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Resumen

En este articulo se presenta un método de optimizacidon nuevo y diferente a los
utilizados actualmente, como en el “Método Simplex”. Se basa en el empleo de los
espacios covariante y contravariante, ambos espacios biortogonales entre si, lo
que permite una visualizacion del problema de optimizacién tanto fisica como
matematica. El resultado obtenido proporciona la mejor aproximacion de acuerdo a
los datos concentrados en las restricciones del problema, éstas Ultimas
visualizados como vectores (como un espacio completo o incompleto) y no como
rectas, planos o hiperplanos. Asimismo, con este nuevo método se puede
cuantificar el error generado entre los vectores aproximacion y el objetivo, lo que
permite observar y medir la efectividad de la solucion propuesta.

Descriptores: Métodos de optimizacion, espacio covariante (espacio de
columnas) y contravariante (matriz inversa) -vs— método simplex, rotacion de
hiperplano, convergencia, solucién exacta.

Abstract

In this paper a new optimization method is presented. The theoretical background
is different to that used presently as in the case of the “Simplex Method”. The pre-
sentation is based on the use of the covariant and contravariant spaces, both be-
ing biorthogonal spaces, allow a visualization of the optimization problem from a
physical as well as mathematical points of view. The obtained result provides the
best approximation according to the data provided in the constraints of the pro-
blem, which are visualized like vectors and not like straight lines, planes or
hyperplanes. Also, in this new method the error generated between the approxima-
tion and the objective vectors can be measured, which allows to observe and prove
the accuracy of the proposed solution.

Keywords: Optimization methods, covariant and contravariant spaces —vs— sim-
plex method, hyperplane rotation, convergence, exact solution.
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Introduccion

Bien es sabido que dentro de los margenes de
cualquier problema préactico, lo que se busca es el
mejor empleo de los recursos humanos, comer-
ciales, laborales, tecnolégicos, etc., de tal manera
que se logre la distribucidén y uso mas ventajoso de
los mismos. Es por eso que surgen modelos que
tratan de optimizar los recursos disponibles, ya
sean maximizando ganancias 0 minimizando gas-
tos o pérdidas.

Los problemas de optimizacién se presentan en
multiples disciplinas, teniendo en comuin una meta
por alcanzar, sujeta a restricciones que influyen de
manera directa limitando las posibles soluciones al
problema de maximizar o minimizar el objetivo pro-
puesto. Por ejemplo; en administracion, un obje-
tivo muy comun es el de maximizar las ganancias,
tomando en cuenta los limites impuestos por los
tiempos de operacion, costos de produccién, ca-
pital disponible para la inversion, entre otros fac-
tores; a nivel industrial, los gastos de operacién se
encuentran sujetos a la eficiencia de la maqui-
naria, a los productos manufacturados o la llegada
de materia prima.

Fue alrededor de la Segunda Guerra Mundial en
que se iniciaron los primeros pasos hacia la bus-
gueda de modelos matematicos que resolvieran
los problemas de optimizacién, uno de estos mo-
delos surge con el fin de resolver los problemas de
asignacion de recursos por parte de la fuerza aérea
estadounidense. George B. Dantzig, miembro del
proyecto SCOOP (Scientific Computation of Opti-
mun Programs) de la fuerza aérea de E.U., fue
quien disend el método simplex de solucién en
1947, modelo que sigue siendo ampliamente utili-
zado hasta nuestros dias (Fraleigh y Beauregard,
1989a).

El desarrollo de la programacion lineal, es con-
siderado por mucha gente como uno de los avan-
ces cientificos mas importantes de la segunda
mitad del siglo XX. De hecho, una proporcion im-
portante de todo el calculo cientifico que se lleva a
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cabo por computadoras se dedica al uso de la pro-
gramacion lineal y a técnicas intimamente relacio-
nadas, estimandose en un 25%, de acuerdo a un
estudio de la IBM (Marrero et al, 2006).

Un modelo de programacion lineal, como el mé-
todo simplex o el que se desarrolla en este articulo
empleando los espacios covariante y contrava-
riante, tratan de proporcionar una via eficiente
para determinar una solucion éptima para los
problemas de maximizacidn o minimizaciéon de un
objetivo dadas determinadas restricciones.

Método Simplex
Andlisis grafico

El método simplex busca resolver problemas de
programacion lineal; dicho método, cuando posee
dos variables de optimizacion es visto de manera
grafica como la traza de planos dados por las
ecua- ciones de las restricciones, generandose un
poli- gono al graficar todas éstas. Al desplazar la
traza del plano de la funcién objetivo hacia el
poligono mencionado anteriormente, se obtiene
una solu- cién 6ptima en el primer punto en que
ambos se intersectan.

