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Resumen

Este documento presenta un modelo matematico para vigas de seccion transversal “I” con cartelas rectas para el caso general
(simétricas y/o no simétricas) sujetas a una carga uniformemente distribuida tomando en cuenta las deformaciones por flexion
y cortante para obtener los momentos de empotramiento, factores de transporte y factores de rigidez, que es la novedad de esta
investigacion. Las propiedades de la seccion transversal de la viga varian a lo largo de su eje “x”, es decir, el ancho del patin
“b”, el espesor del patin “¢”, el espesor del alma “e” son constantes y la altura del alma “d” es variable a lo largo de la viga, esta
variacion es de tipo lineal. El método de deformacion consistente se utiliza para resolver este tipo de problemas, y las defor-
maciones en cualquier parte de la viga se encuentran por el método de la viga conjugada mediante la integracion exacta usando
el software “Derive” para obtener algunos resultados. Los modelos tradicionales consideran unicamente las deformaciones por
flexion y otros autores presentan tablas considerando las deformaciones por flexion y cortante, pero estan limitadas. También una
comparacion se realiza entre el modelo tradicional y el modelo propuesto para observar las diferencias. Ademas de la eficacia y
la precision del modelo desarrollado, una ventaja significativa es que los momentos de empotramiento, factores de transporte y
factores de rigidez se calculan para cualquier seccion transversal “I” de la viga usando las formulas matematicas.

Abstract

This paper presents a mathematical model for beams of cross section “I”” with straight haunches for the general case (symmetri-
cal and/or non-symmetrical) subjected to a uniformly distributed load taking into account the bending deformations and shear
to obtain the fixed-end moments, carry-over factors and stiffness factors, which is the novelty of this research. The properties of
the cross section of the beam vary along its axis “x”, i.e., the flange width “5”, the flange thickness “¢”, the web thickness “e” are
constant and the height “d” varies along the beam, this variation is linear type. The consistent deformation method is used to solve
such problems, and the deformations anywhere of beam are found by the conjugate beam method through exact integrations using
the software “Derive” to obtain some results. The traditional model takes into account only bending deformations, and others
authors present tables considering the bending deformations y shear, but are restricted. Besides the effectiveness and accuracy of
the developed models, a significant advantage is that fixed-end moments, carry-over factors and stiffness factors are calculated
for any cross section of the beam “I”” using the mathematical formulas.
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Introduccion

En la ingenieria estructural exciten circunstancias, donde
las vigas son no uniformes, en el sentido de que la geometria
y/o las propiedades del material varian a lo largo de la longi-
tud. Por ejemplo, los miembros estructurales no prismaticos
con cartelas escalonadas, rectas o parabdlicas, que se apli-
can comunmente en el disefio de ingenieria para reducir el
peso y optimizar la fuerza y la estabilidad o para cumplir los
requisitos arquitectonicos y funcionales especificos.

Uno de los principales problemas en el analisis de estructu-
ras con momento de inercia variable a lo largo de su longitud
es encontrar los momentos de empotramiento, rigideces y
factores de transporte.

Durante el siglo pasado, entre 1950 y 1960 se desarrollaron

stiffness factors

varias ayudas de disefio, como las presentadas por Guldan
[1]. Las tablas publicadas por la Portland Cement Associa-
tion (PCA) en 1958, donde se presentan constantes de ri-
gideces y momentos de empotramiento para miembros de
seccion variable, las hipotesis utilizada son: 1) La variacion
de larigidez de las cartelas (lineal o parabdlica, segtin sea el
caso de la geometria) se consideran en funciéon del momento
de inercia principal en flexion; 2) Las deformaciones por
cortante se despreciaron; 3) La relacion claro-peralte de la
viga en la definicion de los diversos factores de rigidez se
despreciaron [2-3].

La formulacion elastica de la rigidez de miembros de sec-
cion variable fue evolucionado con el tiempo, y posterio-
res a la publicacion de las tablas de la PCA, los siguientes
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trabajos merecen mencion especial todos ellos se basan en
la teoria de vigas: Just fue el primero en proponer la for-
mulacion de la flexion y matrices de rigidez axial para las
vigas de seccion variable de secciones transversales cajon
e I [4]. Schreyer desarroll6 una teoria vigas para los miem-
bros linealmente conicos para tener en cuenta las deforma-
ciones por cortante, con el uso de una hipdtesis Kirchhoff
generalizada en la que se supone que las deformaciones de
corte transversal en coordenadas cilindricas debe ser cero
[5]. Medwadowski presenta una solucion del problema de la
flexion de vigas no prismaticas, incluyendo el efecto de las
deformaciones de cortante utilizando la teoria del calculo de
variaciones [6]. Brown propuso un método para encontrar
una matriz de rigidez a la flexion modificada para vigas de
seccion variable [7].

