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Resumen
Este documento presenta un modelo matemático para vigas de sección transversal “I” con cartelas rectas para el caso general 
(simétricas y/o no simétricas) sujetas a una carga uniformemente distribuida tomando en cuenta las deformaciones por flexión 
y cortante para obtener los momentos de empotramiento, factores de transporte y factores de rigidez, que es la novedad de esta 
investigación. Las propiedades de la sección transversal de la viga varían a lo largo de su eje “x”, es decir, el ancho del patín 
“b”, el espesor del patín “t”, el espesor del alma “e” son constantes y la altura del alma “d” es variable a lo largo de la viga, esta 
variación es de tipo lineal. El método de deformación consistente se utiliza para resolver este tipo de problemas, y las defor-
maciones en cualquier parte de la viga se encuentran por el método de la viga conjugada mediante la integración exacta usando 
el software “Derive” para obtener algunos resultados. Los modelos tradicionales consideran únicamente las deformaciones por 
flexión y otros autores presentan tablas considerando las deformaciones por flexión y cortante, pero están limitadas. También una 
comparación se realiza entre el modelo tradicional y el modelo propuesto para observar las diferencias. Además de la eficacia y 
la precisión del modelo desarrollado, una ventaja significativa es que los momentos de empotramiento, factores de transporte y 
factores de rigidez se calculan para cualquier sección transversal “I” de la viga usando las fórmulas matemáticas.

Abstract

This paper presents a mathematical model for beams of cross section “I” with straight haunches for the general case (symmetri-
cal and/or non-symmetrical) subjected to a uniformly distributed load taking into account the bending deformations and shear 
to obtain the fixed-end moments, carry-over factors and stiffness factors, which is the novelty of this research. The properties of 
the cross section of the beam vary along its axis “x”, i.e., the flange width “b”, the flange thickness “t”, the web thickness “e” are 
constant and the height “d” varies along the beam, this variation is linear type. The consistent deformation method is used to solve 
such problems, and the deformations anywhere of beam are found by the conjugate beam method through exact integrations using 
the software “Derive” to obtain some results. The traditional model takes into account only bending deformations, and others 
authors present tables considering the bending deformations y shear, but are restricted. Besides the effectiveness and accuracy of 
the developed models, a significant advantage is that fixed-end moments, carry-over factors and stiffness factors are calculated 
for any cross section of the beam “I” using the mathematical formulas.

Vol. 5 No. 2  (2015)  281 - 292

Modelado para vigas de sección transversal “I” sometidas a una 
carga uniformemente distribuida con cartelas rectas

Fecha de recepción:       25-09-2014
Fecha de aceptación:     18-12-2014

Introducción

En la ingeniería estructural exciten circunstancias, donde 
las vigas son no uniformes, en el sentido de que la geometría 
y/o las propiedades del material varían a lo largo de la longi-
tud. Por ejemplo, los miembros estructurales no prismáticos 
con cartelas escalonadas, rectas o parabólicas, que se apli-
can comúnmente en el diseño de ingeniería para reducir el 
peso y optimizar la fuerza y la estabilidad o para cumplir los 
requisitos arquitectónicos y funcionales específicos.

Uno de los principales problemas en el análisis de estructu-
ras con momento de inercia variable a lo largo de su longitud 
es encontrar los momentos de empotramiento, rigideces y 
factores de transporte.

Durante el siglo pasado, entre 1950 y 1960 se desarrollaron 

varias ayudas de diseño, como las presentadas por Guldan 
[1]. Las tablas publicadas por la Portland Cement Associa-
tion (PCA) en 1958, donde se presentan constantes de ri-
gideces y momentos de empotramiento para miembros de 
sección variable, las hipótesis utilizada son: 1) La variación 
de la rigidez de las cartelas (lineal o parabólica, según sea el 
caso de la geometría) se consideran en función del momento 
de inercia principal en flexión; 2) Las deformaciones por 
cortante se despreciaron; 3) La relación claro-peralte de la 
viga en la definición de los diversos factores de rigidez se 
despreciaron [2-3].

