Temperature Control of Continuous Chemical Reactors Under Noisy
Measurements and Model Uncertainties

Ricardo Aguilar Lépez*!, Rafael Martinez Guerra?, Juan L. Mata Machuca®

1Departamento de Biotecnologia y Bioingenieria

? Departamento de Control Automatico

CINVESTAV-IPN

Av. I.P.N. No. 2508, San pedro Zacatenco, México, D.F. C.P. 07360, MEXICO
*raguilar@cinvestav.mx

ABSTRACT

The aim of this paper is to present the synthesis of a robust control law for the control of a class of nonlinear systems
named Liouvillian. The control design is based on a sliding-mode uncertainty estimator developed under the
framework of algebraic-differential concepts. The estimation convergence is done by the Lyapunov-type analysis and
the closed-loop system stability is shown by means of the regulation error dynamics. Robustness of the proposed
control scheme is tested in the face of noise output measurements and model uncertainties. The performance of the
proposed control law is illustrated with numerical simulations in which a class of oscillatory chemical system is used
as application example.
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RESUMEN

El objetivo de este articulo es presentar la sintesis de una ley de control robusta para una clase de sistemas no
lineales denominados Liouvilianos. El disefio de control esta basado en un estimador de incertidumbres de modos
deslizantes, desarrollado bajo el enfoque de conceptos algebraico-diferenciales. La convergencia del estimador se
realiza mediante el método de Lyapunov y la estabilidad del sistema en lazo cerrado se demuestra mediante la
dindmica del error de regulacion. La robustez del esquema de control propuesto se determina tomando en cuenta la
presencia de ruido en la salida del sistema e incertidumbres en el modelo. El desempefio de la ley de control
propuesta se ilustra con simulaciones numéricas, donde se considera una clase de sistema quimico oscilatorio como
ejemplo.

1. Introduction
a change of coordinates and/or state feedback [4],

[5]. Such class of non-linear systems can be
linearized by a state feedback control, which

Since the early 1990s, some papers have been
related with the dynamic characterization of a
particular class of nonlinear systems named

differentially flat [1,2] and Liouvillian systems [3],
based on the frame of differential algebra. One of
the most important aspects of this approach for this
kind of systems is the explicit relationship that can
be obtained for particular state variables; it is an
advantage for a class of observation and control
problems. Differential-algebra based techniques
have been employed for differential algebraic as
well as ordinary differential equations systems.

On the other hand, control of non-linear systems
has been widely studied during the last 20 years,
specially the characterization of input/output (1/O)
and exact linearizable systems. This corresponds
to systems that can be fully or partially linearized by

cancels all the nonlinearities assuming perfect
knowledge of the mathematical model, producing
global asymptotic stability [5]. A drawback of exact
linearization technique is that it relies on complete
cancellation of nonlinearities. In practice, precise
knowledge of system dynamics is not possible. A
more realistic situation is to know some nominal
functions of the corresponding nonlinearities, which
are employed in the control design. However, the
use of nominal model nonlinearities can lead to
performance degradation and even to closed-loop
instability. In fact, when the systems posses strong
nonlinearities, the standard linearizing controller
cannot cancel completely such nonlinearities and
instabilities can be induced. The worst case is
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when the knowledge of the nonlinearities is very
poor or null such that conventional linearizing
techniques are inadequate. In the face of these
events, the robust stability problem for uncertain
systems arises as a necessary control design
approach to supply the controller with the
corresponding on-line information and try to realize
a satisfactory closed-loop performance. Research
on robust control design for linearizable nonlinear
systems has been done considering observer-
based controllers [6] where peaking phenomena,
stability issues and robust performance are still
topics that deserve further study.

In recent works, it has been employed Luenberger-
type observer structures to obtain on-line estimates
of uncertain signals [7]. However, the resulting
schemes become sensitive to measurement noise.
Since measurement noise is propagated through
the control loop, high frequency chattering can
induce premature degradation of actuator (e.g.,
valves) components. In this paper, a design of
robust control law based on on-line uncertainty
estimation is addressed; the robustness is referred
to model uncertainties and noisy output
measurements. The uncertainty estimator contains
a sliding-mode structure and it is designed within
the framework of algebraic theory. Subsequently,
the uncertainty estimator is coupled with an input-
output linearizing controller, which produces
practical stability (i.e., the closed-loop trajectories
are forced to remain in a neighborhood of the
operating equilibrium point). The performance of
the robust control design is illustrated via numerical
simulations.