Para mostrar lo anterior, se toma un ejemplo de
Fraleigh y Beauregard (1989b), donde se propone
el siguiente problema:

Ejemplo 1

Sea una compania maderera que posee dos talle-
res de contrachapado, donde se producen los tres
mismos tipos de tableros, hallar el nimero de dias
que debe operar cada taller durante un semestre
para proporcionar de la manera mas econoémica
los tableros requeridos. La tabla 1 muestra la pro-
duccién y costo diarios por taller.
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Tabla 1
Tipo de Produccion por dia Demanda
contrachapado  Tgjer 1 Taller 2 semestral
1 100 20 2000
2 40 80 3200
3 60 60 3600
Costos diarios $3000 $2000

Con los datos contenidos en la tabla podemos de-
terminar tanto la funcién objetivo como las restric-
ciones que intervienen en el problema:

Minimizar C=3000x, +2000x, (1)
condicionado a las siguientes restricciones:

100x, +20x, > 2000

40x, +80x, > 3200 (2)

60x, +60x, > 3600

yconx, >0,x, >0.

En la figura 1, se encuentra achurado el espacio
solucién limitado por las graficas de las trazas de

100z, + 20x , > 2000

o+ 60z, 23600

los planos de las restricciones; asimismo, con linea
punteada, se encuentra graficada la pendiente de
la funcién objetivo. Al desplazar la funcién objetivo
hacia el poligono e intersectarse, como se muestra
en la figura 2, se obtiene la solucién 6ptima, que
resulta ser x, =10y x, =50.

Al sustituir los valores de x; y X, en la funcién
objetivo de costo inicialmente planteada, se tiene
que el costo minimo de produccién seria:

C =3000(10) +2000(50) 3)
C =$130000

Algoritmo del método simplex

La forma analitica del método simplex funciona de
manera similar al método grafico, la diferencia ra-
dica en que para buscar la interseccién entre el poli-
gono y la traza de la funcién objetivo se recorren
las aristas del poligono o poliedro generado por las
restricciones, siendo los vértices o puntos esquina
las soluciones factibles al problema, sin necesidad
de probar todos los puntos esquina. Para iniciar el
recorrido a lo largo del poligono o poliedro, es ne-
cesario anadir a las restricciones, representadas
con igualdades o desigualdades como: variables
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Figura 1
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de holgura, variables excedentes y variables arti-
ficiales, esto Ultimo con el motivo de convertir to-
das las desigualdades de las restricciones en igual-
dades, ademas de que con ello se genera un con-
junto de variables basicas y otro de variables no
basicas con lo que se puede empezar dicho recorrido.

Primeramente se comienza en cualquier punto
esquina, para después moverse hacia cualquier
otro adyacente, de manera que la funcion objetivo
se incremente lo mas rapidamente posible (Fra-
leigh y Beauregard, 1989c), para hacer lo anterior,
una variable basica se hace no basica y viceversa,
disponiendo del conjunto de variables no basicas
generado al introducir las variables de holgura, exce-
dentes y artificiales. Un 6ptimo se alcanza cuando
el valor de la funcién es maximo y ninguna otra
solucion basica factible puede ser encontrada
(Bhatti, 2000).

En caso de que se busque minimizar una fun-
cién objetivo, cuyas restricciones sean de la for-
ma Ax < b, con b > 0, se hace uso de la siguiente
expresion:

[Minimo de f(x)]=— [Maximo de —f(x)] 4)
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Empleando el problema mostrado anteriormente
en el método grafico, se ejemplifica de manera
breve, la forma de resolucion a través del algoritmo
del método simplex.

Una vez que se han obtenido la funcién objetivo
(1) y las restricciones del problema (2), se procede
a convertir las desigualdades de las restricciones
en igualdades por medio de la adicion, en este ca-
S0, de variables excedentes y artificiales, por lo que
se tiene:

100x, +20x, -y, +q, =2000
40x, +80x, -y, +q, =3200 5)
60x, +60x, -y, +g; =3600

Dado que se desea minimizar la funcién
objetivo C (1) es necesario utilizar la expresion
mostrada en (4). AUn cuando las restricciones
deban tener la forma Ax < b, la cuestion se ve
resuelta tras la anadidura de las variables
excedentes.

Las variables artificiales deberan tomar el valor

cero para obtener una solucion factible al proble-
ma original. Entonces el problema de minimizar C
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se transforma en un problema de maximizar P=-C,
siendo la nueva funcién objetivo:

P =-3000x, —2000x, —Mq, —Maq, —Mq; (6)

Donde M es un nimero muy grande, lo que per-
mite que la funcidén objetivo no se pueda optimizar
sin que los g, tomen el valor cero, como se men-
ciond arriba.

Una vez modificadas las restricciones y la fun-
cién objetivo, se elabora una tabla inicial donde se
hallan concentradas todas las variables de las res-
tricciones (5) y el objetivo.

Para la formacion de la Ultima fila de la tabla ini-
cial, correspondiente al objetivo, se tiene que para
una columna etiquetada con una variable x, se
anade en la fila objetivo el negativo del producto de
M por la suma de coeficientes que multiplican a x;
en las restricciones. En las columnas etiquetadas
con y; se anade M, mientras que en las etiquetadas
con g, se escriben ceros; en la Ultima columna se
tiene el negativo del producto de M por la suma de
los términos independientes de las restricciones.