La formulación elástica de la rigidez de miembros de sec-
ción variable fue evolucionado con el tiempo, y posterio-
res a la publicación de las tablas de la PCA, los siguientes 
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trabajos merecen mención especial todos ellos se basan en 
la teoría de vigas: Just fue el primero en proponer la for-
mulación de la flexión y matrices de rigidez axial para las 
vigas de sección variable de secciones transversales cajón 
e I [4]. Schreyer desarrolló una teoría vigas para los miem-
bros linealmente cónicos para tener en cuenta las deforma-
ciones por cortante, con el uso de una hipótesis Kirchhoff 
generalizada en la que se supone que las deformaciones de 
corte transversal en coordenadas cilíndricas debe ser cero 
[5]. Medwadowski presenta una solución del problema de la 
flexión de vigas no prismáticas, incluyendo el efecto de las 
deformaciones de cortante utilizando la teoría del cálculo de 
variaciones [6]. Brown propuso un método para encontrar 
una matriz de rigidez a la flexión modificada para vigas de 
sección variable [7].

Las matrices de rigidez elástica para miembros bidimensio-
nales y tridimensionales de elementos de sección variable 
basado en la teoría clásica de vigas de Bernoulli-Euler y el 
método de las flexibilidades tomando en cuenta las defor-
maciones axiales y cortante, así como la forma de la sección 
transversal se encuentran Tena Colunga y Zaldo [8], y en el 
apéndice B [9]. Pero las tablas se limitan a ciertas relaciones.
Artículos publicados recientemente son: Shooshtari y Kha-
javi propusieron las funciones de forma y matrices de rigidez 
de los elementos de viga no prismáticas para las formulacio-
nes de Euler-Bernoulli y Timoshenko [10]. Yuksel realizó 
un estudio para investigar el comportamiento de vigas no 
prismáticas con cartelas parabólicas simétricas que tienen 
la relación longitud de cartela constante de 0.5 utilizando 
análisis de elementos finitos debido a cargas verticales, para 
obtener los coeficientes de rigidez y de los factores de trans-
porte [11]. Luévanos Rojas propuso un modelo matemático 
para vigas rectangulares de sección transversal variable de 
forma parabólica simétrica para carga distribuida unifor-
memente [12]. Luévanos Rojas y Montoya Ramírez presen-
taron un modelo matemático para vigas rectangulares de 
sección transversal variable de forma lineal simétrica para 
carga distribuida uniformemente [13]. Luévanos Rojas et al. 
propusieron un modelo matemático para vigas rectangula-
res de sección transversal variable de forma lineal simétrica 
para carga concentrada [14].

Los métodos tradicionales que se han utilizado para miem-
bros de sección variable para calcular las deflexiones se re-
quiere de la solución de una integral, en donde el momen-
to de inercia, la geometría y carga del miembro se exprese 
como función de la coordenada “x” de la longitud, estas 
deflexiones son obtenidas por medio de la regla de Simpson 
o alguna otra técnica numérica para llevar a cabo la integra-
ción [15-17], y otros autores presentan tablas considerando 
las deformaciones por flexión y cortante, pero están limita-
das para ciertas relaciones [9]. 

Este documento presenta un modelo matemático para vigas 
de sección transversal “I” con cartelas rectas para el caso 
general (simétricas y/o no simétricas) sujetas a una carga 
uniformemente distribuida tomando en cuenta las deforma-
ciones por flexión y cortante para obtener los momentos de 
empotramiento, factores de transporte y factores de rigidez, 
que es la novedad de esta investigación. Las propiedades de 
la sección transversal de la viga varían a lo largo de su eje 
“x”, es decir, el ancho del patín “b”, el espesor del patín “t”, 
el espesor del alma “e” son constantes y la altura del alma 
“d” es variable a lo largo de la viga, esta variación es de 
tipo lineal. El método de deformación consistente se utiliza 
para resolver este tipo de problemas, y las deformaciones 
en cualquier parte de la viga se encuentran por el método 
de la viga conjugada mediante la integración exacta usando 
el software “Derive” para obtener algunos resultados. Tam-
bién una comparación se realiza entre el modelo tradicional 
y el modelo propuesto para observar las diferencias. 