2. Main definitions
The framework of the observer design for control

purposes is based on capturing the input-output
behavior of the system employing a set of

e Mass Balance for reactive 1 (xy):

X, = fl(X17 )(27)(3)E a(a - Xl)_ X X, €Xp

equations generated by the system under study.
The definitions presented in this section have been
discussed previously in [8] and are summarized
below for completeness.

Definition 1. A dynamics is defined as a finitely
generated differentially algebraic  extension
H/k<u> of the differential field k<u>, where k<u>
denotes the differential field generated by k and
elements of a finite set u = (uyuy...,u, of
differential quantities.

Definition 2. A differential transcendence basis y
= (V1,Y2-..,Ym) Of H/k such that H = k<y> is called
linearizing or flat output of the system H/k.

Definition 3. The number of state variables, not
permissible in terms of the flat outputs, is known as
the defect of the non-flat system, that is, the
integer number, which does the differential
transcendence degree of H/k is minimal, is called
algebraic defect of the system.

Definition 4. A system H/k is differentially flat if
and only if its defect is zero. If its algebraic defect
is non-zero, then the system H/k is said to be
differentially non flat.

Definition 5. Let H/k be a given system and let M be
such that k ¢ M < H. Moreover, it is assumed that
M/k is a flat subsystem of H/k, and then it can be said
that H/k is Liouvillian if the elements of H - M can be
obtained by an adjunction of integrals or exponential
of integrals of elements of the flat field M.

2.1 Example
Now, consider the following generic mathematical

model of a class of continuous chemical reactors,
wher the following chemical reaction is considered:

X; + X, = Prod

)
X3 (@)
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e Mass Balance for reactive 2 (x,):

X.z = fz(X11 )(21)(3)E a(5— Xz)_ X1 Xz eXp(_ﬂJ

Xs (b)
e Energy Balance (xz):
X3 = f3(X1’X21X3)Eb(p_X3)_d X1Xo eXp(_Xﬂj—}/(U _Xs)
3
(©)
e Measured output:
y=Cx where C=[0 0 1] (d)

The above system will be expressed via differential-algebraic tools, based on the definitions given in
Section 2, as a set of mapping in the variables x; y and u, which will be considered to describe the input-
output behavior in the system and it is below used in the observer design procedure.

From system (a)-(d), and after algebraic manipulation, the following expressions are generated:

e Reactive 1

% = 0,(y.u)= [explalt - o)), (y(0.u)c

(e)
Where:
b, (y.u)= | YF7U= yg—b(p— Y)_as
e Reactive 2:
_ a+ gl(y,U)exp(_yﬂj
X, =9, (y,u)=| (yw(U—y)—b(p—y)) _ﬂ —as [dt
d gl(y,u)exp(yj
®
e Temperature:
X; = g5(y,u)=y ©

As can be observed H = k<xy, X, X3, U>, k = 9, the reactor model (a)-(d) is a nonlinear Liouvillian system,

besides note that the state variables of the reactor x; and x, are observables from temperature
measurements.
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3. Problem statement

Non-linear approaches to design control laws have
been tested successfully in theoretical research. In
particular, the 1/O linearizing technique shows
attractive characteristics for the control of the non-
linear systems.

To motivate the control problem, consider the
following non-linear Liouvillian system, which
represents the general mathematical model of a
continuous stirred tank reactor (CSTR):

X1 :g(xle _Xl)_ER(X:L’XZ) (1)

X2 = 0(X,, — X,)+ AHR (%, X,) + 7 (U = X, )
2)

where X; is a n-dimensional vector of chemical
species, R(X,,X;) is a m-dimensional vector of

reaction kinetics, AH is a m-dimensional vector of
reaction enthalpies, E is the stoichiometric matrix,

X, is the reactor temperature, u is the cooling

jacket temperature, and 1/ and y are the
residence time and the heat-transfer global
coefficient, respectively. If the reactor temperature

X, is the controlled output, in compact form, the

Liouvillian system (1)-(2) can be rewritten as
follows:

X1 = f.(%,%,)

X> = f,(X, X,) + B(x,)u (3)
y=h(x) = x,

The zero-dynamics are given by the n-dimensional
dynamics of the chemical species concentration at
a constant temperature, which are assumed to be
locally stable [9]. The study of relative-degree one
systems is very important for many control
applications, since the dynamics of a wide class of
chemical reactors can be described in this form.
Such systems are mathematically modeled as
affine systems with respect to the control input [9].

