Advanced Engineering Platform for Industrial Development

M. A. Gonzélez-Palacios

Universidad de Guanajuato, Campus Irapuato-Salamanca, Division Ingenierias
Carretera Salamanca-Valle de Santiago km 3.5+1.8, Salamanca, Gto., México
maxg@ugto.mx

ABSTRACT

This paper introduces a full description of a software development platform involving libraries that allow the creation
of software packages focused not only on industrial applications, but also on applications where design, modeling
and/or on-line simulation are required. The flexibility of the main classes simplifies the generation of modules that
constitute an application developed with this platform. Furthermore, any custom application starting from scratch
contains by default a set of functions that facilitates the developer firstly to build the graphical environment with
capabilities to interact with the pointing device, and secondly, to accomplish machinery control tasks while
communicating with input/output components; such is the case of digital-analog cards or modules connected
remotely. Besides, any fully developed application can be considered as a platform to generate another with a higher
level of specialization. Several applications built with this platform are reported here as case studies.

Keywords: Software development, mechanical-system simulation, modeling, object-oriented programming, machinery
process control.

RESUMEN

Este articulo introduce una descripcion completa de una plataforma de desarrollo que involucra bibliotecas que
permiten la creacion de paquetes de software dedicados no solo a aplicaciones industriales, sino también a aquellas
aplicaciones donde el disefio, modelado y/o simulacién en linea son requeridas. La flexibilidad de las clases
principales simplifica la generacion de modulos que constituyen una aplicacion desarrollada con esta plataforma. Mas
aun, cualquier aplicacién que empieza a desarrollarse desde las bases de esta plataforma de desarrollo contiene de
forma predeterminada un conjunto de funciones que facilita al desarrollador, en primer lugar, construir un ambiente
gréfico con capacidad de interactuar con el ratdn, y en segundo, realizar tareas de control de maquinaria al
comunicarse con dispositivos de entrara/salida; tal es el caso de tarjetas digital/analégicas o0 médulos conectados de
forma remota. Ademas, cualquier aplicacion completamente desarrollada, puede ser considerada como una
plataforma para generar otra aplicacion con mayor nivel de especializacién. Varias aplicaciones construidas con esta
plataforma son reportadas aqui como casos de estudio.

1. Introduction

Written in Visual Studio® C++ [17-20], and
structured with the object-oriented programming
concept [21-23], these applications together with
other related with industrial control and automation

The constant need to implement automation
algorithms to control mechanical systems while
executing industrial R&D projects, and the
continuous needs to implement applications that

help understanding the mechanical devices in
engineering education, motivated the creation of
an interactive platform which combines these
control algorithms with the tools needed to build
3D models [1-10] and applications using MFC
(Microsoft Foundation Classes) [11-12].
Furthermore, the 3D modeling tools were
implemented gradually while several software
packages for design and simulation of mechanical
systems were introduced in the past [13-16].

are continuously updated and integrated into the
library set, that led to the platform introduced here,
which is called ADvanced Engineering platForm for
Industrial Development, and for short will be
referred as ADEFID. Although ADEFID was
originally created to develop industrial applications,
the integration of the OpenGL libraries extended
the applications to research and training.
Furthermore, this paper represents the unification

Journal of Applied Research and Technology

Advanced Engineering Platform for Industrial Development, M. A. Gonzélez-Palacios / 309-326

and extension of several years of work and a
summary of a modern textbook on mechanical
design in which the author is working on.

There are a number of professional powerful
software packages with wide capabilities to perform
the applications related to those that have been
implemented with the ADEFID platform, such as
Simulink [24], an environment for multidomain
simulation and model-based design for dynamic and
embedded systems; Matlab [25] and Maple [26],
which provide a high-level technical computing
language and interactive environment for algorithm
development, data visualization, data analysis, and
numerical computation; Pro/Engineer [27],
SolidWorks [28] and Autodesk Inventor [29],
integrated 3D CAD/CAM/CAE systems that provide
solutions for mechanical design, product simulation,
tooling creation, etc. Nevertheless, since ADEFID
applications are either specific or specialized, the
investment on a dedicated software package might
not be justifiable or the solution might not fully satisfy
the user's needs. Therefore, these arguments open
the door to ADEFID since its main objective is to
provide a flexible platform from which the developer

is able to build those types of applications.
Furthermore, any ADEFID application can be
considered as a platform to generate another
application with a higher level of specialization.