Las matrices de rigidez elastica para miembros bidimensio-
nales y tridimensionales de elementos de seccion variable
basado en la teoria clasica de vigas de Bernoulli-Euler y el
método de las flexibilidades tomando en cuenta las defor-
maciones axiales y cortante, asi como la forma de la seccion
transversal se encuentran Tena Colunga y Zaldo [8], y en el
apéndice B [9]. Pero las tablas se limitan a ciertas relaciones.
Articulos publicados recientemente son: Shooshtari y Kha-
javi propusieron las funciones de forma y matrices de rigidez
de los elementos de viga no prismaticas para las formulacio-
nes de Euler-Bernoulli y Timoshenko [10]. Yuksel realizé
un estudio para investigar el comportamiento de vigas no
prismaticas con cartelas parabolicas simétricas que tienen
la relacion longitud de cartela constante de 0.5 utilizando
analisis de elementos finitos debido a cargas verticales, para
obtener los coeficientes de rigidez y de los factores de trans-
porte [11]. Luévanos Rojas propuso un modelo matematico
para vigas rectangulares de seccion transversal variable de
forma parabdlica simétrica para carga distribuida unifor-
memente [12]. Luévanos Rojas y Montoya Ramirez presen-
taron un modelo matematico para vigas rectangulares de
seccion transversal variable de forma lineal simétrica para
carga distribuida uniformemente [13]. Luévanos Rojas et al.
propusieron un modelo matematico para vigas rectangula-
res de seccion transversal variable de forma lineal simétrica
para carga concentrada [14].

Los métodos tradicionales que se han utilizado para miem-
bros de seccidn variable para calcular las deflexiones se re-
quiere de la solucion de una integral, en donde el momen-
to de inercia, la geometria y carga del miembro se exprese
como funcién de la coordenada “x” de la longitud, estas
deflexiones son obtenidas por medio de la regla de Simpson
o alguna otra técnica numérica para llevar a cabo la integra-
cion [15-17], y otros autores presentan tablas considerando
las deformaciones por flexion y cortante, pero estan limita-
das para ciertas relaciones [9].

Este documento presenta un modelo matematico para vigas
de seccion transversal “I” con cartelas rectas para el caso
general (simétricas y/o no simétricas) sujetas a una carga
uniformemente distribuida tomando en cuenta las deforma-
ciones por flexion y cortante para obtener los momentos de
empotramiento, factores de transporte y factores de rigidez,
que es la novedad de esta investigacion. Las propiedades de
la seccion transversal de la viga varian a lo largo de su eje
“x”, es decir, el ancho del patin “b”, el espesor del patin “¢”,
el espesor del alma “e” son constantes y la altura del alma
“d” es variable a lo largo de la viga, esta variacion es de
tipo lineal. El método de deformacion consistente se utiliza
para resolver este tipo de problemas, y las deformaciones
en cualquier parte de la viga se encuentran por el método
de la viga conjugada mediante la integracion exacta usando
el software “Derive” para obtener algunos resultados. Tam-
bién una comparacion se realiza entre el modelo tradicional
y el modelo propuesto para observar las diferencias.

Modelo Matematico
Principios generales

En la Fig. 1 se muestra una viga en elevacion y también se
presenta su seccion transversal “I” tomando en cuenta el an-
cho del patin “b”, el espesor del patin “#” y el espesor del
alma “e” constantes, y variando la altura del alma “d ” de
forma lineal en tres tramos diferentes. )

El momento de inercia alrededor del eje Z “/” y el area de

[T3K L)

cortante “4_” a una distancia “x” son:

Fig. 1. Seccioén transversal “I” con cartelas rectas
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La altura del alma “dy” varia con respecto a “x”, se obtiene
como sigue:

= 3
d,=d+y 3

Para0<x<a:

dﬂ:ad-i-u(a—x) @
a

Paraa<x<L-c:

dﬂ:d ®)
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Sustituyendo las ecuaciones (4), (5) y (6) en la ecuacion (1)
para encontrar el momento de inercia “/” en los tres inter-
valos:

Para0<x<a:

_b[ad +u(a—x)+2ar] —(b—e)[ad +u(a-x)] (7
124°

Z1

Paraa<x<L-c:
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zZ2 12
Paral —c<x<L:
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©

Sustituyendo las ecuaciones (4), (5) y (6) en la ecuacion (2)
para obtener el area de cortante “4_” generalizada para los
tres intervalos:
Para0 <x<a:

ACXI:e{ad+u(a—x)+2at:| (10)

a

Paraa<x<L-c:

A, :e(d+2t) (11)
Paral —c<x<L:
-L 2
i :{cd+f(x +c)+ ct} 12
c

Momentos de empotramiento para carga uniformemen-
te distribuida

En la Fig. 2(a) se presenta la viga “AB” sujeta a una carga
uniformemente distribuida y empotrada en sus extremos.
Los momentos de empotramiento en sus extremos se en-
cuentran mediante la suma de los efectos. Los momentos
se consideran positivos, cuando giran en contra de las ma-
necillas del reloj y negativo cuando giran a favor. En la Fig.
2(b) se observa la misma viga simplemente apoyada en sus
extremos bajo la carga aplicada para encontrar las rotacio-
nes “0,” y “O,”. Ahora, las rotaciones “0 ,” y “O,,” son
causados por el momento “M . aplicado en el soporte “A”,
seglin la Fig. 2(c), y en cuanto a “0,,” y “O,.” son causados
por el momento “M,,” aplicado en el soporte “B”, esto se
observan en la Fig. 2(d) [18-20].

Las condiciones de geometria son [18-23]:

9,41 + 9A2 + 9A3 =0 (13)
0, +0,,+0,,=0 (14)

La viga de la Fig. 2(b) es analizada para encontrar “O,,” y
“0,,”, el método de la viga conjugada se utiliza para obtener
las rotaciones y teniendo en cuenta las deformaciones de fle-

xi6n y cortante se calculan [9].
w
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Fig. 2. Viga empotrada en sus extremos

El valor de “O,,” para miembros no prismaticos se obtiene:

12V 1t M x
=7 G 7l

0 EI

(15)

Abhora el valor de “O,,” para los miembros no prismaticos
se encuentra:
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LM
0= =0y, (16)

F4

donde: G es el mddulo de cortante, E es el modulo de elas-
ticidad, V_es la fuerza cortante y M_es el momento flexio-
nante a una distancia “x”.

La fuerza cortante en cualquier lugar de la viga sobre el eje
“x” es [24]:

V= M (17)

El momento en cualquier punto de la viga sobre el eje “x” es:

wx(L —x)

M = (18)
* 2
El mddulo de cortante es:
E
G=——X— (19)
2 (1 + v)

donde v es la relacion de Poisson.

Utilizando las ecuaciones (15) y (16) para obtener los valo-
resde “0,”y “O

_ 2 (- 2 _ 2
0, :i{r(L x)x dx+jL (L-x)x dx+r (L-x)x
EL |0 21, a 21, L-c 2]23
+(1+v)|:Ja(L_2x)dx+J‘LC(L_Z)xdx+'[L (L—2x)dx:|}
0 Acxl ¢ Ach fme Ach
(20)
2 2 2
6 —i{r(L_x) xdx+J‘H( —x) xdx_l_J»L (L—x) x
EL 0 212] “ z2 Lee z3
. (1+v){ r (L-2x) J-L—c(L—Zx)dx 5 (L—2x)dxﬂ
Acxl ¢ ox2 Lo o3

1)

La viga de la Fig. 2(c) se analiza para encontrar “O,,” y
“0,,” en funcion de “M
La fuerza cortante en cualquier lugar de la viga sobre el eje
“x” es [24]:

M

V= (22)

[Tt}

El momento en cualquier punto de la viga sobre el eje “x” es:

v _ M, (L-x)

23
. I 23)

Empleando las ecuaciones (15) y (16) para encontrar “O,,”
y “QAZ”:

| MArRzo 2015, voL. 5
| Luévanos Rojas A.
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Subsecuentemente, el miembro de la Fig. 2(d) es analizado
para obtener “Q .’y “O,.” en funcién de “M ™

La fuerza cortante en cualquier lugar de la viga sobre el eje
“x” es [24]:

- MLBA 26)

[Tk L)

El momento en cualquier punto de la viga sobre el eje “x” es:

MBA(x)
= 2
M, T 27)

Utilizando las ecuaciones (15) y (16) para obtener “O,,” y
“6]43”:

M
Q.. =84
BB {

2 o2 2
[ Tans [T des| Tdx
12

0 121 a L-c 123

(28)

21w [ et [+ [
0 Acxl “ Ach Loe Acx3

M
O = EZ;{

J-a(L—x)xdx+.[jc(L;x)xdx+IL (L—x)xdx

0 [zl L-c I

z2 z3

a1 - 1 1
_2(l+v)D‘0 adx+LL de+ILLcA—dx}}

x3

29)

Las ecuaciones (21), (25) y (29) correspondientes al apoyo
“A” se sustituyen en la ecuacion (13), y las ecuaciones (20),
(24) y (28) correspondientes al apoyo “B” se sustituyen en la
ecuacion (14). Subsecuentemente, las ecuaciones generadas
se resuelven para obtener los valores de “M )y “M, . Es-
tas se presentan en las ecuaciones (30) y (31) del apéndice.

Factor de transporte y rigidez

El factor de transporte y rigidez se obtiene tomando en cuen-
ta el siguiente problema: Si un momento en sentido de las
manecillas del reloj “M " se aplica en el apoyo simple de un
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miembro recto de seccion transversal variable, simplemente
apoyado en un extremo y empotrado en el otro, encontrar la

-y 4 (3 2 T (3 2
rotacion “@,” en el apoyo simple y el momento M,,” en el
extremo empotrado, como se muestra en la Fig. 3.

[~
~
.-11.-1BG ] — % Mgy (a)
G e }
AP L Vg
¥
E = Constante
I =variable
1l
Mal| 4 B ®)
< Oy M
+
/@ ----------- %\
.~lA ~ AB Mgy (c)

Fig. 3. Viga simplemente apoyada en un extremo y empotrada en el otro

Los momentos finales adicionales de “M ,” y “M, ”, deben
ser tales que causan rotaciones de “O,” y “O,”, respecti-
vamente. Si “O,,” y “O,,” son las rotaciones causados por
e 2 T 4 3 2 13 2
‘M ,,”, de acuerdo con la Fig. 3(b), asi como “0,,” y “O,,

son debidos a “M,,”, que se observa en la Fig. 3(c).

Las condiciones requeridas de geometria son [25]:
0,=0,-0, (32
0=0,,-0,, (33)

La viga de la Fig. 3(b) se analiza para obtener “O,,” y “O,,”
en funcion de “M ", estos se muestran en las ecuaciones
(24) y (25). La viga de la Fig. 3(c) se analiza para encontrar
“0,,”y “0,,” en funcion de “M, ", estos se presentan en las

B4
ecuaciones (28) y (29).

Ahora, las ecuaciones (24) y (28) se sustituyen en la ecua-
cion (33). Posteriormente, se usan para obtener “M, ” en
funcion de “M "

Por lo tanto, el factor de transporte de “A” a “B” es la rela-
cién del momento inducido en el apoyo “B” debido al mo-
mento aplicado en el apoyo “A”, este es el coeficiente del
momento “M . expresado en la ecuacion (34), se presenta
en el apéndice.

Ahora, las ecuaciones (25) y (29) se sustituyen en la ecua-
cion (32) y enseguida, la ecuacion (34) se sustituye en esta
ecuacion para obtener “M ,” en funcion de “©,”. Entonces,
el factor rigidez es el momento aplicado en el soporte “A”
para causar una rotacion de 1 radian en el soporte “A” es
el coeficiente de la rotacion “O,” expresado en la Ecuacion
(35), se presenta en el apéndice.

Ahora el procedimiento se usa para obtener el factor de
transporte “B” a “A” presentado en la ecuacion (36) y el fac-
tor de rigidez en el soporte “B” mostrado en la ecuacion
(37), estas ecuaciones se presentan en el apéndice.

Resultados

Las Tablas 1 y 2 muestran la comparacion entre los dos mo-
delos, el modelo propuesto (MP) es el modelo matematico
presentado en este documento, donde las deformaciones por
flexion y cortante se consideran, y el modelo tradicional
(MT) toma en cuenta solo las deformaciones por flexion.
Las Tablas presentan los factores de los momentos de empo-
tramiento (m,, y m,,) para una viga sometida a una carga
uniformemente distribuida, los factores de transporte (C,
y C,,), y los factores de rigidez (k,, y k;,). La Tabla 1 para
L=20d — d=0.05L. La Tabla 2 para L =10d — d = 0.10L.
Dichas comparaciones se realizaron para v = 0.30 (acero
estructural), b = 13.02t — t = 0.0768b, d = 26.91e — ¢ =
0.0372d, b= 0.813d, u = f, porque estos valores se presentan
en las Tablas del apéndice B por Tena Colunga [9]. Los re-
sultados mostrados en la Tabla 1 mencionadas anteriormen-
te son idénticos para el modelo propuesto.

