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ABSTRACT

This paper presents a multiobjective methodology for optimal zoning design (OZ), based on the grouping of
geographic data with characteristics of territorial aggregation. The two objectives considered are the minimization of
the geometric compactness on the geographical location of the data and the homogeneity of any of the descriptive
variables. Since this problem is NP hard [1], our proposal provides an approximate solution taking into account
properties of partitioning algorithms and design restrictions for territorial space. Approximate solutions are generated
through the set of optimum values (Maxima) and the corresponding minimals (dual Minima) [2] of the bi-objective
function using Variable Neighborhood Search (VNS) [3] and the Pareto order defined over this set of values. The
results obtained by our proposed approach constitute good solutions and are generated in a reasonably low
computational time.

Keywords: Optimal Zoning, compactness-homogeneity, maxima, multiobjective optimization.
RESUMEN

Se presenta una propuesta de optimizacion multiobjetivo para la zonificacién 6ptima (ZO) basada en la agrupacion de
datos geograficos bajo caracteristicas de agregacion territorial. Los dos objetivos a minimizar son la compacidad
geométrica en la ubicacion geografica de los datos y la homogeneidad de alguna de sus variables descriptivas. Dado
que este problema es NP Duro [1], nuestra propuesta proporciona una soluciéon aproximada tomando en cuenta las
propiedades de los algoritmos de particionamiento y de las restricciones espaciales para disefio territorial. Se
generan soluciones aproximadas a través del conjunto de valores maximos (Maxima) y el dual (Minima) [2] de la
funcion bi-objetivo con la heuristica de Busqueda por Entorno Variable (BEV) [3] y el orden Pareto definido sobre
este conjunto de valores. Los resultados obtenidos por nuestra propuesta constituyen buenas soluciones, y se
produjeron en tiempos de computo razonablemente cortos.

1. Introduction

In the problem of Optimal Zoning (OZ), the goal is  description, and selected on the basis of a

to obtain a spatial data partitioning named BGAs
(Basic Geostatistical Areas). Its composition
consists of two components: geographical
coordinates in the plane R2 and a vector of 171
census descriptive characteristics [4]. The first
component allows us to obtain a distance matrix
for the process of calculating the geometric
compactness, which is one of the objective
functions to minimize. The second objective
function is the minimization of the homogeneity of
any of the census variables stored in the vector’s

particular interest. From this point of view, we look
for a partition that consists of a set of classes with
components that are very close geographically,
and balanced according to one of its census
variables.

To solve the issue of the bi-objective geographical
partitioning, a heuristic methodology named
Variable Neighborhood Search (VNS) [3] was used
in a multiobjective optimization framework that
allowed us to find a set of pairs of nondominated
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and non-comparable solutions named minimals [2].
This paper is organized as follows. The
Introduction is in Section 1. Section 2 presents the
basic definitions and concepts used throughout
this study. The problem statement of the Optimal
Zoning (OZ) problem is described in Section 3.
Section 4 shows the method used to find the set of
nondominated solutions (minimals). The
conclusions are shown in Section 5.

2. Preliminary and theoretical aspects

Multiobjective problems can be more clearly
understood if the relationships among their
characteristics, constraints and main objectives to
be improved are identified. For such problems, it is
possible to have a model that consists of
mathematical functions and restrictions expressed
as constraints.

We have taken some definitions from [5] which are
necessary to formally introduce the multi-objective
partitioning problem on which this paper is
focused. The definitions are the following

Notions of Optimality

The minimization in multicriteria optimization
problems in general is:

“min” (f1(x), fa(X),...f»(X)) subject to x € X

The fundamental importance of efficiency (Pareto
optimality) is based on the observation that any x
which is not efficient cannot represent a most
preferred alternative for a decision maker, because
there exists at least one other feasible solution x” €
X such that f(x") < fi(x) for all kK = 1,..,p, where a
strict inequality holds at least once, i.e., x” should
clearly be preferred to x.

Let S be any set. A binary relation on S is a subset
R of SxS:

Definition 1. A binary relation R on a set S is:

e an equivalence relation if it is reflexive,
symmetric, and transitive,

e a preorder (quasi-order) if it is reflexive and
transitive.