In order to understand the structure of an
application derived from an ADEFID project, the
relationship with MFC and ADEFID libraries is
introduced in Fig. 1. The developer is able to create
custom applications starting from scratch
(Application A), or from an already developed
ADEFID application or applications (Application B,
..., Application n), with the aim to produce, as
mentioned above, a higher level of specialization.

The organization of this paper is as follows:
Section 2 is dedicated to present information on the
most relevant libraries and the description of their
related classes. Then, the main features of an
ADEFID project to generate an application are
introduced in Section 3, while Section 4 is reserved
to present sample code regarding the CAD
implemented in ADEFID. Section 5 includes a set
of case-studies of applications already developed
under this platform.

_— ADEFID ADEFID e
LIBRARIES PROJECT ,/// \
[\
[APPLICATION |
[CView }—‘{ IpiGui }W{ CAdefidview || | A f,f
(CDocument || IpiDoc || CAdefidDoc | -
| IpiActuators |— | CAdefidGlobal | -T-
N\
| IpiControl |‘ | CAdefidRender | R \,?
IpiManipulators |— Derived ' B /
: ‘ classes from
| IpiMath }‘— ADEFID R
Independent i
Ir \
Other Derived n\APPLICATION :,
Gloesas classes from . n /
MFC N yi

Figure 1. Structure of an ADEFID application.

Vol. 10 No.3, June 2012

Advanced Engineering Platform for Industrial Development, M. A. Gonzalez-Palacios / 309-326

2. Adefid libraries

As mentioned in the previous section, besides the
support provided by the MFC and OpenGL
libraries, an ADEFID project is supported by a
number of ADEFID libraries, which have been
created based on the needs that have been arisen
during the development of previous software
packages, namely, USyCaMs, SixPaq, SVIS, etc.,
and those integrated libraries have been
successfully implemented in the software packages
that are discussed as case-studies in this paper. In
the subsections below, a description of the
representative libraries is included. Needless to
say, every library is continuously updated and new
classes are being implemented as the needs arise
during the implementation of new applications.

2.1 IpiActuators

This library comprises classes of objects intended
to drive mechanical components either with
translational or rotational motions. In addition, they
have member functions allowing the control of the

motion program of devices such as motors, or
member functions to retrieve pulses from
sensors, such as encoders, see Table 1 for the
description of the most relevant classes.

2.2 IpiControl

This library is devoted to develop those classes
focused on applications where the
communication with control devices is required
through embedded devices or through Ethernet-
connected systems, the only constrain being that
they should have compatible drivers to both the
operating system and the programming
language. The most representative classes are
listed in Table 2.

2.3 IpiGUI

Those classes whose main objective is to
support the graphical interface, as well as to
define objects being frequently used to create
mechanical components are concentrated in this
library. The most relevant are listed in Table 3.

Class Name Description

CIncEncoder

It is possible to reset, read the pulses and interpret the direction of

rotation.
CLinearMotor The motor starts and stops according to a given period and a
CRotaryActuator given motion program (smooth start and smooth stop).
CStepMotor
Table 1. IpiActuator Library Classes.
Class Name Description
CConveyor022 This is a sample class derived from CMachine that includes the
algorithm to control a single digital input as well as a single
digital output.
CIOBrain A set of functions and/or variables from which it is possible to
ClOCard communicate with embedded I/O cards and/or Opto22 brain
components.
CMachine Fundamental functions, such as reading a sensor signal or
CMachine022 writing a digital or analog output. It also keeps track of the
custom defined timers.

Table 2. IpiControl Library Classes.

Journal of Applied Research and Technology m:

Advanced Engineering Platform for Industrial Development, M. A. Gonzélez-Palacios / 309-326

Class Name Description

C3DPlot Given a function f(x,y), it is possible to plot it in a user-defined
range.

CHelix Contains functions to create a helicoidal segment by means of
member variables. The helix can be a line or a polygonal shape
extruded.

ClpiGLView This class involves all window messages required to interact with
the mouse as well as all the setup and initialization for OpenGL.

ClpiSModel Contains a set of predefined models most commonly used in
material-handling processes.

CPlanarPlot Similar to C3DPlot, the difference being the function, which in this
case is a single-variable function f(x).

Table 3. IpiGUI Library Classes.