Modelo Matemático

Principios generales 

En la Fig. 1 se muestra una viga en elevación y también se 
presenta su sección transversal “I” tomando en cuenta el an-
cho del patín “b”, el espesor del patín “t” y el espesor del 
alma “e” constantes, y variando la altura del alma “dy” de 
forma lineal en tres tramos diferentes.

El momento de inercia alrededor del eje Z “Iz” y el área de 
cortante “Acx” a una distancia “x” son:

Luévanos Rojas A.

Fig. 1. Sección transversal “I” con cartelas rectas
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(1)

A e d tcx y= +( )2
					          

(2)

La altura del alma “dy” varía con respecto a “x”, se obtiene 
como sigue:

d d yy = + 					           
(3)

Para 0 ≤ x ≤ a:

d
ad u a x

ay1 =
+ −( )

				         
(4)

Para a ≤ x ≤ L – c:

d dy2 = 						          (5)

Para L – c ≤ x ≤ L:

d
cd f x L c

cy3 =
+ − +( )

				         
(6)

Sustituyendo las ecuaciones (4), (5) y (6) en la ecuación (1) 
para encontrar el momento de inercia “Iz” en los tres inter-
valos:

Para 0 ≤ x ≤ a:

I
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Para a ≤ x ≤ L – c:
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Para L – c ≤ x ≤ L:
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Sustituyendo las ecuaciones (4), (5) y (6) en la ecuación (2) 
para obtener el área de cortante “Acx” generalizada para los 
tres intervalos:
Para 0 ≤ x ≤ a:

A e
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2
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+ −( ) +
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
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Para a ≤ x ≤ L – c:

A e d tcx2 2= +( ) 					         (11)

Para L − c ≤ x ≤ L:
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
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Momentos de empotramiento para carga uniformemen-
te distribuida

En la Fig. 2(a) se presenta la viga “AB” sujeta a una carga 
uniformemente distribuida y empotrada en sus extremos. 
Los momentos de empotramiento en sus extremos se en-
cuentran mediante la suma de los efectos. Los momentos 
se consideran positivos, cuando giran en contra de las ma-
necillas del reloj y negativo cuando giran a favor. En la Fig. 
2(b) se observa la misma viga simplemente apoyada en sus 
extremos bajo la carga aplicada para encontrar las rotacio-
nes “ϴA1” y “ϴB1”. Ahora, las rotaciones “ϴA2” y “ϴB2” son 
causados por el momento “MAB” aplicado en el soporte “A”, 
según la Fig. 2(c), y en cuanto a “ϴA3” y “ϴB3” son causados 
por el momento “MBA” aplicado en el soporte “B”, esto se 
observan en la Fig. 2(d) [18-20].

Las condiciones de geometría son [18-23]:

θ θ θA A A1 2 3 0+ + = 				        (13)

θ θ θB B B1 2 3 0+ + = 				        (14)

La viga de la Fig. 2(b) es analizada para encontrar “ƟA1” y 
“ƟB1”, el método de la viga conjugada se utiliza para obtener 
las rotaciones y teniendo en cuenta las deformaciones de fle-
xión y cortante se calculan [9].

Fig. 2. Viga empotrada en sus extremos

El valor de “ƟB1” para miembros no prismáticos se obtiene:

θB
x

cx

L x

z

L

L
V

GA
dx

L
M x
EI

dx1 0 0

1 1
= +∫ ∫

			       
(15)

Ahora el valor de “ƟA1” para los miembros no prismáticos 
se encuentra:
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x

z
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(16)

donde: G es el módulo de cortante, E es el módulo de elas-
ticidad, Vx es la fuerza cortante y Mx es el momento flexio-
nante a una distancia “x”.