A continuacion, mediante un tipo de reduccion de
Gauss-Jordan, las variables basicas se hacen no
basicas y viceversa, hasta que se obtiene la so-
lucién optima al no quedar registros negativos de
la fila objetivo y si ninguna variable artificial es ba-
sica o si todas las variables artificiales basicas tienen
valor cero, como se muestra en las tablas 2 a 4.

En la tabla 4, se encuentran los valores de
x, =10y x, =50, obteniéndose el maximo de P
igual con -130000. Al emplear nuevamente la ex-
presion senalada en (4), se tiene que el costo mi-
nimo de produccién es de $130000, solucién que
se obtuvo con el método grafico.

No obstante, hay que destacar que aunque se
satisficieron las restricciones del problema, se pue-
de observar en la Ultima columna de la tabla 4 que
la variable excedente y, tiene un valor igual con
1200, indicativo de una sobreproducciéon del con-
trachapado 2 producido por ambos talleres y que,
al compararsele con la demanda semestral del pro-
ducto que es igual con 3200 representa el 37.5%
de la ya mencionada demanda, por lo que seria
recomendable encontrar una solucién alternativa.

Tabla inicial
Xy X, Y1 Yo Y3 g, g, J;
q, 100 20 -1 0 1 0 0 2000
q, 40 80 0 -1 0 1 0 3200 ~
g; 60 60 0] 0 1 0 0 1 3600
5 3000 2000 0 0 0
-200M -160M M M M -8800M
Tabla 2
Xy X5 Y1 Yo Y3 g, a0, J;

X, 1 0.2 -0.01 0 0 0.01 0] 0] 20
~q, 0 72 0.4 -1 -0.4 1 0 2400 ~
gs 0 48 0.6 0] 1 -0.6 0] 1 2400
> 0 1400 30 -30 0] 0] -60000

-120M -M M M 2M -4800M
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Tabla 3
Xy X3 Y1 Y2 Y3 q; 9> d3
X, 1 0 -0.0111  0.0028 0 0.0111  -0.0028 0 13.33
~ X 0 1 0.0056  -0.0139 0 -0.0056  0.0139 0 33.33 ~
% 0 0 0.3333  0.6667 -1 -0.3333  -0.6667 1 800
0 0 22.222 19.44 -22.22 -19.44 0 -106667
P
-0.333M  -0.667M M +1.333M  +1.667M -800M
Tabla 4
Xy X Y1 Yo Y3 g: a, Qs
X, 1 0 -0.0125 0 0.0042  0.0125 0 -0.0042 10
~ X, 0 1 0.0125 0 -0.0208  -0.0125 0 0.0208 50
Yy 0 0 0.5 1 -1.5 -0.5 1 1.5 1200
o 0 0 12.5 0 29.17 -12.5 -29.17  -130000
+M M +M
Método con espacios covariante y 100 20 2000
contravariante X, -| 40 |+x, -/ 80 [>]3200 (7)
60 60 3600

Este método se basa principalmente en una vision
fisica y matematica de los problemas, por lo que
las soluciones encontradas responden a diversas
situaciones planteadas en la realidad. Como se
vera, las variables de holgura, excedentes vy artifi-
ciales, que son introducidas en el método simplex,
no representan absolutamente nada al utilizar el
nuevo método, ya que no forman parte del proble-
ma original.

Urrutia (2003), mostré la metodologia para
invertir matrices rectangulares y para modificar
optimamente las restricciones (cuando esto es
posible o mandatario), la cual tiene aplicacion para
la optimizacion de funciones dadas determinadas
restricciones.

Con el motivo de hacer hincapié en el trata-
miento fisico que se hara al problema, las restric-
ciones (2) del problema presentado, son escritas
de la siguiente manera:

INGENIERIA INVESTIGACION y TECNOlOGIiA

donde las ecuaciones de las restricciones son
vistas como una combinacién lineal de dos vec-
tores en la que las variables de optimizacion x, y x,
son escalares que multiplican a los vectores:

¢, =(100 40 60)" y ¢, =(20 80 60)’

respectivamente, para obtener como objetivo

7 =(2000 3200 3600)7

Por otra parte, el fin sigue siendo minimizar la
funcién costo mostrada en (1):

C=3000x, +2000x,

Las restricciones del problema, en este caso,
son de la forma Ax > b; sin embargo, lo deseable
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en un problema de optimizacién es lograr la igual-
dad en las restricciones, es decir, que se obtenga
la solucion a Ax = b o en donde Ax — b resulta mini-
ma. El método con espacios covariante y contra-
variante (de calculo tensorial) busca cumplir con
dicha igualdad, por lo tanto, al aplicar el método se
sustituye el signo de desigualdad y se cambia por
el de igualdad en miras de conseguir la mejor so-
lucién y de emplear sin dificultades la metodo-
logia para invertir matrices rectangulares. Para pa-
sar de la desigualdad a la igualdad no es nece-
sario anadir ningln tipo de variable como sucede
en el método Simplex, sino que se busca resolver
el problema con las variables presentes en el pro-
blema original. Asi entonces, las restricciones de
este problema se escriben como sigue:

100 20 2000
X, .| 40 |+Xx, -] 80 |=|3200 (8)
60 60 3600

A continuacién se agrupan los vectores ¢, , b, y
las variables de optimizacién como se muestra:

10020 2000

X
40 80 || ** | =] 3200 9)
60 60| \*2/ | 3600

La matriz que agrupa a los vectores $1,$2,
(pertenecientes al espacio covariante) se le desig-
nara con el nombre de A; al conseguir la inversa
por la izquierda de dicha matriz (A1) escrita en la
forma estandar

, (0.010714 -0.003571 0.00119 (10)
-0.007143 0.010714 0.004762

se obtienen los vectores
$' =(0.0101714 -0.003571 0.00119)"

$? =(-0.007143 0.010714 0.004762)"

Vol.IX

que por conveniencia en la visualizacién de la
matriz conformada por vectores es mejor escribir:

0.010714 -0.007143
A" =| ~0.003571 0.010714 (11)
0.00119 0.004762

Al multiplicar (8) por los vectores ¢ y ¢ (per-
tenecientes al espacio contravariante) serviran pa-
ra hallar los valores de las variables de optimi-
zacion:

(X1 '$1 + X5 ‘52 ZV)'EEl

(12)
100 20 2000 0.010714
X, |40 |+x, 80 |=|3200 ||| -0.003571
60 60 3600 0.00119
(X1 '$1 + X5 ‘52 ZV)'EEz
(13)
100 20 2000 -0.007143
X, |40 |+x,-80|=|3200 ||-| -0.010714
60 60 3600 0.004762

al efectuar las operaciones senaladas en (12) y
(13), se obtienen los valores de x,= 14.285714 y
X,= 37.142857 que, al ser sustituidos primero en
la ecuacion (2) nos daria la siguiente produccion:

100 20 2171426
14285740 |+37.1428| 80 |=| 3542.852
60 60 3085.71

En seguida se sustituyen x,= 14.285714 y x,=
37.142857 en la funciéon costo (1) proporcio-
nando el valor minimo de costos de produccion y el
cual resulta ser menor al obtenido con el método
simplex:
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C =3000(14.285714)+2000(37.142857)

C=%$117142.86 (14)
Haciendo la consideracion de que se trabajan 8
horas por dia, los valores de x; y x, al ser frac-
cionarios significan que se deben trabajar 14 dias
normales laborables mas 2.25 horas extras para
terminar la produccién en el taller 1 y 37 dias con
1.14 horas en el taller 2.

Como se puede apreciar en la figura 3, los
vectores x, -, Y X, - §, se encuentran en un plano
diferente al del objetivo Vv; por lo que no se puede
generar una solucién exacta, siendo el minimo
error la proyecmon del objetivo sobre el plano
generado por ¢, y ¢,.

Aun cuando ya han sido encontrados los valores
de las variables de optimizacién, es necesario en-
tender qué es lo que se hizo matematicamente,
por ello, se recurre a la explicacion fisica que va
intimamente ligada con los resultados y el proce-
dimiento realizado. Asi, al sustituir en la ecuacion
(8) los valores de x, y x, obtenidos con este mé-
todo, se obtiene el vector aproximacion

p =171 3543 3086)"

Este ultimo vector (p) resulta de aplicar la ley del
paralelogramo de composicion de fuerzas de fisica,
también llamada Principio de Stevin, entre los vec-
tores x, -¢, Y X, -9,, y que se expresa matema-

ticamente en las ecuaciones (15) y (16).

14285714

2171.429
3542.857
3085.714

1428.572
571429
857.143

2171429
3542.857
3085.714

100
40
60

20
+37.142857 80 | =
60

2000
3200
3600

(15)

Q

742.857
2971428 | =
2228571

+

2000
~| 3200
3600

Al comparar la produccion obtenida (16) de los
contrachapados 1, 2 y 3 con la demandada por el

x5,

'}
')
.
[}
i)

Aproximacion

Figura 3
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vector objetivo ¥V = (2000 3200 3600)", se tie-
ne una sobreproduccion del 8.6% y 11.1% en el
contrachapado 1 y 2 respectivamente, y una sub-
produccién del 14.3% del tercer contrachapado.

Esta solucién, siendo una mala aproximacion,
es sin embargo la mejor, pues aun sumando los
porcentajes de sobreproduccién y subproduccion,
obtenidos previamente, no superan al error del
37% de sobreproduccién que representa optar por
la solucién calculada con el método simplex; ade-
mas, nada se puede hacer bajo las actuales poli-
ticas de produccién impuestas por los nimeros en
las columnas de la ecuacion (2).