2.4 IpiMath 2.5 IpiOptim

This library was mainly created to facilitate the This library is intended to assist those

symbolic definition of mathematical functions of one
or two independent variables to develop several
applications. In the case studies, the packages
named OptimPlot2d and OptimPlot3D use this
library to interpret a function given as a string of
characters to be analyzed and plotted.

applications requiring functions whose objective is
to evaluate critical points while analyzing a
mathematical function. Those points can be roots,
minima or maxima, as listed in Table 4. Examples
of software packages that apply this library are
OptimPlot2D and OptimPIot3D.

Class Name Description

CBisection Classes applied to obtain roots of a single-variable function

CFalsePosition f(x).

CFixedPoint

CNewtonRaphson

CSecant

CGoldenSection Class applied to find critical points of a single-variable function.

CDavFlePow Methods applied to get minimum values of a n-variable

CDirCon function.

CModMar

CSteepestDescent

COptimFunctions A base class with virtual functions to define those required to
analyze critical points

Table 4. IpiOptim Library Classes.

Vol. 10 No.3, June 2012

Advanced Engineering Platform for Industrial Development, M. A. Gonzalez-Palacios / 309-326

2.6 IpiManipulators

This library concentrates those classes related with
the study of robots, the main areas being the direct
and inverse kinematics of serial manipulators. The
most relevant classes are described in Table 5. An
application that makes an intensive use of these
classes whose name is ADRS is discussed as a
case study.

3. An adefid application

A discussion is included in this section on how an
ADEFID project is organized and also a discussion
on the main default features a developer can obtain
by means of this platform.

An ADEFID project is derived from a MFC
application template and has a Document/View
architecture support. As shown in Figure 1,
CAdefidView is derived from ClpiGLView
(component of IpiGUI library), while CAdefidDoc,
from ClpiGLDoc (component of IpiDoc library).

Besides CAdefidView and CAdefidDoc, there are
other two classes that are standard components of
an ADEFID project as well, namely, CAdefidGlobal
and CAdefidRender. The former is derived from
CMachine; it was created to support control
processes, when global system components are
required such as safety inputs like emergency stop
buttons. Whereas CAdefidRender was created to

keep the rendering properties of an ADEFID
project; it contains two virtual functions, namely,
SetupScene() and RenderUScene(), which override
those originally defined in ClpiGLView.

SetupScene() was created to define the
components of the scene; therefore, the function is
called when the application begins, while
RenderUScene() was created to update the scene
if any transformation (rotation, translation, etc.)
takes place.

3.1 The Main Process

The main process of an ADEFID project resides in
CAdefidDoc, and the process is synthesized as
indicated in the flowchart in Figure 2. When the
application is initialized, a message box appears
indicating that the system is connecting to embedded
devices (/O cards) and/or to remote /O systems
(Ethernet connection). Once the connection is
established, the next step is the initialization of the
objects derived from the CMachine Class. The
message box is a component of the CMaininitDIg
class where, through its member function Start(), the
developer is able to customize both the connection to
the 1/0O devices and the machines initialization. A
machine can be a physical device, as those defined
in SVIS or MetalCoating applications, or a virtual
device, as those defined in ADRS or Mechanism-O
applications. These applications are described in
Subsection 3.2.

Class Name | Description

CLinearPath Given the end poses, it defines the poses of a manipulator end-
effector along a straight line.

Clink Contains all properties to provide the graphical representation of a
link.

CRobot Base class from which CRoboKin and CRoboDyn are derived.

CRoboKin All properties related to robot kinematics such as direct and inverse
kinematics.

CRoboDyn This class is intended to keep all robot properties regarding its
dynamics.

Table 5. IpiManipulators Library Classes.

Journal of Applied Research and Technology m:

Advanced Engineering Platform for Industrial Development, M. A. Gonzalez-Palacios / 309-326

Init Application

!

Connect to I/O Devices

Init Machines

Start Main Process

!

Read I/O Map

~“Any SDI ON?

!
, yes | Suspend

All

no |

Update Machine States .

1

Machine Algorithms

Figure 2. Main ADEFID’s process flowchart.

The Start Main Process is indeed an infinite loop
which ends only if the user closes the application, this
way allowing an application to run as stand-alone,
mostly when it is an industrial application. At every
cycle, the 1/0 map is read and, if any of the safety
device inputs (SDI) is activated, the system is set to a
suspend state and no further action is taken. On the
contrary, if all the SDIs remain deactivated, the state
of every machine is evaluated and updated according
to their corresponding 1/Os state. Then, every
machine is accessed through its own Algorithm()
member function.