La fuerza cortante en cualquier lugar de la viga sobre el eje 
“x” es [24]: 

V
w L x

x =
−( )2
2 					         

(17)

El momento en cualquier punto de la viga sobre el eje “x” es:

M
wx L x

x =
−( )

2 					        
(18)

El módulo de cortante es:

G E
v

=
+( )2 1 					         

(19)

donde ν es la relación de Poisson. 

Utilizando las ecuaciones (15) y (16) para obtener los valo-
res de “ƟB1” y “ƟA1”:
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La viga de la Fig. 2(c) se analiza para encontrar “ƟA2” y 
“ƟB2” en función de “MAB”:

La fuerza cortante en cualquier lugar de la viga sobre el eje 
“x” es [24]: 

V M
Lx

AB= −
					         

(22)

El momento en cualquier punto de la viga sobre el eje “x” es:

M
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(23)

Empleando las ecuaciones (15) y (16) para encontrar “ƟB2” 
y “ƟA2”:
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Subsecuentemente, el miembro de la Fig. 2(d) es analizado 
para obtener “ƟA3” y “ƟB3” en función de “MBA”:

La fuerza cortante en cualquier lugar de la viga sobre el eje 
“x” es [24]: 

V M
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BA=
					         

(26)

El momento en cualquier punto de la viga sobre el eje “x” es:

M
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( )

					         
(27)

Utilizando las ecuaciones (15) y (16) para obtener “ƟB3” y 
“ƟA3”:

θB
BA

z z
a

L ca

z
L c

LM
EL

x
I

dx x
I

dx x
I

dx

v
A

3 2

2

1

2

2
0

2

3

2 1 1

= + +




+ +( )

−

−∫∫ ∫

ccx

a

cx
a

L c

cx
L c

L
dx

A
dx

A
dx

1
0

2 3

1 1
∫ ∫ ∫+ +















−

−

(28)

θA
BA

z z
a

L ca

z
L c

LM
EL

L x x
I

dx
L x x

I
dx

L x x
I

dx3 2
1 2

0
3

=
−( )

+
−( )

+
−( )−

−∫∫ ∫




− +( ) + +














∫ ∫ ∫

−

−
2 1 1 1 1

1
0

2 3

v
A

dx
A

dx
A

dx
cx

a

cx
a

L c

cx
L c

L

  
(29)

Las ecuaciones (21), (25) y (29) correspondientes al apoyo 
“A” se sustituyen en la ecuación  (13), y las ecuaciones (20), 
(24) y (28) correspondientes al apoyo “B” se sustituyen en la 
ecuación (14). Subsecuentemente, las ecuaciones generadas 
se resuelven para obtener los valores de “MAB” y “MBA”. Es-
tas se presentan en las ecuaciones (30) y (31) del apéndice.

Factor de transporte y rigidez

El factor de transporte y rigidez se obtiene tomando en cuen-
ta el siguiente problema: Si un momento en sentido de las 
manecillas del reloj “MAB” se aplica en el apoyo simple de un 
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miembro recto de sección transversal variable, simplemente 
apoyado en un extremo y empotrado en el otro, encontrar la 
rotación “ƟA” en el apoyo simple y el momento “MBA” en el 
extremo empotrado, como se muestra en la Fig. 3.
 

Fig. 3. Viga simplemente apoyada en un extremo y empotrada en el otro

Los momentos finales adicionales de “MAB” y “MBA”, deben 
ser tales que causan rotaciones de “ƟA” y “ƟB”, respecti-
vamente. Si “ƟA2” y “ƟB2” son las rotaciones causados por 
“MAB”, de acuerdo con la Fig. 3(b), así como “ƟA3” y “ƟB3” 
son debidos a “MBA”, que se observa en la Fig. 3(c).

Las condiciones requeridas de geometría son [25]:

θ θ θA A A= −2 3 					         (32)

0 2 3= −θ θB B 					          (33)

La viga de la Fig. 3(b) se analiza para obtener “ƟA2” y “ƟB2” 
en función de “MAB”, estos se muestran en las ecuaciones 
(24) y (25). La viga de la Fig. 3(c) se analiza para encontrar 
“ƟA3” y “ƟB3” en función de “MBA”, estos se presentan en las 
ecuaciones (28) y (29).