Systems that present relative-degree one display
some interesting features, such as the equivalent
dissipativeness by means of state or output
feedback. In general, it is easier to stabilize
dissipative systems than non-dissipative ones [10].

In what follows, non-linear systems of the form (3)
will be considered. In order to stabilize the system

defined by Equation (3) via regulation of X,, the

following nominal I/O linearizing feedback control
is proposed:

u=Bo) -5 - Lx) @

where 7, > O is a prescribed time-constant. As

usual, €;=Yy—Y, and Y, are tracking error

and set point, respectively. The controller defined
by Equation (4) guarantees asymptotic stability of
non-linear systems (3) with no uncertainties and
perfect measurements. Moreover, it imposes a
linear behavior to the system /O dynamics by
canceling the nonlinearities.

4. Feedback controller design

As it can be noticed, the synthesis of the ideal
control law requires accurate knowledge of the
mathematical model of the process to be
realizable. However, a perfect model is difficult or
even impossible to be obtained in practice and,
consequently, for uncertain  systems, a
conventional I/O linearizing controller design is not
adequate.

Let us assume that X, and X, trajectories are

bounded for all t >0 (i.e., the system is bounded
input to bounded output state). The basis of the
non-ideal controller design is the nominal control
law (4). In order to design the practical robust
control law, let us propose the following non-linear
dynamic system representation:

X1 = f, (%, X,)

Xz = £,(x,%,) + (B(X,) + AB(,))u  (8)
y=h(x) =X,
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The functions f,(x,,X,) and AB(X,) are model
uncertainties related to the non-linear system, and
B(x) is a nominal value of the control input
coefficient. In the most general case, the functions
f,(X;,X,) and AB(x,) are assumed to be

unknown. Now, introduce the following function,
which corresponds to the I/0O modeling error:

g(xu) = fz(X1' Xz) + AB(Xz)u (6)

By using (6) into (5), a new representation of the
system is obtained:

;(1 = f,(x;,X%,)

).(2 = ¢ (x,u) + B(x,)u (7)
y =h(x) =X,

Since the uncertainty term, ¢£(X,U), is an
unknown function of the states and the control
input, the ideal control law for the regulation of X,
is not causal and therefore, it cannot be
implemented in practice. Nevertheless, there is
another way to develop an input-output linearizing
controller that is robust against uncertainties. The
procedure described below provides a method to
estimate the uncertainty term, £'(X,u) . Estimators
or observers for states and uncertainties can play
a key role during the early detection of hazardous
and unsafe operating conditions. Motivated by this,
much research has focused on the proposition of
estimation  methodologies for states and
uncertainties for monitoring and control purposes
[11], [12].

4.1 The uncertainty estimation methodology

Consider the following dynamic subsystem:

X, = +B(x)u

£ = d(x,u) @®)
y=h(x) = x,

The uncertain term, £ (X,U), is considered as a
new state and ®(X,U) is a non-linear unknown
function that describes the ¢ -dynamics.

In order to provide a background previous to the
proposed estimation methodology, the following
definitions are considered [8]:

Definition 6. Let {u,y} be a subset of 3 in a
dynamics S/k<u>. An element in 3 is said to be
observable with respect to {u, y} if it is algebraic

over K(u,y). Therefore, a state x is said

observable if, and only if, it is observable with
respect to {u, y}.

Definition 7. - An element X, in 3 is said to be an
algebraically observable uncertainty if X, satisfies
a differential algebraic equation with coefficients

over k(u,y).

Now, consider the system (3), which according to
Definition 1 defines an algebraic-differential
dynamic system. From this subsystem, the
following algebraic-differential equations can be
obtained:

X2—y=0 )

y—£(x,U)=B(X,)u=0 (10)

Remark 1. From Definitions 6 and 7, it follows that
the pair (x5, ¢ ) is universally observable in the
Diop-Fliess sense [8].