3.2 The Graphical Interface

In most cases, there are two levels of interaction
with the rendering area. One level is where the
user can rotate, move, translate, zoom-in or zoom-
out the scene. In this case these features are
standard operations that can be handled with the
mouse; the code of these window messages is
written in ClpiGLView class, and the user can
access the setting parameters through the dialog

named Render Dialog. The other level is
considered when the user wishes to modify the
topology of a model, for which purpose a custom
dialog should be created. Nevertheless, in case
the scenery’s parameters are required to
change, they can also be modified interactively
with the mouse according to the instructions
provided in Table 6.

4. On Computer Aided Design

The objects rendered in ADEFID are built with the
application of OpenGL functions. Most of them are
generated from basic primitives such as cylinders,
boxes, faces, etc., but there are other objects
requiring the use of more complex primitives.
Nevertheless, all geometric primitives are
described in terms of their vertices [1]. Thus, in
this section is presented a discussion on how
these vertices are handled to generate those
complex primitives. Consequently, in the IpiGUI
library a class called CPrimitives is dedicated to
write this type of primitives.

314

Vol. 10 No.3, June 2012

Advanced Engineering Platform for Industrial Development, M. A. Gonzalez-Palacios / 309-326

Mouse button Action
Left Rotation
Right Translation

Left and Right

Zoom in and zoom out

Table 6. Interacting with the Render Window.

To illustrate the logical structure of an ADEFID
primitive, two functions are discussed, namely,
DrawLineSegment() and DrawSurfSegment(). The
former, is applied to generate any three-dimensional
curve, whereas the latter, to generate a three-
dimensional surface. These two functions are written
in CPrimitives. In this class, three more virtual
functions are defined: GetCurvePoint(), GetSurfPoint()
and GetNormal(). Since these are public virtual
functions, the user can redefine them in a derived

class to establish the mathematical behaviour of either
the curve or the surface to be generated.

The DrawLineSegment() pseudo-code is shown in
Table 7, where u varies from 0 to 1 and m
represents the number of points along the curve
segment required. Likewise, Table 8 shows the
DrawSurfSegment() pseudo-code, where both u
and v range from O to 1 and the product mn defines
the number of points of the surface.

beginfun CPrimitives::DrawLineSegment(u,m)
glBegin(GL_LINE_STRIP)
For i=0 till m do

p < Get Cur vePoi nt (iu/m)
glVertex3dv(p)
i<—i+l

enddo

glEnd()
endfun

Table 7. Pseudo-code to generate a curvilinear segment.

Journal of Applied Research and Technology m:

Advanced Engineering Platform for Industrial Development, M. A. Gonzélez-Palacios / 309-326

beginfun CPrimitives::DrawSurfSegment(u,m,v,n)
For j=0till j=n-1do
glBegin(GL_QUAD_STRIP)
Fori=0tilli=m do
je—j+1
For k =1till k =2 do
n < Get Nor mal (iu/m, jv/n)
p <« Get Sur f Point (iu/m, jv/n)
gINormal3fv(n)
glVertex3dv(p)
k«—k+1
j<ij-1
enddo
i<—i+1
jej+1
enddo
glEnd()
jej+1
enddo
endfun

Table 8. Pseudo-code to generate a surface.

One can verify in the pseudo-code in Table 8 that
the inner most loop is applied to generate two
points (p) with their corresponding normal unit
vectors (n). Thus, with the variation of i, strips with
m faces are built with the aid of 2(m+1)

generated points, and finally, with the variation of j,
n strips are constructed to complete the surface. It
is important to note that the main structure of both
DrawLineSegment() and DrawSurfSegment() are
visualization techniques included directly in the
graphics library, i.e., OpenGL’s evaluator facility
[1,2]. Nevertheless, what makes the difference here
is the call to GetCurvePoint() on
DrawLineSegment() and the calls to GetNormal()
and GetSurfPoint() in GetSurfSegment().

Furthermore, a representative example to create
objects like springs or screws is presented below.
For this purpose, CHelix is derived from
CPrimitives, having the pitch (h), the radius of the
base cylinder (R), the radius of the extruded

polygon (r), and the position vector of the reference
point (c), as global variables. These variables are
illustrated in Figures 3 and 4.

Figure 3. Parameters to define a segment of a helix.

clils " Vol. 10 No.3, June 2012

Advanced Engineering Platform for Industrial Development, M. A. Gonzalez-Palacios / 309-326

Figure 4. Left: Parameters to define a segment of an extruded polygonal surface in a helix.
Riaht: A helix and an extruded surface rendered.