Otra manera para validar el modelo propuesto es como si-
gue: sustituyendo “a = 0Ly “c = OL” en la ecuacion (30) y
(31) para encontrar los momentos de empotramiento “M ,, =
M, =wL*12”. Ahora, cuando “a = 0L"y “c = OL” se sustitu-
yen en la ecuacion (34) y (36), y las deformaciones por cor-
tante se desprecian para obtener los factores de transporte
“C,;= C,,=0.5”. También en la ecuacion (35) y (37) se sus-
tituye “a = OL” y “c = OL”, y también las deformaciones por
cortante se desprecian para encontrar los factores de rigidez
k,,=k,, =4, porlotanto larigidezes “K ,, =K, =4EI /L”.
Los valores presentados anteriormente corresponden a una
seccion transversal constante.

Entonces el modelo propuesto en este documento es valido
y no se limita para ciertas dimensiones o proporciones como
algunos autores muestran, y también las deformaciones por
flexion y cortante son consideradas.

La Tabla 1 muestra los momentos de empotramiento, los
factores de transporte y los factores de rigideces de los
miembros entre ambos modelos para d = 0.05L, la Tabla 2
para la relacion d = 0.1L. De acuerdo con los resultados, las
diferencias mas grandes se presentan en la relacion d =0.1L.
Cuando el momento de empotramiento de un miembro en
un soporte es mayor con respecto al otro apoyo, en un apoyo
el modelo tradicional es mayor, y en el otro apoyo es mayor
el modelo propuesto, siendo la diferencia hasta de un 3.7%.
En los factores de transporte el modelo tradicional es mayor
en todos los casos y alcanza una diferencia hasta un 29.5%.
En cuanto a los factores de rigideces el modelo tradicional
también es mayor en todos los casos, siendo su diferencia
hasta de un 61.4%.
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Tabla 1. Elementos mecanicos para d = 0.05L