The corresponding Input-Output representation of
Equations (9) and (10) can be rewritten in new
coordinates as follows:

_dary
dtifl

Ul (i=1,2) (11)
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=1,
= q{ﬂpﬂw“) 12)
Y =m

It should be noted that a partial change of
coordinate enables us to estimate 7=y and

n, =Y =n,(or, equivalently, x, and X, ).

4.2 Measurement output noise considerations

Now, considering the noise case presence:
Y=771+5

where 5 is an additive bounded noise. Our aim is
to design an observer to obtain 7, (the uncertainty
term in the transformed space). However, as it can
be seen from the nature of the system given by
Equation (8), a standard structure of an observer,
based on a copy of the system plus measurement
error correction is not realizable in this case since
the term @ is a priory unknown.

4.3 Sliding-Mode Observer
4.3.1 Observer Structure

Proposition 1. The following dynamic system is a
Sliding-mode asymptotic type observer of the
system (12) to estimate the variables n; and n;,
respectively.

n,="1,+ mr’lsign(Y —\f), m>0,  (13)
7, = m2z 2sign(Y - V), (14)

and
1 if (Y-Y)>0
sign(Y =Y):=<-1 if (Y -Y)<O
undefined if (Y =Y)=0

Now, returning back to the original state space, in
view of (6), the heat of reaction can be evaluated
as:

é; = _ﬁZ_H(XZe _771)_7(u _771)

According to the variable change given by (7), the
variable mn; is the thermodynamic reactor
temperature (system output). From the above

equation for ¢ , if temperature measurements are

noisy, the noise would be transmitted to the
estimation of the heat of reaction that may lead to
poor performance in the estimation procedure.
That is because it is necessary to filter the
temperature measurements. This is the main
reason why the structure of the proposed observer
(13) - (14) makes sense.

4.3.2 Errors estimation dynamics

Now, let us define the following estimation errors:
e =m-1 (16)
e, = =1,
m 17)

By (12) and (13-14), it follows that the estimation
errors e=(e1,e2)T verify the following ordinary

differential equation:

e=A,e—Ksign(Ce +5)+ Af (18)

where:

A, = [_” m } p > 0 is a regularizing parameter,
0

—u
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1 e
K=mz? | C=lL, 0land 5 _|4 "
mr E(I)+,ue2

is an uncertainty term (or unmodelled dynamics
term).

4.3.3 Main assumptions

A1l. There exist nonnegative constants Ly, L such
that for any e the following generalized quasi-
Lipschitz (strip-bound) condition holds:

IAf] < Loy +(Ly + A, e

A2. The output noise is assumed to be bounded
2

as H5Hi = 5TA5S(5+) <o where A is a

symmetric definite positive matrix playing role of a

normalizing matrix (since different components of

the output measurements may have a different
physical nature).

1

A3. There exits a positive definite matrix Q, = Q,’
> 0 such that the following matrix Riccati equation:

PA,+AP+PRP+Q=0

with Ri=A7} +4‘Af HLlf I, 0<A, =A" and
Q=0Q,+ Z(Llf + HAﬂ H)2 | , has a positive definite
solution P =P’ > 0.

A4. The gain matrix K is selected as K = kP'C’
where k is a positive constant.

Comment 1. The algebraic Riccati equation in A3
has a positive definite solution if the matrix Aﬂ is

stable (that is valid for any positive y) and the
following matrix inequality is fulfilled:

ATR7A, -Q> %[AZ R-R*A RIAIR -RA,[

In our case this inequality may be transformed to
the following one:

G, = AIRMA, -2(L,, +[A,f 1->[ATR* —RA, R[ATR* R A, ] >Q,

4

Hence, the matrix Q, providing the existence of the solution to the Riccati equation, always exists if

Gﬂ>0.