As mentioned previously, in order to define the surfaces, GetCurvePoint(), GetSurfPoint() and
properties of helical curves and extruded helical GetNormal() are redefined in CHelix. The pseudo-
code of these functions is shown in Table 9.

beginfun CHelix::GetCurvePoint(U)
0« 2ur

R cosé
p<«| Rsné@ |+c
hé/2x
Get Point <« p

endfun
beginfun CHelix::GetSurfPoint(U,V)

p < Get Cur vePoi nt (u) + rGet Nor nal (u,v)

Get Point <« p
endfun

beginfun CHelix::GetNormal(U, V')
b<«hl/2z

f « vb?+R?
0« 2ur
R A

cos@cosg + (b/ f)sindsing
n < |sindcosg — (b/ f)cosdsing
(R/ f)sing

CGet Nor mal «<—n
endfun

Table 9. Auxiliary pseudo-code to generate helical curves and extruded surfaces.

Journal of Applied Research and Technology m:

Advanced Engineering Platform for Industrial Development, M. A. Gonzalez-Palacios / 309-326

For the case presented in the left side of Figure 4,
the loop with i=0 has finished and one of the
five strips, with 9 faces each, is displayed.
Moreover, the right side of the same figure shows a
rendered image of a helix and an extruded surface.
Both objects have the following variable values:
h=17,R=1.0 and r=0.3. Additionally, they

are called, respectively, with the following
arguments:

DrawLineSegment(2,60) and
DrawSurfSegment(1.2, 60, 1.0, 30).

Note that for this case, due to the nature of this
type of objects, u can be greater than 1.

With variations of the DrawSurfSegment() function,
objects like springs can be generateded, as the
examples illustrated in Fig. 5 where three nested
springs with different parameters and shapes are
rendered. With an appropiate pitch, it is also
possible to design screws, as shown in Figure 6,
where the helical shape is built on top of a
cylindrical surface.

Figure 5. Three nested springs generated with variations in the application of the DrawSurfSegment() function.

Figure 6. A screw generated with variations in the application of the DrawSurfSegment() function.

Vol. 10 No.3, June 2012

Advanced Engineering Platform for Industrial Development, M. A. Gonzalez-Palacios / 309-326

5. Case Studies

In this section, representative applications
developed with ADEFID are described, some of
which were developed for training and research
purposes, the case of Mechanism-O, Vibrato,
OptimPlot2D, OptimPlot3D, and ADRS; others are
oriented to industrial applications, like MetalCoating
and SVIS. There are video files presenting a
simulation for each case study. To have access to
these files, the reader may contact the author for
further information.

5.1 Mechanism-O

The experience in the classroom while teaching
courses of mechanisms for engineering students as
well as the success in generating innovative
mechanical devices using software packages
already developed, e.g., USyCaMs, from which
Speed-0-Cam was created [14, 32-35], motivated
the development of this package. Figure 7 shows a
still image of a simulation of the well-known
Whitworth mechanism, with the corresponding
dialog box where the user is able to change

Crank,
Osclater |
Coupler _‘
P Shder _

P.Crank

&ng. Pos. |
Crank. -t
Tr.Pos. =
Degrees
ang. vel. <
(rpen)

Kinematics of the Skder

] [Piat [Jres Cvet [Jacest

(=) o) o) (=]

interactively the parameters indicated, and to
visualize an instantaneous updating in the graphics,
including the plots for the position, velocity and
acceleration of the slider while the mechanism is in
motion. This way, the user is able to visualize in
real time how the kinematic behavior is affected by
a modification of any of the link lengths, thereby
giving an immediate picture of the mechanism
behavior during the design process. Likewise, Fig.
8 shows a snapshot of a four-bar linkage while
plotting the trajectory of a coupler point. In this
case, if the user changes any of the parameters
interactively, the coupler curve is updated
simultaneously.

5.2 Vibrato

Vibrato is dedicated to the study of vibrations of
mechanical systems. It was created as an auxiliary
tool for the theory of vibration courses. Although this
package is still under development, some systems
can be simulated such as lumped-parameter
systems with one or two degree of freedom [36], or
continuous systems like strings [37]. Figure 9
illustrates a one-degree-of-freedom system.

Figure 7. Simulation of a Whitworth mechanism.