In the case of R being a preorder set the pair (S,
R) is called a preordered set. For convenience, we
will write s' < s? as shorthand for (s', s°) € R and
s' « s® as a shorthand for (s, s%) ¢ R. Also, we will

interchangeably refer to the relation R or to the
relation <. This notation can be read as “preferred to”.

Given any preorder <, two other relations are
cIoseIzy associated with < :

s'< §° iff s'< s? and s« s

s' ~ s iff s'< s? and s°x &

By the choice of an order < on RP, now it's
possible define “min”

“min” f(x) = “min” (fi(x), fa(X),.., fo(X)) X € X

With the multiple objective functions, we can
evaluate objective value vectors (fi(x), f2(X),..,f5(X)).
However, we can see that these vectors y = f(x), x
€ X are not always directly compared in objective
space, i.e., R".

In general, the objective function vectors are
mapped from R’ to an ordered space, e.g. (R®, <),
where comparisons are made using the order
relation < (model map). Now, we can summarize
the elements of a Multicriteria Optimization
Problem (MOP):

The feasible set X, the objective function vector f =
(f,...f) : X — RP, the objective space R, the
ordered set (R, <), the model map 4.

Feasible set, objective function vector f, and
objective space are data of the problem to be
solved. The model map provides the link between
objective space and ordered set, in which, the
meaning of the minimization is defined. Thus, with
the three main aspects (i.e., data, model map, and
ordered set) the classification (X, f, R°)/0/(R", <)
completely describes a multicriterion optimization
problem.

Definition 2. A feasible solution x € X is called an
optimal solution of a Multiobjective Problem (MOP)
(X, f, R°)/6I(R", <) if there is no x € X, x # x such
that 6(f(x)) < 6(f(x*)).

For an optimal solution x*, 6(f(x*)) is called an
optimal value of the MOP. The set of optimal
solutions is denoted by Opt((X, f, R°)/0/(R", <)).

Definition 3. A feasible solution x* € X is called
efficient or Pareto optimal, if there is no other x € X
such that f(x) < f(x"). If x" is efficient, f(x") is called
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nondominated point. If X', x*, € X and f(x") < f(x?)
we say x'dominates x* and f(x") dominates f(x?).

The set of all nondominated x* € X is denoted as
Xeg and called the efficient set. The set of
nondominated points y* = f(x) € Y where x* € Xg
is denoted Yy and called the nondominated set [5].
Finally, we present concepts that we have adapted
to the problem discussed in this paper. The
previous definitions allow us to define the problem
of our interest as follows:

Definition 4. A MOP is defined in the case of
minimization (and similarly for the case of
maximization) as:

Minimize f(x) since . F € R" - RY g 2 2 and
evaluated in

A={aeF.g(a)<0,i=1,..,n}#0.

The constraints set A, called the feasible region,
and consists of the regular functions
gi; R” > R.

2.1 Pareto Dominance

Definition 5. Pareto dominance (DP). A vector u =
(uy,..,ux) dominates a vector v = (vq,..,vx) (denoted
by u < v)ifand only if u is partially less than v .

That is:
ui< v, forany i =1,..,k and denoted by
u <vifusvandu#v.

Another common concept used as Pareto
dominance is expressed as:

Definition 6. Given the multiobjective problem
Minimize f(x) where f: F cR" - R%, q=2with A c
F the feasible region. A vector x* € A is not
dominated or a Pareto optimal solution if a vector x
€ A such that f(x) < f(x*) does not exist [6].

Two vectors x, X’ € A are not comparable iff

fix) % f(x)) and f(x’) % f(x ).
The answer to the problem of finding the best
solutions  (nondominated solutions) to a

multiobjective problem is known as the solution set
of the problem, and the group of values of the

objective functions, with a domain restricted to the
vectors of the solution set (i.e., nondominated
vectors) is known as the Pareto frontier.

In summary, the set of Pareto optimal solutions is
the space solution of the problem and the Pareto
Frontier is its image with respect to the function f:
FcR" - R, q2 2 being optimized [6] .