Ahora, las ecuaciones (24) y (28) se sustituyen en la ecua-
ción (33). Posteriormente, se usan para obtener “MBA” en 
función de “MAB”.

Por lo tanto, el factor de transporte de “A” a “B” es la rela-
ción del momento inducido en el apoyo “B” debido al mo-
mento aplicado en el apoyo “A”, este es el coeficiente del 
momento “MAB” expresado en la ecuación (34), se presenta 
en el apéndice.

Ahora, las ecuaciones (25) y (29) se sustituyen en la ecua-
ción (32) y enseguida, la ecuación (34) se sustituye en esta 
ecuación para obtener “MAB” en función de “ϴA”. Entonces, 
el factor rigidez es el momento aplicado en el soporte “A” 
para causar una rotación de 1 radian en el soporte “A” es 
el coeficiente de la rotación “ϴA” expresado en la Ecuación 
(35), se presenta en el apéndice. 

Ahora el procedimiento se usa para obtener el factor de 
transporte “B” a “A” presentado en la ecuación (36) y el fac-
tor de rigidez en el soporte “B” mostrado en la ecuación 
(37), estas ecuaciones se presentan en el apéndice.

Resultados

Las Tablas 1 y 2 muestran la comparación entre los dos mo-
delos, el modelo propuesto (MP) es el modelo matemático 
presentado en este documento, donde las deformaciones por 
flexión y cortante se consideran, y el modelo tradicional 
(MT) toma en cuenta solo las deformaciones por flexión. 
Las Tablas presentan los factores de los momentos de empo-
tramiento (mAB y mBA) para una viga sometida a una carga 
uniformemente distribuida, los factores de transporte (CAB 
y CBA), y los factores de rigidez (kAB y kBA). La Tabla 1 para 
L = 20d → d = 0.05L. La Tabla 2 para L = 10d → d = 0.10L. 
Dichas comparaciones se realizaron para ν = 0.30 (acero 
estructural), b = 13.02t → t = 0.0768b, d = 26.91e → e = 
0.0372d, b = 0.813d, u = f, porque estos valores se presentan 
en las Tablas del apéndice B por Tena Colunga [9]. Los re-
sultados mostrados en la Tabla 1 mencionadas anteriormen-
te son idénticos para el modelo propuesto.

Otra manera para validar el modelo propuesto es como si-
gue: sustituyendo “a = 0L” y “c = 0L” en la ecuación (30) y 
(31) para encontrar los momentos de empotramiento “MAB = 
MBA = wL2/12”. Ahora, cuando “a = 0L” y “c = 0L” se sustitu-
yen en la ecuación (34) y (36), y las deformaciones por cor-
tante se desprecian para obtener los factores de transporte 
“CAB = CBA = 0.5”. También en la ecuación (35) y (37) se sus-
tituye “a = 0L” y “c = 0L”, y también las deformaciones por 
cortante se desprecian para encontrar los factores de rigidez 
kAB = kBA = 4, por lo tanto la rigidez es “KAB = KBA = 4EIz2/L”. 
Los valores presentados anteriormente corresponden a una 
sección transversal constante.  

Entonces el modelo propuesto en este documento es válido 
y no se limita para ciertas dimensiones o proporciones como 
algunos autores muestran, y también las deformaciones por 
flexión y cortante son consideradas.