Journal of Applied Research and Technology m:

Advanced Engineering Platform for Industrial Development, M. A. Gonzalez-Palacios / 309-326

o e |}
Oeclator _JI— ’F
capr —f—— |2
PHEos il =i
o ——f—— I
mapes o
Crank

B
e) 3

™ Coup, Point © Coupler 7 Ouclator
Fre Tes vl [oacd

Mation Control

ManualjReset
Crank Ar lar Pockion (deg.)
- 214

Motion Contrel

o hutepecs | i
e | we |

<

Gl

Figure 8. A four-bar mechanism while plotting a coupler curve.

Figure 9. Vibrato: One-degree-of-freedom system.

5.3 OptimPlot2D

With this software, the user inputs any function of
the type y = f(x), by typing it as a string of
characters in a command line. Then, the curve is
plotted and the user is able to navigate on it by
moving the cursor horizontally; then, a small sphere
moves along the curve pointing the f(x) value of the
corresponding x position of the cursor. It is possible

to define the range of the plotting area, so that
the user can zoom in the area of interest, see
Figure 10 where a dialog box shows the plotting
settings. Besides, by using numerical methods, it
is possible to obtain critical points interactively
such as roots, maxima and minima. Details on
this application are given in [38].

320

Vol. 10 No.3, June 2012

Advanced Engineering Platform for Industrial Development, M. A. Gonzalez-Palacios / 309-326

Figure 10. Still Frame from OptimPlot2D.

5.4 OptimPlot3D

This package is similar to OptimPlot2D but in this
case the function is of the type z = f(x, y). The surface
is plotted within the range defined by the user. By
moving the pointing device on the screen, x and y
values are defined and the f(x, y) value is calculated,
and a small sphere is placed on the surface to
indicate the z value. Figure 11 shows a still image
during a navigation process on the surface.
Furthermore, by using iterative techniques, it is
possible to obtain, interactively, points of interest for
optimization purposes. A full description of this

DptimPlotiD
A

application was introduced in [39]. Most of the
OptimPlot3D features can be achieved by packages
like Matlab [25] or Maple [26], such as zoom-in and -
out and rotate, or even change rendering properties
[30, 31], however, and to the best of knowledge,
properties like the interactive navigation on the
surface to evaluate in line the z-value of the function
as the user moves the x-y point with the mouse or the
interactive evaluation of a critical point (minimum or
maximum) as the user approaches it to provide with
the auxiliary mouse button the initial point to trigger
any of the numerical methods listed in Table 4, are
OptimPlot3D original features.

- OX

[

Denr P | 5 pten Ot [+ B0 [+ ¥ Moot Sl [~ Self oten

[F Soldvers [MowSowss [OrtheFeempactie

]

Figure 11. Still Frame from OptimPlot2D.

Journal of Applied Research and Technology m:

Advanced Engineering Platform for Industrial Development, M. A. Gonzélez-Palacios / 309-326

5.5 ADRS
The name of this package stands for
Architecture Design and Robot Simulation

(ADRS). This package was created as an
auxiliary tool to help the designer of serial
manipulators. Although the package is still
under development, its current stage provides
the user with the tools to design interactively a
desired robotic architecture; in other words,
design parameters like length, offset and twist
angle of any link can be modified on line while
the model is continuously updated. Thanks to
the GUI, when it is in the Selection option, the
user is able to select a link with the pointing
device, while it is highlighted, to obtain the
corresponding dialog box and interact with its
design parameters at the same time the
modifications are updated in the model.

ADRS was developed with simulation features like
path tracking, path generation, palletizing, direct
and inverse kinematics. Figure 12 illustrates the
case of path tracking.

According to Fig. 1, this is an example of an
Application B, since it has been developed and
improved with innovative features compared with its
base Application A [40]. For this matter, with few
changes in the Visual Studio’s project definition
properties of Application B, the user departs from
this platform to create a new application, for
instance, a pick & place operation, which is now
considered an Application C, as shown in Figure 13,
where the user does not need to rewrite the code for
the manipulator, being this an object of the
CManipulator class, which is in turn derived from the
classes of the IpiManipulators Library.

Figure 12. A path tracking application (Application B, see Fig.1).

322

Vol. 10 No.3, June 2012

Advanced Engineering Platform for Industrial Development, M. A. Gonzalez-Palacios / 309-326

Figure 13. ADRS: A pick & place operation (Application C, see Fig.1).