El vector aproximacion p obtenido, resulta ser la
proyeccién del vector objetivo:

vV =(2000 3200 3600)"

sobre el plano generado por los vectores ¢, y ¢,.
Se puede observar en la figura 3 que el vector error
debe ser ortogonal al vector aproximacion con el
motivo de que el error sea minimo vy, por tanto,
obtener la mejor solucién al problema.

Para comprobar la ortogonalidad entre los
vectores aproximacioén y error, y de que se obtuvo
como consecuencia la mejor solucion posible, se
debe efectuar un producto punto entre dichos vec-
tores, de tal modo que el resultado sea cero.

La diferencia entre los vectores objetivo y apro-
ximacion da lugar al vector error

€=V-p a7

cuya caracteristica, como se dijo anteriormente,
es que debe de ser ortogonal al plano donde se
localizan ¢, y ¢,, lo cual significa que se obtuvo la
mejor aproximacion, pues cualquier otra solucién
generara un vector error mayor en magnitud, que
es absolutamente indeseable.

Al calcular el vector error generado con este
método (€.) se obtiene lo siguiente:

2000 2171.429 -171.429
€.=|3200 |—-| 3542857 |=| —-342.857 | (18)
3600 3085.714 514.286

y cuando se efectua el producto punto entre e, y el
vector aproximacién p se obtiene el siguiente re-
sultado:

-171.429) (2171429
-342.857 |-| 3542.857 |=0 (19)
514.286 3085.714

con lo que se demuestra la ortogonalidad entre la
solucién obtenida p 'y el error €, con el método de
espacios covariante y contravariante al generar el
minimo error posible.

Si se calcula el vector error que se genera al
emplear la solucion obtenida con el método sim-
plex (€s), se obtendria primeramente que el vector
aproximacion seria

100 20 2000 2000
10/ 40 |+50|80 |=| 4400 |~| 3200 | (20)
60 60 3600 3600
y empleando (16), se tiene
2000 2000 0
€5 =| 3200 |—| 4400 |=| -1200 (21)
3600 3600 0

Una vez que han sido calculados los vectores
error que se generan con ambos métodos, por
medio del concepto de norma de un vector se
pueden comparar ambos resultados de donde se
tiene lo siguiente:

[62] = V(-171) +(-343)* +(514)* =641.427

&5 =0 +(-1200)* +(©0) =1200  (22)
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AN @)

En la figura 4 se pueden observar las dos solu-
ciones que se generan con ambos métodos desde
el punto de vista fisico, ademas del resultado
obtenido en (23). Para no confundir entre las solu-
ciones encontradas, los valores de las variables de
optimizacién del método simplex se denotan con
X;5 Y X,5, @Simismo, para el vector aproximacion
se le designa con el nombre de pg, mientras que
los encontrados por medio de los espacios
covariante y contravariante son denotados por X, .,
X,c Y €l vector aproximacion por p.

Restricciones x; >0

Para el Ultimo ejemplo, no se hizo uso de las
restricciones x, >0,x, >0, debido al enfoque fi-
sico y grafico mostrado con anterioridad; sin em-
bargo, siendo estrictos estas dos restricciones de-
ben de ser consideradas dentro del conjunto de
restricciones del problema por lo que se tendria el
siguiente planteamiento global:

minimizar C =3000x, +2000x,

Objetivo

sujeto a

100x, +20x, >2000

40x, +80x, = 3200

60x, +60x, > 3600 (24)
1x, +0x, 20

Ox, +1x, 20

por lo que ahora se tendria, escrito a manera de
combinacion lineal y en la forma Ax = b:

10 20 (2000
40 80| |3200

x, | 60 |+x,| 60 | =| 3600 (25)
1 0 0
0 1 0

de donde se observa que los vectores

$,=(100 40 60 1 0)

$,=(20 80 60 O 1)

Figura 4
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pertenecen al espacio R°, por lo que su represen-
taciéon grafica resulta imposible, no asi su inter-
pretacion fisica.

Siguiendo con la metodologia de los espacios
covariante y contravariante tenemos que

0.010712
-357x10°3
5t =| 1191x102 |Y
1.289x10*
-1.091x10°*

(26)
~7.14x10°3
0.0107119
$2 =|4.761x10
~1.091x10*
1.8844x10

que al multiplicar (25) de manera similar a la mos-
trada en (12) y (13), se obtienen los valores de x, =
14.287924 y x, = 37.137416.

Empleando estos nuevos valores y sustituyén-
dolos en la funcion costo (1) se tiene:

C =3000(14.287924)+2000(37.137416)
(27)
C =$117138.61

que resulta ser un valor mas pequeno en costos
respecto al valor obtenido en (14).

