely used for the traveling salesman 
problem because of the possibility of avoiding local 
optima [25]. Moreover, the matrix transpose is a 
closed operator under Bayesian structure learning; 
illegal networks with cycles are not reproduced. 
 
3.3 Algorithm 
 
The following steps show an example of the 
process of the proposed method. Let us suppose 
that the desired optimal structure is shown in Fig. 
1, and the randomly generated initial population is 
composed of four individuals (Fig. 3). Let the 
number of variables, size of the population, and 
number of selected individuals be n = 4, d = 4, and 
h = 2, respectively; the two selected individuals are 
S1 = M1 and S2 = M3. 
 
Then, the steps of the algorithm can be described 
as follows: 
 

 
 

Figure 3. Four individuals in the initial population:  
M = {M1, M2, M3, M4}. 

 
Step 1: Generate d individuals for the first population. 
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Step 2: Select h individuals by a fitness function, 
say S1 = M1 and S2 = M3. 
 
Step 3: Estimate a probabilistic model P for h 
individuals. 
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Step 4: Generate a new offspring O. 
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Step 5: Alter O by the transpose mutation using 
mutation rate (r). 
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Step 6: Generate d new individuals by repeating 
Steps 4~5. 
 
Step 7: Repeat Steps 2~5 until the stopping criteria 
are satisfied. 
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Figure. 4. Resultant offspring before (left) and  

after (right) a matrix transpose operator. 

 



 

Structure Learning of Bayesian Networks by Estimation of Distribution Algorithms with Transpose Mutation, D.W. Kim et al. / 586‐596

Journal of Applied Research and Technology 591

Let us suppose that the value of random[0,1) is set 
to 0.1 in Steps 4 and 5; then, we obtain the first 
new offspring (O1) shown in Fig. 4 (left). In Step 5, 
if O1 is transposed under mutation r = 0.2, then O1 
becomes the optimal structure seen in Fig. 1: 
 
4. Result 
 
4.1 Data sets and implementation parameters 
 
To test the mutation-adopted EDAs, we applied 
four EDAs as well as their mutation-adopted 
versions to two widely used data sets, and we 
compared the performances of the algorithms. We 
employed two previous mutations; the bitwise 
mutation and the guided mutation [12].  
 
The standard EDAs were UMDA, PBIL, MIMIC, and 
BOA; the bitwise mutation versions were UMDA+B, 
PBIL+B, MIMIC+B, and BOA+B; the guided mutation 
versions were UMDA+G, PBIL+G, MIMIC+G, and 
BOA+G; and the transpose mutation versions were 
UMDA+T, PBIL+T, MIMIC+T, and BOA+T. 
 
The data sets employed were the Diabetes and 
Asia data; they have been widely used for 
comparative purposes in Bayesian structure 
learning. The Diabetes data set is a diagnostic 
network for predicting the signs of diabetes [26]. 
The Diabetes network contains nine variables 
and 11 arcs. The Asia data set contains the 
relevant variables and relationships for medical 
knowledge related to the shortness of breath 
(dyspnoea) [27]. The network contains eight 
variables and eight arcs. Each network was used 
to generate sample cases, each of which 
contains 10,000 instances. 
 
In these experiments, the well-known BDe and 
MDL scores for Bayesian networks were used as  
the fitness function [22, 23]. The additional 
parameters were set as follows. The number of 
generations was set to 400; various mutation 
rates were used (r = 0, 0.01, 0.05, 0.1, 0.15, 
0.2); five population sizes were used (d = 10, 50, 
100, 150, 200); and five values of the learning 
parameter of the PBIL were used (a = 0.1, 0.3, 
0.5, 0.7, 0.9).  
 
 
 
 

Therefore, we designed 16  2  5  5  5 (16 
EDAs, 2 fitness scores, 5 populations sizes, 5 
mutation rates, and 5 learning parameters) tests, 
and for each of these 4,000 configurations, we use 
2 data sets, which gives us a total of 8,000 
experiments. Each experiment was run 30 times. 
 
4.2 Performance Comparison 
 
Tables 1 and 2 list the precisions achieved by each 
EDA for the two data sets for r = 0, 0.01, 0.05, and 
0.1 (with d = 50 and a = 0.5 fixed). The precision is 
the fraction of inferred arcs that are relevant to the 
network, which were assessed by comparing the 
network inferred by the EDAs with the original 
network; a higher value of precision indicates a 
better learning result, with perfect learning yielding 
a value of 100.0%. 
 
For the Diabetes data set (Table 1), the bitwise 
and guided mutation-adopted EDAs showed 
better performance than their standard versions in 
terms of precision; the EDAs+B and EDAs+G with 
the best performance were around 10% more 
accurate than their typical counterparts. The 
transpose mutation-adopted EDAs showed 
markedly better performance than their 
counterparts, particularly those for UMDA+T and 
PBIL+T. In particular, PBIL+T (BDe, r = 0.1) 
achieved 79.9% precision; however, the results 
for PBIL, PBIL+B, and PBIL+G were precisions of 
42.0%, 46.6%, 50.8% respectively. Of the 
EDAs+T, MIMIC+T and BOA+T showed less 
improvement than UMDA+T and PBIL+T. 
 