5.6 SVIS

As mentioned before, this control program was
created for an industrial application which has been
successfully implemented at Placage Unique, Inc.
(Canada). The main objective of this application is
to keep in operation a system dedicated to the
production of veneer. SVIS stands for Spliced

APl

Veneer Integrated System and it is an example in
which all devices shown in Fig. 14 are defined each
as independent machines. Then, the code to
synchronize their operation with the overall process
is written in the block labelled Update Machine
State, as indicated in Fig. 2. The actual layout of
Placage Unique, Inc., the owner of this application,
is shown in Figure 15.

unecpil unespil uneapll P 3 Bl

Figure 14. SVIS: An industrial application (Courtesy of Placage Unique, Inc.).

Journal of Applied Research and Technology m:

Advanced Engineering Platform for Industrial Development, M. A. Gonzalez-Palacios / 309-326

Figure 15. Layout of Placage Unique, Inc. (Canada).

6. Conclusions

In this paper, a set of continuously growing
libraries devoted to the development of software
applications, not only for industrial, but also for
training and research purposes, have been
introduced as a software development platform
named ADEFID (Advanced Engineering platForm
for Industrial Development). The flexibility of their
classes allows the generation of new modules as
well as custom-tailored applications to satisfy
industrial, research or training needs. These
features have been pointed out within ADEFID
applications introduced here as case studies.

Acknowledgements

The author acknowledges the support from SNI,
(Sistema Nacional de Investigadores), Mexico.

References

[1] Shreiner D., The Khronos OpenGL ARB Working
Group, OpenGL Programming Guide, 7 ed. Adison
Wesley, 2009.

[2] Shreiner D., OpenGL Reference Manual, 4 ed. Adison
Wesley. 2007.

[3] Fosner R., OpenGL Programming for Windows 95
and Windows NT. Adison Wesley, 1999.

[4] Angel E., Shreiner D., Teaching a shader-based
introduction to computer graphics, IEEE Computer
Graphics and Applications, Vol. 31, No. 2, 2011, pp. 9-13.

[5] Angel E., Interactive Computer Graphics: A Top-down
Approach using OpenGL, 3 ed. Adison Wesley, 2003.

[6] Kilian M., Mitra N., Pottmann H., Geometric Modeling
in Shape Space, ACM Trans. Graphics, Vol. 26, No. 3,
Article 64, 2007, 8 pages.

[7] Schreiner J., Asirvatham A., Praun E., Hoppe H.,
Inter-surface mapping, ACM Trans. Graphics, Vol. 23,
No. 3, pp. 870-877.

[8] Randi Rost, OpenGL Shading Language, Second
Edition, Addison-Wesley, 2006.

324

Vol. 10 No.3, June 2012

Advanced Engineering Platform for Industrial Development, M. A. Gonzalez-Palacios / 309-326

[9] Georgli J., Westermann R., A multigrid framework for
real-time simulation of deformable bodies, Computers &
Graphics, Vol. 30, No. 3, 2006, pp. 408-415.

[10] Diaz-Gutierrez P., Bhushan A., Gopi M., Pajarola R.,
Single-strips for fast interactive rendering, The Visual
Computer, Vol. 22, No. 6, 2006, pp. 372-386.

[11] Blaszczak M., Professional MFC with Visual C++ 6.
Wrox Press, 1999.

[12] Murray W.H., C.H. Pappas, MFC Programming in
C++ with the Standard Template Libraries. Prentice Hall
PTR, 2000.

[13] Gonzalez-Palacios M.A., Angeles J., Cam
Synthesis. Springer, 1993.

[14] Gonzalez-Palacios M.A., Angeles J., USyCaMs: A
Software Package for the Interactive Synthesis of Cam
Mechanisms, 1st IDMME Conference, Nantes, France,
Vol. 1, 1996, pp. 485-494

[15] Gonzalez-Palacios M.A., An Algorithm for the
Synthesis of Bevel Gears. Proc. 9th IFToMM World
Congress on the Theory of Machines and Mechanisms,
Milan, ltaly, Vol. 1, 1995, pp. 570-574

[16] Gonzalez-Palacios M.A., Angeles J., SIXPAQ: A
Comprehensive Software Package for the Analysis and
Synthesis of Six-Bar Dwell Linkages. ASME International
Computers in Engineering Conference, Santa Clara, CA,
Vol. 1, 1991, pp. 301-308

[17] Stroustrup B., The C++ Programming Language, 3
ed. Adison Wesley, 1997.

[18] Horton 1., Beginning Visual C++ 2010. Wrox Press, 2010.