El vector aproximacion resulta ahora de:
p =(2171541 354251
3085.52 37.137 14.288)"

con lo que se puede calcular el vector error y por
tanto, la norma del mismo:

2000) (2171.541) (-171541
3200 | |354251 -34251

€, =| 3600 || 308552 |=|514.48 |[(28)
0 37.137 -37.137
0 14.288 -14.288

.| =642.66 (29)

La nueva solucion genera un error mayor, de-
bido a la introduccién de las nuevas restricciones.
Pese a lo anterior se sigue cumpliendo la ecuacién
mostrada en (30), asi como la ortogonalidad entre
los vectores aproximacion y error

&.-p =0 (30)

Dado que ¢, y ¢, son los vectores que forman
la combinacién lineal en las restricciones del pro-
blema para cumplir al objetivo Vv, ecuaciones (8) y
(25), es de esperar que si se cambian los valores
que conforman los vectores antes mencionados la
solucién al problema también lo haga. Las restric-
ciones del problema son las que limitan en mayor
medida las posibles soluciones al mismo.

La solucion del problema de optimizacién que
se obtiene con el método de espacios covariante y
contravariante, gira esencialmente en torno de la
eficiencia en el cumplimiento de las restricciones y
del error que se genera al verificarlas. Mientras
tanto, la funcién objetivo funge como un resultado
final cuantitativo de la calidad de las decisiones
tomadas, es decir, la funcidn objetivo engloba de
manera numérica las consecuencias de tomar en
cuenta los valores que pretenden satisfacer las
restricciones propuestas.

La visualizacion y el entendimiento de los pro-
blemas de optimizacion, se refleja inmediatamente
en las decisiones tomadas, asi como en la capa-
cidad de reaccidon de una empresa. El siguiente
ejemplo muestra que aun cuando el objetivo no se
puede alcanzar, la cuantificacién del error per-
mite tomar decisiones de qué tan eficaz es la so-
lucién presentada para su uso o, definitivamente,
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cancelar los planes originales de produccién vy
efectuar cambios minimos en los mismos que per-
mitan alcanzar el objetivo sin error alguno, reflejan-
dose todo ello en la funcién objetivo que se propone.

Ejemplo 2

Una compania llantera tiene tres plantas en las
cuales se producen llantas para autos de las si-
guientes medidas R15, R14, R13. Es necesario
cumplir con la demanda de 1400, 1500 y 15100
unidades por semana de cada una de las medidas;
sin embargo, a causa del deterioro de la maqui-
naria de R13 en una de las plantas (especializada
en esta medida), serd empleada solamente la
maquinaria de las dos plantas res- tantes. En la
planta A se producen 12, 19 y 3 llantas por hora
respectivamente, y en la planta B se producen 13,
8 y 2. Debido a factores de produccion, los cos-
tos varian de tal modo que el costo promedio uni-
tario de cada llanta por hora es de $250. Con las
condiciones antes sefnaladas se desea optimizar
los costos generados tras el cierre de una de las
tres plantas de dicha compania. En la tabla 5 se
concentra la informacion mencionada previamente.

Tabla 5
Medida de Produccién por hora Demanda
llanta Fabrica A Fabrica B semanal
R15 12 13 1400
R14 19 8 1500
R13 3 2 15100
Costos por hora $8500 $5750

El problema queda expresado fisica y matema-
ticamente de la siguiente manera:

Minimizar C =8500y, +5750y, (31)

sujeto a:
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12 13 1400
19 8 1500
Yil3 |+Y,]2 |=]|15100 (32)
1 0 0
0 1 0

Aplicando la metodologia mostrada con anterio-
ridad se tiene que:

$,=(12 19 3 1 0)y
$,=13 8 2 0 1)

y, con los que se obtienen los vectores del espacio
contravariante:

-0.051139
0.0838408

¢ =|3.5872x1073 |y
9.9274x10°®
—-0.013098

0.122091
-0.077

$? =|3.6706x1073
—-0.013098
0.0214816

Tomando el signo de igualdad en (32), se
multiplican los vectores ¢, y ¢, (33), obteniéndose
los valores de y,=108.334 y y,=110.853, que al
ser sustituidos en (32) dan por resultado el vector
aproximaciéon p:

12 13
19 8
108.3|3 |+1109/2 |= (35)
1 0
0 1
(continva...)
FI-UNAM
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2741.103 1400

2945174 1500

546.709 |~| 15100 (35)
108.334 0]

110.853 0]

Con el vector aproximacion p y empleando la
expresion (17) se obtiene el vector error:

€ =(-1341.103 -1445.174 14553.291
-108.334 -110.853)" (36)

Para medir qué tan grande o significativo es el
error respecto de la aproximacién y del objetivo

vV =(1400 1500 15100 O O0)'

es necesario recordar que el vector aproximaciéon p
y el vector error € son ortogonales, por lo que se
genera un triangulo rectangulo en donde cada lado
tiene de magnitud la norma del vector que lo
forma, es por eso que se calculan las normas de
cada vector:

\\5\\ =14687.05
HﬁH =4063.325 (37)
[V =15238.77

En la figura 5 se muestra el triangulo formado
por las normas de los vectores (37) donde es claro
que el vector error € resultante es mas grande que
la mejor aproximacion p que se pueda encontrar,
debido a las condiciones iniciales planteadas ¢, y .