Definition 7. Let (A, <) be a partially ordered set,
where an element x* € X €A is called a minimal
element of X, iff an element x € X such that x < x*
does not exist. The set of all minimal elements is
denoted as M(A, ).

In this paper, we propose an adaptation of
definitions 5, 6 and 7 to obtain:

Definition 8. Let F €R" and C = {P: P is a partition
of F}

Minimize f(p) where f: C c 2F L RY gz2withAc
C the feasible region. A partition p* € A is not
dominated or a Pareto optimal solution if a partition
p € A such that f(p) < f(p*) does not exist.

Two partitions p, p’ € A are not comparable iff

f(p) % f(p’) and f(p’) < f(p )
3. The Optimal Zoning Problem

The Zoning Problem is informally defined as a
grouping process of geographical areas with the
assumption of the existence of a relationship
between the characteristics of the data that
constitutes the metropolitan area, the population
variables and the properties of the problem. Here,
the main issue is to know how a variable census -
population is distributed or concentrated in certain
territorial spaces.

The applications of the Zoning Problem are diverse,
and primarily focused on solving population issues.
For example, in order to serve a segment of the
population that has no basic services, as drainage, the
problem can be addressed by grouping units of
territorial areas (in this case BGAs), in larger groups,
so that the areas that belong to each group, are very
close and compact, and can be considered in the
grouping of the variables related to sewer services [7].
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This procedure involves creating and analyzing
small groups because it is not possible to study the
full extent as a single territorial unit. At this point,
and according to the territorial design properties,
Optimal Zoning can be seen as a case arising in
territorial design. Since the problem of optimal
zoning seeks answers to several population issues
(distribution, concentration, density or
centralization of the population in a metropolitan
area), the method for addressing optimal zoning
uses compact territorial units, in this case BGAs
with two objectives to consider: a) to satisfy the
geometric compactness property required in
territorial design, and b) to balance a specific
population variable in each group (homogeneity).
This means that the partitioning method for BGAs
minimizes two objective functions simultaneously
and checks that the solutions generated are
minimals [7].

3.1 Solution Strategy for Optimal Zoning

Generally, the clustering can be addressed as a
combinatorial optimization problem where the
clusters are a partition of a set of objects. If only
one objective function is optimized, the clustering
algorithm simply incorporates a heuristic method to
find a global solution [8]. But given the strong
relationship between spatial design problems and
geographical partitioning, we know that these
problems, in order to be solved, require a
clustering  methodology  applied on the
geographical space where the conditions for the
grouping are territorial design spatial properties
such as continuity, connectedness, compactness
and homogeneity. Similarly, the combination of
geographical data in territorial design has
produced good results if one optimizes only one
objective function f and leaves other properties as
constraints.

The multiobjective partitioning in territorial design
is an alternative solution to such problems as it
offers a set of solutions where the decision maker
can have more than one solution and choose the
most appropriate for a particular application. There
are few works on multiobjective partitioning due to
its various sources of complexity: modelling and
characterization of the problem, the development
of implementations articulated with a heuristic
method and the generation of nondominated
solutions [9, 10, 11, 12, 13].

Since optimal zoning is a multiobjective problem,
the vector of census population variables and the
geographical coordinates are data that should be
considered in the clustering process in order to
create the BGAs. In the aggregation process,
which is NP-hard in nature, the kinds of clusters
obtained are subject to compliance with the
minimization of two cost functions: a measure of
distance in geographic space and a balance or
uniformity of population variables.

This implies that the optimization of these objective
functions will be addressed with a heuristic
approach, while the solution to the competition
between these two functions will be solved by
multi-objective methods for obtaining the set of
nondominated solutions (minimals).

The general strategy used to solve the problem of
optimal zoning is:

a) To develop a geographical partitioning
combinatorial model that considers the spatial
layout  properties (BGAs  restrictions  of
compactness and homogeneity).

b) To solve first the geographical partitioning
problem, considering only one objective function:
geometric compactness. Once a compact partition
is obtained, its homogeneity is simultaneously
calculated.

c) To develop an algorithm that optimizes both
compactness and homogeneity with the use of
VNS to ensure the generation of quality solutions,
according to a) and b) [7].

d) While the solutions are generated with the
heuristic algorithm, it is necessary to use a multi-
objective method for the construction of an efficient
set of solutions defining a Pareto frontier [2, 10].
The method used to find nondominated solutions is
based on the theory of order and obtains the
minimals [2, 7].