[19] Walnun K., C++ Master Reference. IDG Books
Worldwide Inc., 1999.

[20] Leinecker R.C, T. Archer, Visual C++ 6 Bible. IDG
Books Worldwide Inc., 1998.

[21] Lafore R., Object-Oriented Programming in C++, 3rd
edn. Sams Publishing, 1999.

[22] Kecskeméthy A., Lange C., Grabner G., Object-
Oriented Modeling of Multibody Dynamics Including
Impacts, European Conference on Computational
Mechanics, Cracow, Poland, 2001, pp. 1-28.

[23] Tandl M., Stark T., Erol N., Léer F., Kecskeméthy
A., An object-oriented approach to simulating human gait
motion based on motion tracking, International Journal of
Applied Mathematics and Computer Science, Vol. 19,
No. 3, 2009, pp. 469-483.

[24] Simulink (2009)
http://www.mathworks.com/products/simulink/

[25] Mathlab 7.9 (2009)
http://www.mathworks.com/products/matlab/

[26] Maple 13 (2009) http://www.maplesoft.com/

[27] Pro/Engineer (2009)
http://www.ptc.com/products/proengineer/

[28] SolidWorks 2010 (2009)
http://www.solidworkslaunch.com/

[29] Autodesk Inventor (2009) http://usa.autodesk.com

[30] Runiter Company, Graphing Calculator 3D, (2011)
http://www.calculator.runiter.com/graphing-calculator.

[31] Brown A., Torrey Pines H.S., Three Dimensional
Graphing, (2008),
http://www.youtube.com/watch?v=JRBDpg6awWs.

[32] Gonzéalez-Palacios M.A., Angeles J., The Design of a
Novel Mechanical Transmission for Speed Reduction, J.
Mech. Des., Vol. 121, 1999, pp. 538-543.

[33] Gonzéalez-Palacios M.A., Angeles J., The Design of a
Novel Pure-Rolling Transmission to Convert Rotational
into Translational Motion, J. Mech. Des., Vol. 121, 2002,
pp. 1-3.

[34] Bai S., Angeles J., The design of spherical multilobe-
cam mechanisms. Proc. IMechE, Part C: J. Mechanical
Engineering Science, Vol. 223, No. C2, 2009, pp. 473-482.

[35] Chen C., Zhang X., Angeles J., Kinematic and
geometric analysis of a pure-rolling epicyclic train, J.
Mech. Des., Vol. 129, No. 8, 2007, pp. 852-857.

[36] Moreno-Baez M.A., Gonzalez-Palacios M.A., Colin-
Venegas J., Aguilera-Cortés L.A., Implementacion de un
Modelo de Simulaciéon para el Programa VIBRATO. |
Reunion Nacional de Estudiantes de Posgrado,
Cuernavaca, México, Vol. 1, 2008, pp. 1-7.

[37] Rocha-Aguilera G., Gonzalez-Palacios M.A., Colin-
Venegas J., Aguilera Cortés L.A., Simulacion en ADEFID
del Movimiento Vibratorio de una Cuerda. XIV Congreso
Internacional Anual de la SOMIM, Puebla, México, Vol.
1, 2008, pp. 1438-1452.

[38] Gonzéalez-Palacios M.A., Pefia-Gallo R., Aguilera-
Cortés L.A., OptimPlot2D: A Novel and Interactive
Software Package to Analyze Single Variable Functions.
CERMA Workshop on Innovation of the 2009 Electronics,
Robotics and automotive Mechanics Conference,
Cuernavaca, México, 2009, pp. 1-7.

Journal of Applied Research and Technology m:

Advanced Engineering Platform for Industrial Development, M. A. Gonzalez-Palacios / 309-326

[39] Gonzalez-Palacios M.A., Bernal-Martinez C.A,,
Aguilera-Cortés L.A., OptimPlot3D: A Novel and Interactive
Software Package for Analysis of Three Dimensional
Surfaces. CERMA Proceedings of the 2009 Electronics,
Robotics and automotive Mechanics Conference,
Cuernavaca, México, Vol. 1, 2009, pp. 137-142.

[40] Gonzalez-Palacios M.A., Gonzalez-Barbosa E.A,
Aguilera Cortés L.A.,, SnAM: A Simulation Software on
Serial Manipulators, Engineering with Computers,
Springer, 2012, pp.1-8. DOI: 10.1007/s00366-011-0246-6.

epls | Vol. 10 No.3, June 2012