4.3.4 Lyapunov-type Analysis

Let us define the Lyapunov function candidate V(e) as

V(e)=[el’ =e"Pe, 0<P=PT e®R™ ¢

From (15) and using the matrix inequality

= A e—Ksign(Ce +5)+ Af

(19)

XTY +YTX < XTA X +YTAY

valid forany X,Y e R™™, O0< A, = A"+, it follows:
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V(e) = 2" Pe =2e' P[Aﬂe — Ksign(Ce + &)+ Af ]
=2e"PA e —2Ke"Csign(Ce + 5)+ 2e" PAf
<e'(PA, + ATP e — 2KeCsign(Ce + 5)+ &' PAPe + (A )T A, Af

<e'(PA, + ATP+PA P +Ql—e"Qe

w22, + [y, +|A el |- 2e"CTsign(ce + 5)
—e"(PA, + ATP+PRP +QJe—e'Qe (20)
+2A L3, — 2K (Ce)' sign(Ce+ )

The main assumption consists in the implementation of the following inequalities valid for each
component:

x" sign(x +2z)=(x+2)" sign(x +z)—z"sign(x + z)

Z;‘(XJFZ)i‘_Zl:‘Zi‘ 2 ;‘Xi‘_zg‘zi‘ = ;Xi—Z\MZ

(21)
Here:
(x+2)| =[x [z, (22)
and
>Jz]<-Inl7
i=1 (23)
The last results from the Cauchy-Bounyakowski-Schwarz inequality:
Zn: ab, < Zn: a’ Zn: b2
i=1 i=1 i=1 (24)
fora, := n~',b; := |z;|. Applying (21) to (20) and taking into account A3, it follows:
V(e) =—e'Qe+2A|L3, —2K(Ce) sign(Ce + 5)
<-e'Qe+2A L3 - 2}((_2"l (Ce),|-2/n 5)
<-e"Qe— 2K ¥ |(Ce),| + p(K) (25)
i=1
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where p(K) = i‘Af HLSf + 4K nHA‘l‘ o, (26)

since 8] =1/6T AP ATAY?S < AT AS = A7 [5]) and

(i (Ce)i)z > iﬁ(c:e}z]: cel - cPzpyzgl” > g e"Qe (27)

i=1 i=1

1 1
with @, = ﬂmi{P 2CTCP 2}20.

Then, (25) implies
d
V()= (6 <ol ~2Ka e+ plK)
<-aN(e)-%N(e)+p (28)

1 1

where a = /Imi{PZQTQPZJ >0, 9:=2Ka,,and 4= p(K).

At this point we are ready to formulate the main result.

Theorem 1. If the assumptions Al - A3 are satisfied then

[1— ‘7} 0
V5 (29)

2
where fi = fi(K):= p(K) , and the function [e], is defined as
\/(Kap Y+ p(K)aQ + Kag

z]. ::{é if Z>0

if Z<O0

4.3.5 Proof of Theorem 1

Consider the Lyapunov function V(e) verifying the differential equation:

V=—aV-9N +p

The equilibrium point V* of this equation, satisfying

—aV -9V +B=0
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Defining A == (V -V *)2. The time derivative is given by:

A=2V =V*N <2V -V -aV -9V + )
S V) SV R CVASCRVERY)
=2V v )ealv -v )9V —V~))
=—2a(V-V*F -28(W + V[V - V) <0

for any V= V* that implies: limV —V * . For
t—ow

~

2
G::V—“2=V21—ﬂ}
v-af v |

we obtain:

Gi=2V -]V = 2v[1—\ﬂ+\7 <
2V{1—51(—aV—9W+ﬁ):
—2v{1—\ﬂ+[a (v -v*)+8(V - N¥)<0

The last inequality implies that G; converges, that is,
G, »>G*<w

The integration of the last inequality from O to t yields
G, -G, <

—2iv {1—51[04 V-V *)+ 9 (N —V*)dr

That leads to the following inequality

2jv [1—\‘/7} e -v*)+9(V - NV*)dr
'£6,-G, <G,

Dividing by t and taking the upper limits of both sides, we obtain:

im* v [1—\‘/7} o v -v*)+ 9 (N -V *)|dr <0

t—w { 0

Journal of Applied Research and Technology FViEl;




Temperature Control of Continuous Chemical Reactors Under Noisy Measurements and Model Uncertainties, Ricardo Aguilar Lépez et al. / 428-446

and there exists a subsequence t, such that:

v, [1-\/?} o (v, ~v*)+8 (v, V)]0

G —>0

% ke

Hence, it follows that G* = 0; that is equivalent to
the fact:

{ —ﬂ} —>0
Vi,

The theorem is proven.