In particular, we emphasize the use of [2] to solve
the multiobjective problem because of the
importance of the concepts of Maxima and their
dual Minima used to find nondominated solutions
for optimal zoning problems. On the other hand,
other proposals to address multiobjective problems
have been studied [10, 11, 12, 13]. The aim has
been to identify aspects of these methods that
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could be adaptable to the multiobjective problem
discussed in this article. However, after an analysis
of several works, the core support used for the
multiobjective optimal zoning method proposed in
this work was the algorithm proposed in [2].

3. 2 Discretization and representation

The geographical clustering is done in a physical
space. In the finite geographical units called BGAs
(Basic Geostatistical Areas) in our research, each
element is represented by its spatial location and
an array of descriptive variables (census quantified
variables). The problem is discrete, combinatorial
and mixed-integer, and the aggregation is
performed under the partitioning properties. The
geographically  clustering process produces
compact groups of BGAs. To do this, we use an
objective function that minimizes the sum of the
distances between the elements of the BGAs of
each group and its centroid. The homogeneity is
optimized seeking a grouping balance in a census
variable of interest.

The clustering strategy randomly chooses a certain
number of BGAs as centroids, which are used to
represent and identify their respective groups.
Those BGAs which are not centroids and have the
shortest distance to a particular BGA-centroid, are
members of a group. This is defined as geometric
compactness [8]. Once the groups that minimize
the sum of the distance of the members of each
group with its centroid is formed, the homogeneity
of the groups created is estimated, since both
objectives are defined in the same partition, i.e.,
the functions to optimize have the same domain for
all the objectives of the multiobjective problem [10].
Thus, on the same partition, the compactness and
homogeneity are optimized.

The characteristics of this multiobjective problem
are:

1. Each BGA must belong to only one group
(constraint for compactness)

2. In one group, the value of each parameter is the
value of the census variable (constraint for
homogeneity).

3. The groups are disjoint
compactness)

4. There are no empty groups (constraint for
compactness)

(constraint  for

5. The population variables may or may not be
bounded (constraint for homogeneity)

6. All the variables or only a subset of them can be
in the cluster (constraint for homogeneity).

7. The BGAs assigned to each group must
conform a compact group (Compactness
Objective).

8. The groups should be balanced with respect to
a measurable characteristic = (Homogeneity
Objective).

The following equations, will use this notation:
Let GU = {X1, Xo,.00 X, } be the initial set
the i

geographical unit, K is the number of zones or
groups, Z ; is the set of geographical units that

of n geographical units, where X is

belong to area i, N is the number of geographical
units that belong to area i, C, is the centroid and
d (1, J) is the Euclidean distance from node i

to node J (from one BGA to another).

3.2.1 First Objective: Minimization of Distances
(Compactness Objective)

It minimizes the intra-class distance between

BGAs, defined as

MHZ 2 d(":cr)}} 0

(where n is the number of iterations, T the number
of centroids and /i the number of BGAs in the
proximity of that centroid). Once the number kK of
centroids €, ,f = 1,.., K is decided, the other
BGAs are assigned in a random selection, to the
nearest centroids C, . For each BGA i is fulfilled:

..... @)

The sum of the distances of the BGAs assigned to

each centroid K is calculated, selecting the
arrangement that minimizes the sum in (2).
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3.2.2 Second objective: Homogeneity for census
variables

When the BGAs in a metropolitan area are
clustered, seeking for a balance in any census
variable (VA), it can be said that the BGAs are
partitioned under a criteria of homogeneity. The
equilibrium or homogeneity for a specific census
variable is the second objective considered. To
balance the groups, an ideal average for the
variable of interest should be obtained; it ideally
happens when all the members in the group have
the same value. As it is not common practice, the
actual average is calculated for each group and
subtracted from the ideal average. Minimizing the
sum of this difference is the homogeneity objective
function to be optimized.