For the Asia data set (Table 2), EDAs+B and 
EDAs+G were not superior to their standard 
versions; PBIL+B and PBIL+G showed slightly 
improved performance. In contrast, the precisions 
of EDAs+T were superior to those of their standard 
versions; the best precisions were approximately 
10%~35% higher than those of the standard 
versions. UMDA+T and PBIL+T showed better 
performance than UMDA/UMDA+B/UMDA+G and 
PBIL/PBIL+B/PBIL+G, giving best precisions of 
70.8% and 70.1%, respectively. As compared to 
the other transpose versions, MIMIC+T exhibited 
less improvement in performance. 
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Fitness BDe MDL 

mutation 0  0.01  0.05  0.10 0  0.01  0.05  0.10  

UMDA 45.3  - - - 41.9  - - - 

UMDA+B 45.3  46.4  47.3  54.3  41.9  47.3  48.5  50.4  

UMDA+G 45.3  41.7  54.5  50.4  41.9  44.8  48.7  53.8  

UMDA+T 45.3  50.0  50.6  76.0  41.9  45.2  49.4  55.8  

PBIL 42.0  - - - 46.3  - - - 

PBIL+B 42.0  53.3  47.7  46.6 46.3  41.5  47.4  47.3  

PBIL+G 42.0  50.8  53.6  50.8 46.3  46.2  57.5  46.2  

PBIL+T 42.0  63.8  78.9  79.9 46.3  53.1  73.7  72.4  

MIMIC 41.8  - - - 37.8  - - - 

MIMIC+B 41.8  45.9  46.9  44.6 37.8  39.5  42.9  46.5  

MIMIC+G 41.8  45.8  47.4  43.8 37.8  45.5  45.5  43.0  

MIMIC+T 41.8  43.3  44.5  47.9 37.8  39.9  38.9  50.6  

BOA 41.2  - - - 49.0  - - - 

BOA+B 41.2  42.0  42.3  34.4 49.0  33.8  51.7  39.5  

BOA+G 41.2  43.8  40.4  46.8 49.0  37.2  41.0  42.9  
BOA+T 41.2  39.3  48.0  56.1 49.0  36.6  46.0  59.0  

 
Table 1. Comparison of precision (%) achieved by EDAs for the Diabetes data. 

 
 

Fitness BDe MDL 

mutation 0  0.01 0.05 0.10 0  0.01 0.05  0.10  

UMDA 33.5  - - - 34.9 - - - 

UMDA+B 33.5  27.7 32.6 51.3  34.9 31.6 38.0  51.8  

UMDA+G 33.5  31.1 32.8 32.8  34.9 32.9 33.6  33.2  

UMDA+T 33.5  32.9 39.6 65.7  34.9 39.4 40.7  70.8  

PBIL 35.3  - - - 36.7 - - - 

PBIL+B 35.3  38.5 39.8 42.7 36.7 34.3 38.8  40.6  

PBIL+G 35.3  40.4 41.8 40.4 36.7 39.6 39.2  39.6  

PBIL+T 35.3  31.1 60.8 70.1 36.7 48.1 62.3  62.2  

MIMIC 27.8  - - - 34.6 - - - 

MIMIC+B 27.8  26.9 30.4 37.2 34.6 30.2 29.8  34.1  

MIMIC+G 27.8  27.1 26.8 25.7 34.6 25.2 26.3  22.1  

MIMIC+T 27.8  27.8 28.5 38.5 34.6 31.4 27.6  30.9  

BOA 27.7  - - - 29.7 - - - 

BOA+B 27.7  27.1 24.4 30.6 29.7 33.2 34.1  41.1  

BOA+G 27.7  27.7 27.7 30.0 29.7 31.0 27.6  36.0  

BOA+T 27.7  26.4 30.5 44.1 29.7 29.5 34.4  42.3  

 
Table 2. Comparison of precision (%) achieved by EDAs for the Asia data. 
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Figure 5. Proportion of correct arcs by PBIL, PBIL+B, 
PBIL+G and PBIL+T for Asia data. 

 

 
 

Figure 6. Proportion of reverse arcs by PBIL, PBIL+B, 
PBIL+G, and PBIL+T for Asia data. 

 
To make this study more informative, in Figs. 5, 6 
and 7, we compare the changes in the proportion of 
arcs in the networks inferred by PBIL+T to investigate 
its superiority to its counterparts for the Asia data set 
(BDe, r = 0.1). Fig. 5 shows the changes in the 
proportions of arcs correctly inferred by each 
algorithm. The proportion of arcs correctly inferred by 
PBIL+T increased rapidly with the number of 
generations; PBIL, PBIL+B, and PBIL+G were limited 
to inferring the correct arcs in the original network.  

 
 

Figure 7. Proportion of additional arcs by PBIL, PBIL+B, 
PBIL+G, and PBIL+T for Asia data. 