Remark 2. Theorem 1 actually states that the

:
weighted estimation error Y =€ P& converges to
the zone z asymptotically, that is, it is ultimately

bounded, such that V| < Q.

The final expression for the input-output non-ideal
linearizing controller with uncertainty estimation
can be obtained, introducing the estimate of the
uncertain term in Eq. (4), to generate:

u=B(x)" 7%, - 2] (30)

Since the proposed controller uses estimated
values of the uncertainty, it cannot cancel the
system nonlinearities completely. Thus, the system
trajectory remains inside a neighborhood close to
the set point. Practical stability is achieved as long
as the uncertainty estimation error is bounded. The
restraint of the boundeness of the heat of reaction
(uncertain term) is common for a wide class of
chemical reactions and is consequence of
characteristics of the mathematical modeling
commonly employed; chemical reactions are
usually Lipschitz with respect to temperature. It is
not hard to see that global Lipschitz property of

AHR(XO,Xl) is found if the functionality
R(XO,Xl) with respect to temperature is of
Arrhenius-type.

Notice that it is not hard to implement in standard
technology (e.g., PLCs) the practical controller

given by Egs. (14) to (17). In fact, the
implementation only requires output
measurements and the on-line solution of two quite
simple dynamical systems (14) and (15).
Moreover, the implementation effort is equivalent
to other control strategies, such as PI and
predictive control. As a matter of fact, standard
(industrial) predictive control is more complex than
the proposed one, since the former requires
implementation of a non-linear optimization
method.

4.4 Closed-loop stability analysis

In order to analyze the closed-loop stability of the
reactor temperature trajectories in the reactor, the
closed-loop dynamic equation of the energy
balance should be used.

e,=ge, +(¢ <) (31)

It £ = ¢ then ¢ —& — 0, the ideal control law

is recovered together with its stability properties;
otherwise, the estimation error is limited as

H; _§H < a-/Q =TI, accordingly with the above
development.

Ad. - If Xy, Xp,.., A are the distinct eigenvalues of
the matrix A, where A; has multiplicity n; and ns + n,
+ ... + ng, = n and p is any number larger than the
real part of A;, Ay,.., A, that is p > max (Re())),
then there exists a constant j > O that satisfies:

lexp(mAt)e,| < j exp(— mpt )e,|

Solving Eq. (16), the error can be expressed as:

e, = exp(mAtey, + [ expfmA(t— s)i¢ — 2)s

e, = exp(mAtl,, + [ expimalt— )z - £)is
(32

Considering the assumptions Al and A2, it is
possible to find a bound for the closed-loop system

(Eq. (18)).

:m Vol. 10 No.3, June 2012




Temperature Control of Continuous Chemical Reactors Under Noisy Measurements and Model Uncertainties, Ricardo Aguilar Lépez et al. / 428-446

. jI1 jI1
< - mpt . —
< jeplmot) - L4 T
(33)
Taking the limit when t—o:
18!
el< e, 9

The above inequality implies that the closed-loop
error can be made as small as desired, if the
observer parameter m is chosen large enough.

5. Application example

The chemical reactor model proposed as
application example shows periodic or even chaotic
dynamic behavior depending on the set of
parameters employed [13]. The reactor
temperature is regulated by means of water flowing
through a cooling jacket. A consecutive chemical
reaction scheme is considered here, where a

stream with a reactive A enters into the continuous
(;? = trles(a0 ~a)-k,a
‘;l: = trles(b‘) ~b)+ka-kyb
Cpp T = CpplT, ~T)+ (- AH K+ (-4

res

reactor and it is converted to an intermediate
product B, with rate;, which reacts to
transforming to the final product C, with rate,,
such that:

Ry R
A==
where: a is the reactant A concentration, b is

the reactant B concentration and K, is the rate
constant for reaction i.