Let VA be the set of measurable attributes, from
which a subset will be selected according to the
problem.

V A, is the value of the k " attribute contained
inthe j" geographical unit (GU).

o, , B, are the parameters and tolerances for
V' A, in any geographical unit GU.

a, < VA < B, arebounds on the variables.
n

Then VA = > VA , X 3)
-1

is the value for the k " territorial group (TG),
where X jj is a binary variable that equals one if

the territorial group/ belongs to the basic

geographic unit j and zero, otherwise. This value

is defined as the target for the k " attribute in any
geographical unit GU.

VA, =i/ mY VA, (4)
j=1

Is the ideal target value for the k " attribute in
every territorial group.

From (3) and (4), the objective function for
homogeneity can be defined as:

Hom = (VAx - VA, ) (5)

Rewriting (1) and defining BGU as a Basic
Geographic Unit, we have:

D,=> d(c,,BGU )X, (©
j=1

Finally, the multiobjective model for the optimal
zoning problem (compactness and homogeneity)
can be written as:

Minimize f(x ) = (f1,f2) (7)
Where
f1: is the cost of minimizing the distance

between BGAs according to equation (6).

f 2 :is the cost of minimizing the homogeneity for
a census variable of the BGAs according to
equation (5).

The functions 1 and 2 in (7) are subject to the
following constraints:

Z, # D fori =1,...,k

empty)
Z,"Z;, = fori # J (Every BGA can
only belong to one group)

(the groups are not

U ik:1 Z, = UG (The union of all groups are all
the BGAS)

m

z X ; = 1is the allocation of BGAs (BGA mean

with X, =1ifGU eTG, o
X, =0ifGU ¢ TG,

ij
4. Non-dominated solutions to Optimal Zoning

In order to find the Pareto optimal solutions to the
problem of our interest, Pareto ordering (implicit in
the definition of Pareto dominance) was initially
applied to the VNS generated solutions of the
problem at hand. These solutions are a partially
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ordered sets of pairs (¢, h)) according to the
definition of Pareto dominance [6].

However, it is necessary to verify that the set of
final solutions (c,, h;) obtained in a test, satisfies
the definition of Pareto dominance and is indeed a
set of nondominated solutions. For that purpose,
the optimal zoning solutions have been processed
with  an application named NODOM or
NDOMINATED (nondominated), built according to
the algorithm presented in [2].

The general description NODOM is:

LetU,,U,,...,U, betotally sets antlet V be
a set of n d-dimensional vectors in the cartesian
product U, x U, x ...x U, . For any vectors
v inV let X, (V) denote the i component

of v . A partial ordering < is definided on V' in

a natural way, that is, for V,U € V ,v < U if
only if
X, (v)< x,(u)for ali =1,...,d where

< is the total ordering onU.Forv e V ,V is
defined to be a maximal element of V if there

does not exist U € V such that U > v and
u # v.

The algorithm was implemented in the C
programming language and identifies nondominated
solutions of a dataset. The source code and
information about its use are available in [11].

NODOM works like this: accepts as an input file a
set of vectors (txt format document). NODOM
needs as well the number of objectives as input.
The output is a file that contains the set of
nondominated solutions.

Once it is understood that the maxima are
"nondominated points" but also non-comparable
(for the problem solved in this paper), it is
necessary to propose a method to discover all
pairs of equally non-comparable solutions.

Given this situation, we have to revisit the ordering
imposed by Pareto dominance, since this relation
must include noncomparability.

A Pareto ordering implies:

Given a solution (a, b) the following solution (a ', b")
is accepted if:

(@>aAb'=b)v(b'>bara=a)v(a'>aAb>b)
v@=a'Ab=b) (1a)

When a comparison of the pair of solutions is
made using expression 1a, a point at the Pareto
boundary is reached.

The negation of expression 1a allows the
production of approximations to the Pareto
boundary by several chains. However, it is also
necessary to iteratively examine that the non-
comparable solutions fulfill the Pareto dominance.
Lastly, the solution set obtained is a set of
minimals (Pareto boundary).