El error generado es consecuencia directa del
angulo que existe entre el hiperplano formado por
los vectores ¢, y ¢,, y el vector objetivo V, el cual
se puede calcular con ayuda de la siguiente ex-
presion:

p-v=[p] [9-cost@) (38)

de donde se obtiene el valor de o = 74.5353°.

Dicho angulo, asi como la magnitud del vector
error, son valores que deben tenerse muy en cuen-
ta en la toma de decisiones, pues son indicadores
de la viabilidad o inviabilidad de la solucién ob-
tenida. La factibilidad de la solucién es conseguida
en el método simplex por medio de un andlisis de
sensibilidad; sin embargo, en el caso del método
con espacios covariante y contravariante, el angulo
indica de manera directa dicha factibilidad puesto
que el angulo representa la relacién entre el vector
objetivo V y la aproximacién p contenida en el
hiperplano formado por los EF, Por ejemplo, si se
tuviese que el angulo o es aproximado o tiende a
90°, se sabria que el vector aproximacion tenderia
al vector cero (' — 0), y dado que en el célculo
del vector aproximacién se emplearon los esca-
lares que proporcionan la solucion al problema, se
tendria una total inviabilidad de la solucién, mismo
resultado que arrojarian los andlisis de sensibilidad
del método simplex.

I

]

|1

Figura 5
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Regresando al problema, cuando los valores de y,
y ¥, son sustituidos en la funcién costo (31) se
tiene que:

C =8500(108.3)+5750(110.9)
(39)
C =$1558225.0

Cuando se procede a la resolucion de este
problema aplicando el método simplex, se obtiene
que y,= 5033.33yy, = 0.

Con las restricciones escritas de la forma mos-
trada en (32) se calculan los vectores aproxima-
cion (pg) y error (g5):

60400 ~59000
95633 ~94133

B, =| 15100 | & =|0 (40)
5033.3 ~5033.3
0 0

de donde se tiene que H§3 H =111208.9, que al ser
comparada con la norma del vector error del
método con espacios covariante y contravariante
(37) se observa una contrastante diferencia.

Al sustituir los valores de y, y y, obtenidos con la
solucién del simplex, se tiene que la funcion
objetivo (31) asumiria el siguiente valor

C =8500(5033.33) +5750(0)
C=$42783.33 (41)

que no resulta nada agradable, sobretodo si se le
compara con el resultado obtenido en (39).

Analizando las soluciones presentadas, al apli-
car el método simplex, se satisfaria la demanda de
llantas a un costo bastante elevado (41), ademas
de que se tendria que cerrar la planta B de la
compania, cuestidbn que no seria muy aceptable
debido a los costos que esto podria representar.
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Al mismo tiempo, los enormes excedentes de
produccién de llantas R15 y R14 en la planta
restante podrian desencadenar otros problemas
relacionados con la maquinaria, como puede ser
su deterioro inmediato (factor que propicid el
cierre de la planta C), o una acumulacién de in-
ventario que se ve reflejado en costos por alma-
cenamiento.

Por otro lado, comparando los resultados obte-
nidos por el método de espacios covariante y con-
travariante se obtiene un valor muy bajo en cuanto
al costo de produccién de llantas (39), ademas de
que ambas plantas A y B se mantienen operando
conjuntamente sin poner en riesgo la maquinaria
que en ellas se dispone. Respecto a los excesos en
la produccién de llantas R15 y R14 que son de
1341 y 1445 respectivamente, y que se observan
en los dos primeros elementos del vector error
(36), no resultan ser tan grandes como los obte-
nidos en el método simplex: 59000 y 94133 para
las llantas R15 y R14, y que se pueden observar en
los dos primeros elementos del vector €5 en la
ecuacion 40.

Mientras tanto, la falta de produccién de 14553
llantas R13 que se obtiene por el método con
espacios covariante y contravariante, y que se
muestra en el tercer elemento del vector error
(36), es el reflejo del cierre de la planta C espe-
cializada en este ramo y de la incapacidad de las
plantas A y B para poder suplirla.

Dado que ninguna de las dos soluciones pro-
puestas resultan ser viables: la del método sim-
plex por los altos costos que representa tomar
dicha solucién y la del método con espacios
covariante y contravariante por no cumplir satis-
factoriamente con la demanda; debe consi-
derarse seriamente un cambio en los niveles de
produccidn actuales a fin de completar la de-
manda propuesta inicialmente y lograr un mini-
mo en los costos de produccion.

FI-UNAM



J.L. UrRrRUTIA-GALICIA, J.C. AICERRECA-HUERTA Yy M.A. ORdAAZ-AILCANTARA

Rotacion de planos (Cambios de
produccion)

Aunque el método con espacios covariante y con-
travariante no satisface la demanda, posee una
ventaja amplia sobre el método simplex, pues pro-
porciona una visualizacion fisica del problema, en
la cual el resultado obtenido (p) es la proyeccién
del vector v sobre el hiperplano generado por los
vectores ¢, y ¢,. Puesto que los vectores ¢, , b, Y
V no son coplanares, no se puede obtener una
solucién exacta al problema; sin embargo, si los
vectores ¢, y ¢, son proyectados sobre el hiper-
plano que contiene al vector v, se logra que todos
los vectores sean coplanares y alcanzar asi una
solucién exacta.