Momentos de empotramiento Factores de transporte Rigidez
. o wLm,, wL*m,, c c k,, EL /L k,, EL /L
mAB mBA AB o kAB k3A
MP MT MP MT MP MT MP MT MP MT MP MT
a=0.1L
0.5 11.353 | 11.353 | 11.353 | 11.353 | 0.5200 | 0.5440 | 0.5200 | 0.5440 | 4.4664 47015 | 4.4664 | 4.7015
1.0 11.031 | 11.031 | 11.031 | 11.031 | 0.5438 | 0.5689 | 0.5438 | 0.5689 | 4.8770 5.1611 4.8770 | 5.1611
0-IL 1.5 10.841 | 10.841 | 10.841 | 10.841 | 0.5590 | 0.5847 | 0.5590 | 0.5847 | 5.1620 5.4823 | 5.1620 | 5.4823
2.0 10.716 | 10.716 | 10.716 | 10.716 | 0.5694 | 0.5956 | 0.5694 | 0.5956 | 5.3701 5.7177 | 5.3701 5.7177
0.5 11.917 | 11.917 | 10.280 | 10.280 | 0.5889 | 0.6178 | 0.4971 | 0.5201 | 4.6355 49043 | 5.4908 | 5.8257
1.0 12.087 | 12.101 | 9.287 9.278 | 0.6682 | 0.7024 | 0.5061 | 0.5293 | 5.2449 5.6109 | 6.9253 | 7.4455
03k 1.5 12.322 | 12.355 | 8.643 8.622 | 0.7270 | 0.7652 | 0.5109 | 0.5342 | 5.7257 6.1811 8.1475 | 8.8533
2.0 12.563 | 12.618 | 8.193 8.163 | 0.7718 | 0.8130 | 0.5137 | 0.5370 | 6.1142 6.6499 | 9.1852 | 10.0676
0.5 12.088 | 12.050 | 10.232 | 10.266 | 0.6212 | 0.6540 | 0.4642 | 0.4862 | 4.7072 4.9861 6.2995 | 6.7068
1.0 12.420 | 12.361 | 9.102 9.146 | 0.7431 | 0.7865 | 0.4520 | 0.4738 | 5.4289 5.8330 | 8.9250 | 9.6829
03k 1.5 12.842 | 12.775 | 8.303 8.346 | 0.8473 | 0.9006 | 0.4422 | 0.4636 | 6.0548 6.5962 | 11.6019 | 12.8135
2.0 13.299 | 13.236 | 7.706 7.740 0.9367 | 0.9989 | 0.4344 | 0.4554 | 6.6114 7.2990 14.2575 | 16.0115
a=03L
0.5 10.280 | 10.280 | 11.917 | 11.917 | 0.4971 | 0.5201 | 0.5889 | 0.6178 | 5.4908 5.8257 | 4.6355 | 4.9043
1.0 9.287 9.278 | 12.087 | 12.101 | 0.5061 | 0.5293 | 0.6682 | 0.7024 | 6.9253 7.4455 | 5.2449 | 5.6109
0.1k 1.5 8.643 8.622 | 12.322 | 12.355 | 0.5109 | 0.5342 | 0.7270 | 0.7652 | 8.1475 8.8533 | 5.7257 | 6.1811
2.0 8.193 8.163 | 12.563 | 12.618 | 0.5137 | 0.5370 | 0.7718 | 0.8130 | 9.1852 | 10.0676 | 6.1142 | 6.6499
0.5 10.784 | 10.784 | 10.784 | 10.784 | 0.5621 | 0.5896 | 0.5621 | 0.5896 | 5.7181 6.1019 | 5.7181 6.1019
0L 1.0 [ 10.145 | 10.145 | 10.145 | 10.145 | 0.6195 | 0.6509 [ 0.6195 | 0.6509 | 7.5431 | 8.2227 | 7.5431 | 8.2227
1.5 9.757 9.757 9.757 9.757 | 0.6606 | 0.6948 | 0.6606 | 0.6948 | 9.2730 | 10.3121 | 9.2730 | 10.3121
2.0 9.499 9.499 9.499 9.499 | 0.6912 | 0.7274 | 0.6912 | 0.7274 | 10.8905 | 12.3351 | 10.8905 | 12.3351
0.5 10.943 | 10.907 | 10.746 | 10.784 | 0.5905 | 0.6217 | 0.5243 | 0.5508 | 5.8137 6.2103 | 6.5478 | 7.0100
05L 1.0 10.421 | 10.355 | 9.987 | 10.058 | 0.6811 | 0.7208 | 0.5520 | 0.5816 | 7.8408 8.5840 | 9.6745 | 10.6388
1.5 10.139 | 10.045 | 9.456 9.555 | 0.7560 | 0.8031 | 0.5700 | 0.6016 | 9.8939 | 11.1125 | 13.1214 | 14.8350
2.0 9.984 9.865 9.054 9.176 | 0.8187 | 0.8724 | 0.5824 | 0.6153 | 11.9573 | 13.7878 | 16.8107 | 19.5494
Conclusiones puede aplicarse para cualquier seccion transversal del tipo

Este documento presenta un modelo matematico para vigas
de seccion transversal “I” con cartelas rectas para el caso
general (simétricas y/o no simétricas) sujetas a una carga
uniformemente distribuida tomando en cuenta las deforma-
ciones por flexion y cortante para obtener los momentos de
empotramiento, factores de transporte y factores de rigidez,
que es la novedad de esta investigacion. Las propiedades de
la seccion transversal de la viga varian a lo largo de su eje
“x”, es decir, el ancho del patin “b”, el espesor del patin “¢”,
el espesor del alma “e” son constantes y la altura del alma
“d” es variable a lo largo de la viga, esta variacion es de tipo
lineal. Los modelos tradicionales consideran unicamente las
deformaciones por flexion y otros autores presentan tablas
considerando las deformaciones por flexion y cortante, pero
estan limitadas, por ejemplo L =20d — d = 0.05L, v=10.30
(acero estructural), b =13.02t — t=0.0768b, d =26.91e — ¢
=0.0372d, b = 0.813d, u = f, esta relacion se presenta en las
Tablas por Tena Colunga [9].

Ademas de la eficacia y la precision del modelo desarrollado

en la presente investigacion, una ventaja significativa es que
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“I” de acero estructural como pueden ser los perfiles W, M,
HP mediante la adaptacion del perfil del intervalo central,
donde la seccion es constante y se hace un corte a la altura
de la parte media del alma en el sentido longitudinal hasta
donde empiezan las cartelas y se inserta una placa trian-
gular del mismo espesor del alma para obtener la altura de
las cartelas), y su principal aplicacion es para los perfiles
formados por tres placas soldadas, ademas también puede
aplicarse para vigas de concreto reforzado o preesforzado
del tipo “I” como puede observarse en puentes de grandes
claros.