A pair of solutions is non-comparable in a given
partial order if it does not fulfill the trichotomy
property, in this case it means that two pairs (a, b)
and (a’, b’) are Pareto non-comparable if

~((a,b)<(a', b)) A (@', b') < (a, b)), that is
(@>a'vb>b)A(a'>avb >b) (2b)

Under this strict partial order, that we have called
“Pareto Non-Comparable” (2b), suitably combined
in an iterative manner with Pareto dominance, we
obtain all pairs of minimal solutions; a fact that is
confirmed when NODOM has been applied to all
the solutions generated by optimal zoning.

Some other authors also considered the properties
of the non-comparable relation as an extension of
the classical Pareto ordering and used these
properties to find the Pareto frontier for their own
specific problems [12, 13].

Finally, note that the average of the minimal
solutions is non-comparable [7].

If the solutions are not comparable (non-
comparable), this does not imply that they are
minimal. However, if we have solutions that are not
comparable and also nondominated then these
solutions are minimal.

This set of solutions is defined as minimal for
optimal zoning and are precisely the solutions
forming the Pareto frontier for the optimal zoning
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problem. This problem has been a well-defined [ s
Pareto front of nondominated solutions consisting 45001 o 57111 44108
of minimal-optimal zoning solutions (see Figures

4000 4

1,2,3,4,5and 6). %001 @ 5526232564
= 3000 1

This point can be illustrated in the following %;ﬁ: & 73647, 21624
example: 1500 |

1000 - ¢
Example 1: The BGAs of the metropolitan area of 500 | 94983, 12172

1]

Toluca Valley are going to be grouped in five

compact and homogeneous partitions that only

include elements whose variables have values in

the ranges indicated below. It is important to note

that these variables are bounded in a value that is

above the average: Figure 1. Pareto frontier for NODOM
(test 1, example).

35000 45000 55000 65000 75000 85000 95000 105000
COMP

Male Population under 6 years (X001).

Male population between 6 and 11 years (X003).
Male population between 15 and 17 (X007).

The homogeneity will be obtained on the variable

COM HOM
75083 3184.4

X003, 42396 4646.8

37111 4419.6
We considered two different neighborhood 45867 4419.6
structures and 15 iterations for the local search in 44397 4419.6
the VNS. 65229 4556.4
In this example of five groups, we can see the 55262 3256.4
optimal zoning minima pairs obtained as solutions 57265 | 42516

with the program NODOM [2]. 73647 21624

94983 1217.2

Table 2 shows the subset of the generated
solutions accepted as non-comparables according Table 2. Non-comparable
to the proposed definition in 8 of section 2. The (test 1, example 1.)
bold numbers in Table 2 are the solutions that

match the solutions obtained with NODOM and

shown in Table 1, i.e., the solutions in the table are 5000, 4sgs7 44195
obtained, by applying NODOM to all the solutions 0o *en & 65229, 4556.4
generated with the VNS heuristic, according to the aoun | 37111, 4419 & 57265, 42516
characteristics described in example 1. o0 | s Ee
® 5326232564 @ 75083, 31944
In all tables, the first column corresponds to the ;:E
values of homogeneity (HOM) and the second is 2~ © 73847, 21624
the compactness (COMP). 2001
1500 -
& 94883, 1217.2
Test 1 (example 1): ':E'_
HOM COMP 25000 45000 55000 ﬁsuoucomp?suou 85000 95000 105000
55262 3256.4
37111 4419.6
73647 | 21624 Figure 2. Pareto frontier Non-comparable
94983 1217.2 (test 1, example1).

Table 1. NODOM (test 1, example 1).
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Test 2 (example 1):

HOM COMP
66123 2010
30578 3090.7
14839 3250.7
37876 2218.7

Table 3. Pareto frontier for NODOM (test 2, example 1).

3500 -
3300 1 # 14839, 32507

00 4 & 30578,3080.7
2900

2700

2500

300

200

1900 -

1700

1500 + .
] 10000 20000 30000 40000

COMP

HOM

& 3787622187

*
66123, 2010

50000 60000 TO000

Figure 3. Pareto Frontier for NODOM
(test 2, example 1).