 
Fig. 6 shows the proportions of arcs in the 
reverse direction. PBIL+T also shows a rapid 
decrease compared to the other algorithms. 
Conversely, PBIL, PBIL+B, and PBIL+G exhibited 
substantially different behavior; the proportions of 
reverse arcs showed an increasing tendency as 
the generation increased.  
 
Fig. 7 shows the proportions of additionally inferred 
arcs that are non-existent in the original network. 
In PBIL+T, the proportions of additional arcs 
drastically decrease as the number of generations 
increases, whereas PBIL, PBIL+B, and PBIL+G 
have difficulties in reducing the number of 
irrelevant additional arcs. The standard PBIL 
exhibited the most ineffective performance owing 
to premature convergence. 

 
Tables 3 and 4 list the comparison results of the 
average proportions of arcs in the network learned 
by EDAs, EDAs+B, EDAs+G, and EDAs+T, for the 
Diabetes and Asia data, respectively. From the 
table, we see that EDAs+T are superior to EDAs, 
EDAs+B, and EDAs+G; for inferring the correct 
arcs, EDAs+T were about 10% ~ 23% more 
accurate than the conventional methods. The 
present evaluation has verified the potential utility 
of the transpose mutation-adopted EDAs. 
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4.3 Reliability 
 
The results of the comparison calculations indicate 
that the transpose mutation gave the greatest 
enhancement of learning performance for the 
PBIL+T algorithm. PBIL+T uses a learning rate a 
to control the ratio of recently sampled individuals 
to individuals of the previous generation in order to 
obtain the new probability model; there is no 
general agreement on the value to use for the 
optimal choice of a. In this study, we empirically 
tested various a values and reported their 
influence on the learning results. Fig. 8 shows the 
precision of PBIL+T for a = 0.1, 0.3, 0.5, 0.7, and 
0.9, for the Asia data (with d = 50 fixed). Of the a 
values considered, PBIL+T gave the best 
precisions at a = 0.7; it provided more stable 
performance than the other choices at r = 0.1, 
0.15, and 0.2. PBIL+T with a = 0.1 showed the 
most ineffective performance over the different 
mutation rates. 
 
In addition, we investigated the influence of the 
choice of a for different population sizes, as shown 
in Fig. 9 (with r = 0.15 fixed). PBIL+T with a = 0.7, 
0.9 showed the best result at d = 50. Stable 
performance was obtained at a = 0.9, whereas

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PBIL+T with a = 0.1 gave lower precisions than 
with other a values. Moreover, we assessed the 
difference in performance using a statistical test. 
The paired t-test at 0.05 significance level revealed 
that for the Asia and Diabetes data sets, PBIL+T is 
significantly superior to its counterparts for almost 
all the cases. Thus, these results highlight the 
effectiveness of the proposed PBIL+T method. 
 

 
 

Figure 8. Precision of PBIL+T with various learning 
rates for different mutation rates. 
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PBIL+T(a=0.1)

PBIL+T(a=0.3)

PBIL+T(a=0.5)
PBIL+T(a=0.7)

PBIL+T(a=0.9)

Fitness Arcs EDAs EDAs+B EDAs+G EDAs+T 

BDe 

Correct 42.6 45.0 45.1 65.0 

Reverse 43.9 41.3 42.3 26.4 

Additional 13.5 13.8 12.6 8.6 

MDL 

Correct 43.7 45.9 36.3 59.5 

Reverse 43.5 39.5 30.0 32.9 

Additional 12.7 14.6 8.9 7.6 

 
Table 3. Proportion of arcs in the network inferred by EDAs for the Diabetes data. 

 
Fitness Arcs EDAs EDAs+B EDAs+G EDAs+T 

BDe 

Correct 31.1 40.4 32.3 54.6 

Reverse 30.8 36.1 34.2 17.8 

Additional 38.1 23.4 33.4 27.6 

MDL 

Correct 34.0 41.9 33.3 51.6 

Reverse 27.1 35.6 34.5 20.3 

Additional 38.9 22.5 32.2 28.1 
 

Table 4. Proportion of arcs in the network inferred by EDAs for the Asia data. 
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Figure 9. Precision of PBIL+T with various learning 
rates for different population sizes. 

 
5. Conclusion 
 
It was well established that the incorporation of 
mutation into EDAs increases the diversity of 
genetic information in the population, thereby 
avoiding premature convergence into a suboptimal 
solution. As compared to the corresponding EDAs, 
the transpose mutation-adopted EDAs are superior 
and effective algorithms for learning Bayesian 
networks. Of the transpose versions tested, 
PBIL+T was shown to be the best option in most 
cases; it is the most suitable option when no prior 
knowledge on the properties of the data is 
available. Besides the issues mentioned in the 
present study, several issues require further 
investigation. Although PBIL+T is considered the 
most powerful algorithm in Bayesian structure 
learning, further investigation is required to 
compare the performance of transpose mutation in 
various EDAs for other problems. Such analysis 
would be complicated by the fact that the choice of 
EDAs and mutation is a data-dependent task. 
Thus, future studies should focus on the 
development of a method for automatically 
selecting the most appropriate EDAs and mutation 
according to the characteristics of the data set. 
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