En cualquier tipo de estructura las fuerzas cortantes y los
momentos flexionantes estan presentes; por lo tanto, apa-
recen las deformaciones de flexion y cortante. Entonces, el
modelo propuesto que considera las deformaciones por fle-
xi6n y cortante es mas apropiado para el analisis estructural
y también se ajusta mas a las condiciones reales con respec-
to al modelo tradicional que toma en cuenta las deformacio-
nes por flexion Ginicamente.
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Tabla 2. Elementos mecanicos para d = 0.10L

Momentos de empotramiento Factores de transporte Rigidez
. o wL*m, wL*/m,, c c k,, EL /L k,, EL /L
mAB mBA AB BA kAB k3A
MP MT MP MT MP MT MP MT MP MT MP MT
a=0.1L
0.5 11.353 | 11.353 | 11.353 | 11.353 | 0.4523 | 0.5440 | 0.4523 | 0.5440 | 3.9140 | 4.7015 | 3.9140 | 4.7015
1.0 11.031 | 11.031 | 11.031 | 11.031 | 0.4731 | 0.5689 | 0.4731 | 0.5689 | 4.2222 5.1611 | 4.2222 | 5.1611
01k 1.5 10.841 | 10.841 | 10.841 | 10.841 | 0.4865 | 0.5847 | 0.4865 | 0.5847 | 4.4331 5.4823 | 4.4331 | 5.4823
2.0 10.716 | 10.716 | 10.716 | 10.716 | 0.4958 | 0.5956 | 0.4958 | 0.5956 | 4.5859 | 5.7177 | 4.5859 | 5.7177
0.5 11.916 | 11.917 | 10.281 | 10.280 | 0.5080 | 0.6178 | 0.4323 | 0.5201 | 4.0193 | 4.9043 | 4.7232 | 5.8257
1.0 12.056 | 12.101 | 9.309 | 9.278 | 0.5735 | 0.7024 | 0.4404 | 0.5293 | 4.4415 5.6109 | 5.7837 | 7.4455
0L 1.5 12.251 | 12.355 | 8.686 | 8.622 | 0.6218 | 0.7652 | 0.4450 | 0.5342 | 4.7592 6.1811 | 6.6495 | 8.8533
2.0 12.450 | 12.618 | 8.256 | 8.163 | 0.6587 | 0.8130 | 0.4480 [ 0.5370 | 5.0073 6.6499 | 7.3617 | 10.0676
0.5 12.176 | 12.050 | 10.158 | 10.266 | 0.5300 | 0.6540 | 0.4018 | 0.4862 | 4.0749 | 4.9861 | 5.3757 | 6.7068
1.0 12.548 | 12.361 | 9.010 | 9.146 | 0.6247 | 0.7865 | 0.3904 | 0.4738 | 4.5658 | 5.8330 | 7.3064 | 9.6829
0L 1.5 12.979 | 12.775 | 8.220 | 8.346 | 0.7041 | 0.9006 | 0.3816 | 0.4636 | 4.9598 | 6.5962 | 9.1515 | 12.8135
2.0 13.421 | 13.236 | 7.642 | 7.740 | 0.7713 | 0.9989 [ 0.3748 | 0.4554 | 5.2872 7.2990 | 10.8797 | 16.0115
a=0.3L
0.5 10.281 | 10.280 | 11.916 | 11.917 | 0.4323 | 0.5201 | 0.5080 | 0.6178 | 4.7232 | 5.8257 | 4.0193 | 4.9043
1.0 9.309 | 9.278 | 12.056 | 12.101 | 0.4404 | 0.5293 | 0.5735 | 0.7024 | 5.7837 | 7.4455 | 4.4415 | 5.6109
01k 1.5 8.686 | 8.622 | 12.251 | 12.355 | 0.4450 | 0.5342 | 0.6218 | 0.7652 | 6.6495 8.8533 | 4.7592 | 6.1811
2.0 8.256 | 8.163 | 12.450 | 12.618 | 0.4480 | 0.5370 | 0.6587 | 0.8130 | 7.3617 | 10.0676 [ 5.0073 | 6.6499
0.5 10.784 | 10.784 | 10.784 | 10.784 | 0.4849 | 0.5896 | 0.4849 | 0.5896 | 4.8612 | 6.1019 | 4.8612 | 6.1019
1.0 10.145 | 10.145 | 10.145 | 10.145 | 0.5319 | 0.6509 | 0.5319 | 0.6509 | 6.1322 8.2227 | 6.1322 | 8.2227
0L 1.5 9.757 | 9.757 | 9.757 | 9.757 | 0.5658 | 0.6948 | 0.5658 | 0.6948 | 7.2485 | 10.3121 | 7.2485 | 10.3121
2.0 9.499 | 9.499 | 9.499 | 9.499 | 0.5913 | 0.7274 | 0.5913 | 0.7274 | 8.2277 | 12.3351 | 8.2277 | 12.3351
0.5 11.024 | 10.907 | 10.664 | 10.784 | 0.5037 | 0.6217 | 0.4499 | 0.5508 | 4.9366 | 6.2103 | 5.5259 | 7.0100
1.0 10.559 | 10.355 | 9.846 | 10.058 | 0.5724 | 0.7208 | 0.4697 | 0.5816 | 6.3367 8.5840 | 7.7229 | 10.6388
03k 1.5 10.319 | 10.045 | 9.277 | 9.555 | 0.6283 | 0.8031 | 0.4824 | 0.6016 | 7.6277 | 11.1125 | 9.9350 | 14.8350
2.0 10.193 | 9.865 | 8.852 | 9.176 | 0.6747 | 0.8724 | 0.4911 | 0.6153 | 8.8166 | 13.7878 | 12.1118 | 19.5494