HOM COMP
53450 4926
66123 2010
50792 3736
65280 5064
30578 | 3090.667
47952 4792
14839 | 3250.667
28715 | 5364.6667
37876 | 2218.667
50007 | 4332.6667

Table 4. Non-comparable
(test 2, example 1).

000 -
*
5000 1 28713, 53846 & 47952, 4792
* 50007, 43326
4000 -
*
50792, 3736
3 3000 M . +
5 14839, 3250.666 yc00 300006
2000 1 37976 9‘213 666 M
SRR ST 86123, 2010
1000 -
0 . .
0 10000 20000 20000 40000 50000 60000 70000
comp

Figure 4. Pareto frontier for Non-comparable
(test 2, example 1.

Comparing Figures 3 and 4, we can see the
intersection between the minima obtained with
NODOM and those obtained with the Non-
comparable definition proposed in this paper.
However, a future contribution of this work will be
to "release" some additional solutions far from the
minima, which should be otherwise filtered.

Example 2: We have taken the characteristics
example 1 but considering 200 different
neighborhood structures and 150 iterations for the
local search in the VNS and 30 groups. The
homogeneity changed on to the variable male
population:

HOM COMP
257091 | 17655.3
274789 | 28974.0
288349 2021.5
267543 | 23452.0
282018 | 22171.3
252626 | 23854.7

Table 5. Pareto solutions NODOM and
Non-comparable (test 1, example 2).
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I5000.0 -

30000.0 -

*
o5go0g | 292626, 238547 274789, 28974.0
I . N .
- 20000 | 267543, 23452.0 283018, 221713
% *
150000 1 257081, 17655.3
10000.0 -

50000 1 288349, 2021.5
*
0o 4 . . . . . . . §
250000 255000 260000 265000 270000 275000 280000 285000 290000 295000
COMP

Figure 5. Pareto frontier NODOM and Non-comparable
(test 1, example 2).

Test 2, example 2: in this test, we consider the
characteristics of the example 2 with 15 groups,
200 different neighborhood structures and 150
iterations for the local search in the VNS:

HOM COMP
1764511 156618
1805407 175342
1708714 147318
1602015 243672
2026415 93894
1626607 208688
1890192 140800
1967572 122920
1917498 140052
1668354 197974
1852111 140558
1925789 137184
1920692 139924
1973937 110058

Table 6. Pareto solutions NODOM and Non-comparable
(test 2, example 2).

300000 4

250000 o 1602015, 242672
1626607, 208688
200000 4 #1663354, 197974
& 1805407, 175342

3 150000 1764511, 156618 1890192, 140800
g 1500004 4 & o @ i97458 140052
1708714, 1473518 ___
1852111, 140558 & 1967572, 122920
100000 | 1973937, 110058 .
2026415, 93894
50000 |
0 T ™ - - .
1600000 1700000 1800000 1800000 2000000 2100000

COMP

Figure 6. Pareto Frontier NODOM and Non-comparable
(test 2, example 2).

5. Conclusions

One of the main contributions of this paper was the
design of a partitioning model for bi-objective
combinatorial optimization, where the objectives
were the minimization of the compactness and the
homogeneity of a particular census variable,
solved with VNS. The set of solutions generated
was a selected subset of the non dominated
solutions that form the Pareto frontier of the
problem.

The results were satisfactory and showed that the
heuristic adopted to find the values of
compactness and homogeneity and the method
used to find minimal bi-points have been
appropriate, as evidenced by the Pareto frontier
obtained.

Our method can also be applied to other problems
with special data, but adjusting the implementation
of the particular problem.

We have chosen VNS as our search engine
because of the good performance that it has shown
in single-objective  partitioning problems [8].
However, the comparison of VNS with other search
methods is also desirable in the near future.
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As part of our future work, we also intend to design
a factorial experiment for the multiobjective
problem and to improve the Pareto Non-
comparable’s algorithm in order to obtain a more
accurate approximation of the Pareto frontier.
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