La Tabla 1 muestra los momentos de empotramiento, los 
factores de transporte y los factores de rigideces de los 
miembros entre ambos modelos para d = 0.05L, la Tabla 2 
para la relación d = 0.1L. De acuerdo con los resultados, las 
diferencias más grandes se presentan en la relación d = 0.1L. 
Cuando el momento de empotramiento de un miembro en 
un soporte es mayor con respecto al otro apoyo, en un apoyo 
el modelo tradicional es mayor, y en el otro apoyo es mayor 
el modelo propuesto, siendo la diferencia hasta de un 3.7%. 
En los factores de transporte el modelo tradicional es mayor 
en todos los casos y alcanza una diferencia hasta un 29.5%. 
En cuanto a los factores de rigideces el modelo tradicional 
también es mayor en todos los casos, siendo su diferencia 
hasta de un 61.4%. 
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Conclusiones

Este documento presenta un modelo matemático para vigas 
de sección transversal “I” con cartelas rectas para el caso 
general (simétricas y/o no simétricas) sujetas a una carga 
uniformemente distribuida tomando en cuenta las deforma-
ciones por flexión y cortante para obtener los momentos de 
empotramiento, factores de transporte y factores de rigidez, 
que es la novedad de esta investigación. Las propiedades de 
la sección transversal de la viga varían a lo largo de su eje 
“x”, es decir, el ancho del patín “b”, el espesor del patín “t”, 
el espesor del alma “e” son constantes y la altura del alma 
“d” es variable a lo largo de la viga, esta variación es de tipo 
lineal. Los modelos tradicionales consideran únicamente las 
deformaciones por flexión y otros autores presentan tablas 
considerando las deformaciones por flexión y cortante, pero 
están limitadas, por ejemplo L = 20d → d = 0.05L, ν = 0.30 
(acero estructural), b = 13.02t → t = 0.0768b, d = 26.91e → e 
= 0.0372d, b = 0.813d, u = f, esta relación se presenta en las 
Tablas por Tena Colunga [9].

Además de la eficacia y la precisión del modelo desarrollado 
en la presente investigación, una ventaja significativa es que 

puede aplicarse para cualquier sección transversal del tipo 
“I” de acero estructural como pueden ser los perfiles W, M, 
HP mediante la adaptación del perfil del intervalo central, 
donde la sección es constante y se hace un corte a la altura 
de la parte media del alma en el sentido longitudinal hasta 
donde empiezan las cartelas y se inserta una placa trian-
gular del mismo espesor del alma para obtener la altura de 
las cartelas), y su principal aplicación es para los perfiles 
formados por tres placas soldadas, además también puede 
aplicarse para vigas de concreto reforzado o preesforzado 
del tipo “I” como puede observarse en puentes de grandes 
claros.  

En cualquier tipo de estructura las fuerzas cortantes y los 
momentos flexionantes están presentes; por lo tanto, apa-
recen las deformaciones de flexión y cortante. Entonces, el 
modelo propuesto que considera las deformaciones por fle-
xión y cortante es más apropiado para el análisis estructural 
y también se ajusta más a las condiciones reales con respec-
to al modelo tradicional que toma en cuenta las deformacio-
nes por flexión únicamente.

Tabla 1. Elementos mecánicos para d = 0.05L

c f/d

Momentos de empotramiento Factores de transporte Rigidez

wL2/mAB wL2/mBA CAB CBA

kAB EIz2/L kBA EIz2/L

mAB mBA kAB kBA

MP MT MP MT MP MT MP MT MP MT MP MT

a = 0.1L

0.1L

0.5 11.353 11.353 11.353 11.353 0.5200 0.5440 0.5200 0.5440 4.4664 4.7015 4.4664 4.7015

1.0 11.031 11.031 11.031 11.031 0.5438 0.5689 0.5438 0.5689 4.8770 5.1611 4.8770 5.1611

1.5 10.841 10.841 10.841 10.841 0.5590 0.5847 0.5590 0.5847 5.1620 5.4823 5.1620 5.4823

2.0 10.716 10.716 10.716 10.716 0.5694 0.5956 0.5694 0.5956 5.3701 5.7177 5.3701 5.7177

0.3L

0.5 11.917 11.917 10.280 10.280 0.5889 0.6178 0.4971 0.5201 4.6355 4.9043 5.4908 5.8257

1.0 12.087 12.101 9.287 9.278 0.6682 0.7024 0.5061 0.5293 5.2449 5.6109 6.9253 7.4455