La aplicacion significativa de los momentos de empotra-
miento y las rigideces de un miembro es en los métodos ma-
triciales de andlisis estructural. Los momentos de empotra-
miento, el factor de transporte y el factor rigidez se utiliza en
el método de distribucion de momentos.

Las sugerencias para investigaciones futuras: 1) Cuando
el miembro presenta otro tipo de seccion transversal, por
ejemplo seccion transversal variable de tipo cajon, o “T”;
2) Cuando el miembro tiene otro tipo de configuracion, por
ejemplo cartelas parabolicas; 3) Cuando el miembro esta su-
jeto a otro tipo de carga.
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Apendice

Las ecuaciones (30) y (31) presentan los momentos de empotramiento:

wlL a(L - x)%x L=c(L - x)2%x L (L - x)%x
M,y = f —dx+f I—dx+J i
0 L

2 Izl a z2 —C Iz3

a(L -2 L=c( -2
J —( X dx + J —( X dx
0

Acxl a Acxz

L (L_zx) ax2 L—Cx2 L xZ
+J —dxl}{f —dx+j —dx+j —dx
L—c Ach 0 IZl a IZZ L—CIZ3

ja 1 L—c 1 L 1
dx+f dx+f dxl}
0 Acxl a Acxz L—cAcx3

a(y _ 2 L-c(y _ 2 L _ 2
_{f (L-x)x dx+f (L-x)x dx+f (L-x)x "
0 L

- 2(1+ v)

+2(1+v)

Izl a IZZ —c 123
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Factor de transporte de “A” a “B” es:
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Factor derigidez de “A” es:

axz L—cxz L xz
MAB:{ —dx+f —dx+f —dx
0 L—-

Izl c'z3
1+vl

+f d 12EI L3
L—cAcx3 *|f(d+ 203 - (b- e)d3]L
“(L-x)? L=¢(L~ x) L (L - x)?
/{f —xdx+j —xdx+J —xdx
0 I21 a I —c Iz3
a 1 L-c 1 L 1 axz
+2(1+V)U dx+f dx+f dxl}{ ~ dx
0 Acxl a ACXZ L—CACX3 0 IZl

L—c xz L x2
+f —dx+f I—dx
cx3 l}

+21+v[
-

Lc

dx

cx2

Lc

cx2

LC( f
_U — dx+f j
a 1 L—
_2(1+v)lf0 Acxldx+L f

INGENIERIA MEl::ANH::Al

MODELADO PARA VIGAS DE SECCION TRANSVERSAL “I” SOMETIDAS A UNA CARGA UNIFORMEMENTE DISTRIBUIDA CON CARTELAS RECTAS |



Factor de transporte de “B” a

a(L - x)x L=e(L - x)x
Mys = My, J I—dx+f e —
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Factor derigidez de “B” es:
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