Both consecutive reactions are of first order with
exothermic chemical reactions and the Kkinetic
constant is modeled by the classical Arrhenius
model to include the temperature dependence,
as follows:

RT

k., = A, expl -

for i =12

Via a standard mass and energy balances the
following ordinary differential equations are
obtained:

(35)

(36)

1
Hz)kzb _VUA:(T _Tc)

@37

The following conditions of the reactor model are imposed; there is not inflow in B and C, both reactions
have the same reaction heats, the same activation energy and the inflow reactor temperature is the
same as the cooling jacket device. In accordance with the model structure proposed above, the

following system representation is done:

| [6(X)] [ 0 o]y
Xz | = é’z(X)+ 0 7, Ofu,
x| L&) [0 0 4]y

(38)
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¢i(x) ka
&(X) | = ka— kb

&,(X) iCpp(To —T)+(=AH, k. + (= AH, )k b —\%UACT

res

1
El = 7(3-0 - a)
1
l,= t*(bo - b)
1
la= VA
and finally,
U, 0
u,|=|0
u3 Tc

Now, applying the mean residence time and the The corresponding dimensionless concentrations
reactive A concentration as the time a  andtemperature are the follows:
concentration scales, the following set of

dimensionless mass and energy balance equations a b
is obtained, as presented in [13]: a=—,f=—
8 8
d 1 _
dr Ten (39) RTC tres
dg 1 1 The parameters related with the named chemical
— = —aexp(@)— —¢ﬂexp(l9)— p time, reaction rate ratio, dimensionless temperature
dr Ten Ten of the cooling jacket and the Newtonian cooling
) time  are r = U(Kkt,. ), p=~A, 1A,
0, =—AH,a,Ea, /(CppRT2) and
39 _ iejaexp(0)+i0j ¢,Bexp(9)—(1+ 7&1)9 7y =ty It =CppV /(UAL, ), respectively:
T Z-ch z-ch
(412) An important characteristic of this reactor model is

its minimum phase behavior, i.e., the corresponding
inner dynamic when the temperature of the reactor
is regulated is stable as is proved below.
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As mentioned above, given that the controller regulates only x3 , the analysis of the inner dynamics is
related with closed-loop behavior of x; and x, while x3is kept constant. Therefore, the system (39)-(41) is

reduced to:

X =11+

X; = 51X; - (1+ 52))(;

where:

51 — exp(QSp)’ 52 — ¢exp(08p)

Tch Tch

now, solving (42) for x; and x.:

el

X, = [X;o - (53 + 54)]eXp(_ {1"' 51}7)"' J; exp(— {1"' 51}7)"' 04

where:

1 . 1
53 =l | X0~
(gﬁ —J 1+ exp(Hsp)/ Ton
5 _ exp(gsp)/rch
T Lrexp(8,) /7, L+ pexp(6,) /7.,

(42)

(43)

from Equations (43), the reactor inner dynamic is asymptotically stable such that:

. 1
Xl - (1+ exp(esp))/ Ten B aeq
eXp(esp)/Tch
(1+ exp(gsp) / Ten )(l+ ¢ exp(esp )/TCh )

T—>®

limx, =

Numerical simulations for the closed-loop system
were performed in order to show the properties of
the control scheme proposed. The set of
parameters of the chemical reactor are chosen as
in [14], and initial conditions of the differential
Equations (9-11) are  [x, =0.45,x, =0.1,%x, = 0.9] -
For comparison purposes, an ideal I/O linearizing
control, standard sliding-mode and high order

= :Beq

sliding-mode controllers are implemented too. The
temperature set point is <95p =3, and the nominal

value of the control input is U, =17.5; the

controller is tuned-on at t =15, the order of the
high order sliding-mode controller is considered as
p = 3. The temperature measurements are
corrupted with a + 5% around the current
temperature value.
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25 .

i8]
=]

e
(5]

-
=]

Closed-oop steady-state

Temperature [dimensicnless)

(4]

Initial Conditions

e 05
e 0.4
03

Reactive 1 |[dimensionless|

Figure 1. Closed-loop space portrait for the dimensionless state variables,
a (Reactive 1), b (Reactive 2) and temperature.

Figure 1 shows the closed-loop behavior in steady
state of the corresponding space portrait; note the
oscillatory behavior. All the variables in the figures
in this work are dimensionless.

Closed loop performance of temperature
trajectories show that the ideal 1/O linearizing
controller shows the best performance so that it
cancels the nonlinearities, imposing a desired linear
behavior, with a satisfactory performance. The
proposed controller tries to compensate the
nonlinear terms via the integral high-order sliding-
mode contribution, besides it is able to reach the
set point value required (Figure 2), exhibiting
smaller oscillations around the regulated point (

0,, = 3) than the other sliding-mode controllers.