1.5 12.322 12.355 8.643 8.622 0.7270 0.7652 0.5109 0.5342 5.7257 6.1811 8.1475 8.8533

2.0 12.563 12.618 8.193 8.163 0.7718 0.8130 0.5137 0.5370 6.1142 6.6499 9.1852 10.0676

0.5L

0.5 12.088 12.050 10.232 10.266 0.6212 0.6540 0.4642 0.4862 4.7072 4.9861 6.2995 6.7068

1.0 12.420 12.361 9.102 9.146 0.7431 0.7865 0.4520 0.4738 5.4289 5.8330 8.9250 9.6829

1.5 12.842 12.775 8.303 8.346 0.8473 0.9006 0.4422 0.4636 6.0548 6.5962 11.6019 12.8135

2.0 13.299 13.236 7.706 7.740 0.9367 0.9989 0.4344 0.4554 6.6114 7.2990 14.2575 16.0115

a = 0.3L

0.1L

0.5 10.280 10.280 11.917 11.917 0.4971 0.5201 0.5889 0.6178 5.4908 5.8257 4.6355 4.9043

1.0 9.287 9.278 12.087 12.101 0.5061 0.5293 0.6682 0.7024 6.9253 7.4455 5.2449 5.6109

1.5 8.643 8.622 12.322 12.355 0.5109 0.5342 0.7270 0.7652 8.1475 8.8533 5.7257 6.1811

2.0 8.193 8.163 12.563 12.618 0.5137 0.5370 0.7718 0.8130 9.1852 10.0676 6.1142 6.6499

0.3L

0.5 10.784 10.784 10.784 10.784 0.5621 0.5896 0.5621 0.5896 5.7181 6.1019 5.7181 6.1019

1.0 10.145 10.145 10.145 10.145 0.6195 0.6509 0.6195 0.6509 7.5431 8.2227 7.5431 8.2227

1.5 9.757 9.757 9.757 9.757 0.6606 0.6948 0.6606 0.6948 9.2730 10.3121 9.2730 10.3121

2.0 9.499 9.499 9.499 9.499 0.6912 0.7274 0.6912 0.7274 10.8905 12.3351 10.8905 12.3351

0.5L

0.5 10.943 10.907 10.746 10.784 0.5905 0.6217 0.5243 0.5508 5.8137 6.2103 6.5478 7.0100

1.0 10.421 10.355 9.987 10.058 0.6811 0.7208 0.5520 0.5816 7.8408 8.5840 9.6745 10.6388

1.5 10.139 10.045 9.456 9.555 0.7560 0.8031 0.5700 0.6016 9.8939 11.1125 13.1214 14.8350

2.0 9.984 9.865 9.054 9.176 0.8187 0.8724 0.5824 0.6153 11.9573 13.7878 16.8107 19.5494
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La aplicación significativa de los momentos de empotra-
miento y las rigideces de un miembro es en los métodos ma-
triciales de análisis estructural. Los momentos de empotra-
miento, el factor de transporte y el factor rigidez se utiliza en 
el método de distribución de momentos.

Las sugerencias para investigaciones futuras: 1) Cuando 
el miembro presenta otro tipo de sección transversal, por 
ejemplo sección transversal variable de tipo cajón, o “T”; 
2) Cuando el miembro tiene otro tipo de configuración, por 
ejemplo cartelas parabólicas; 3) Cuando el miembro está su-
jeto a otro tipo de carga.
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Apendice

Las ecuaciones (30) y (31) presentan los momentos de empotramiento:
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Factor de transporte de “A” a “B” es:  
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Factor de rigidez de “A” es:  
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Factor de transporte de “B” a “A” es:  

=
( − )

+
( − )

+
( − )

− 2( 1 + )
1

+
1

+
1

/
( − )

+
( − )

+
( − )

+ 2( 1 + )
1

+
1

+
1

                       ( 36)  

 
Factor de rigidez de “B” es:  
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