As predicted by the theoretical frame presented,
sliding-mode and high order sliding-mode
controllers can suppress nonlinear oscillations;
however, both controllers exhibit a considerable off-
set from the corresponding set point.

Figure 3 shows the corresponding estimation of the
uncertainty. Another important difference is that
effort performed by the manipulate variable (Figure

4) is very different for each controller. As it can be
noticed, the 1/O linearizing controller posseses the
best performance, the sliding-mode controller
exhibits the second smoothest behavior, followed
by the high-order sliding-mode control, which
exhibits more demanding effort at the start up of the
regulation task. Finally, the proposed methodology
shows the more demanding control action, where
small oscillations are presented.

Comparing the performance and control effort, it is
possible to note that the high-order sliding mode
control is not very efficient because the regulated
variable (temperature) exhibits the largest off-set,
even when the effort is higher than in the case of
the sliding-mode controller; nevertheless, the
performance of the sliding-mode controller is not
satisfactory because the set point are not reached.
an be notice that the ideal I/O linearizing controller
and the proposed controller are able to reach the
corresponding set point, in some sense this is an
advantage for the proposed methodology because
in the case of this controller, the perfect knowledge
of the model of the process is nor considere and its
possible implementation looks more feasible than
the ideal 1/O controller.
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Temperature [dimensionless]

0 5 10 15 20 25 30 35 40 45 50
Time [dimensionless]

Figure 2. Closed-loop performance of the dimensionless temperature trajectories.
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Figure 3. Estimation of the uncertain term (dimensionless reaction heat).
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10+-

4] 1 1 | 1

0 5 10 15 20

i
! /O Linearizing Controller
i
)
i

20 ;'1\,,,,,,%‘,. e e e e e
* “~High order Sliding-mode Controller

Sliding-mode Controller

25 30 35 40 45 50
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Figure 4. Practical effort of the controllers considered.

However, it is important to mention that the value of
the control gains has to be chosen very carefully for
the proposed methodology, such that with smaller
values of control gains it is not possible to stabilize
the oscillatory behavior of the chemical reactor,
whereas for large values of these parameters, it is
possible to lead to unacceptable control efforts or,
even worse, to provoke additional closed-loop
instabilities.

Besides, in order to measure the impact of the
error, the “Integral Time-Weighted Squared Error”
(ITSE) defined by (44) suggested by Ogunnaike
and Ray [15] is employed. ITSE exhibits the
advantage of heavy penalization of large errors at
long time; therefore, is a good measure of
resilience of the controller.

ITSE = jtgzdt (44)
0

In order to compare the resilience of the controllers
simulated, the ITSE was evaluated for the dynamic
system under the influence of four controllers

(Figure 5). As it is possible to note, and
confirming the findings from Figure 2, the I/O
linearizing and the proposed controller are the
only two able to stabilize the system in the long
time (t > 20), whereas for sliding-mode and high
order sliding- mode controllers this error
increases in an unlimited way. This result is due
to the ability of the controller proposed to
eliminate offset, property that is not exhibited by
the other controllers (Figure 2).
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Figure 5. Evaluation of the ITSE for the controllers considered.
(___ Proposed Controller; ...... ideal I/O Linearizing Controller;
Hiah-order Slidina-mode Controller: Slidina-mode controllen.

6. Conclusions

In this paper, a sliding-mode observer based 1/0
linearizing control law is designed to regulate the
temperature of a class of chemical reactor. It is
considered that the reaction heat is unknown and
noisy measurements exists such that an
uncertainty estimation methodology is based on
algebraic-differential concepts and a sliding-mode
frame; it is proposed to be coupled with the
considered controller to induce robust properties,
against the model's uncertainties and output
measurements  disturbances. The proposed
controller is very simple since it is composed by a

linearizing feedback coupled with a first-order
sliding-mode observer. Besides, its implementation
only requires measurements of the system output.
The performance of the proposed methodology is
adequate in comparison with an ideal I/O linearizing
controller, standard sliding-mode controller and
high order sliding-mode controller. Numerical
simulation was carried out showing the above
mentioned.
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