La metodologia presentada por Urrutia-Galicia
(2003), permite realizar lo anterior con base_en
que el hiperplano que contiene a los vectores ¢; Y
b, sera rotado un angulo 6 hasta alcanzar la posi-
cién en la que el vector v se halle contenido en
éste, posteriormente los vectores ¢, y ¢, son pro-

yectados en el nuevo hiperplano que contiene al
vector V, (Figura 6).

La rotacion del hiperplano, asi como la pro-
yeccion de los vectores ¢, y ¢, sobre el mismo,

representan los cambios minimos requeridos en
los niveles de produccién a fin de satisfacer la
demanda planteada inicialmente, con lo que no se
producira error alguno después de efectuar dichos
cambios.

Continuando con el ejemplo de la companhia
llantera, la cual tiene serios problemas con su pro-
duccidn, es urgente y necesario el cambio en los
niveles de produccién a fin de sobrellevar su situa-
cién actual. Empleando los resultados obtenidos
con el método de espacios covariante y contra-
variante, el primer paso es generar el hiperplano
que contenga al vector objetivo (V) de las res-
tricciones, para lo cual se requiere de un vector
normal a dicho hiperplano. Para poder calcular el
vector normal, se hara uso de la matriz auxiliar de la
ecuacion 42.

Hiperplano

Figura 6
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0.091871 -0.091312
0.098433 -0.098398

B =|0.990894 0.990893 (42)
0] -0.007376
0] -0.007548

la cual se halla integrada en la primera columna
por el vector V normalizado (V) y en la segunda
por el vector error € normalizado (€,).

Al calcular la matriz inversa de B (B1), se sabe
que estara integrada por los vectores contrava-
riantes

2529951 -2.529666
2.718302 -2.718284
B™ =/0.504595 0.504567 (43)
0.099989 -0.103745
0.102341 -0.106158

y por lo tanto, el vector

n=(-25297 -2.7183 0.5046

-0.1038 -0.1062)"
es ortogonal al vector V,, consecuentemente n es
el vector normal al hiperplano que contiene al

vector V.

Al normalizar " se puede escribir la ecuacion del
hiperplano rotado como sigue:

-0.6745z, —0.7248z, +0.1345z, —

(44)
-0.0277z, —-0.0283z, =0
Al sustituir en (44) los valores de

z,=2,=2; =2, =1

y despejar el valor de z,, se obtiene un vector
arbitrario

w=@1 1 1 1 -45.6597)
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perteneciente al hiperplano rotado que, junto con
el vector

$=(14 15 151 0 0)
que es 100 veces mas pequeno que el vector v
por conveniencia, sera utilizado para obtener las
proyecciones de los niveles de produccién actuales
o, =(12 19 3 1 0)y
$,=(13 8 2 0 1)

en el nuevo hiperplano.

Empleando una combinacién lineal, cuya forma
es analoga a (8) y a (32), se tiene:

1 14 (12
1 15 | |19
k| 1 +k,| 151 |=|3 (45)
1 0 1
~45 6597 0 0

donde los valores de k, y k, se obtienen facil-
mente multiplicando la matriz inversa generada
con los vectores W y S por (45), de tal modo que
k, =0.0134 y k, =0.0389.

Al sustituir los valores k; y k, en (45) se obtiene
la proyeccion de ¢, sobre el hiperplano rotado
(1)

1 14 ) (05581

( 1 | (15\ (0.5971\
7;0.0134‘ 1 '+o.o39 151 |=| 5.8889
1 0 | 00134

L—45.6597 J Lo J L—O.612 J

(46)

Para obtener el valor de la proyeccién de EEZ
sobre el hiperplano rotado, se procede de manera
similar:

FI-UNAM



J.L. UrRrRUTIA-GALICIA, J.C. AICERRECA-HUERTA Yy M.A. ORdAAZ-AILCANTARA

1 14\ (13
1 15 8
k| 1 +k,| 151 |=| 2 (47)
1 0 0
~45 6597 0 1

obteniéndose los valores de k, =-0.131 y
k, =0.0261, que al ser sustituidos proporcionan el
vector proyeccion de ¢,:

7, =(0.3525 0.3786 3.930
(48)
-0.0131 0.5981)"

Una vez que han sido encontrados los vectores
.Y 7, se tiene que la situacion de la compania ha
cambiado tras realizar los cambios minimos de
produccién representados por los vectores ante-
riormente senalados.

De esta manera, el problema precisado por las
restricciones queda como sigue:

0.5581 0.3525 1400
0.5971 0.3786 1500
y,| 58889 |+y,/3.930 |=|15100 (49)
0.0134 -0.131 0
-0.612 0.5981 0

Al resolver esta situaciéon por medio del método
Ccon espacios covariante y contravariante, se tienen
los valores de y,= 1523.7 y y,= 1559.14, que al
ser sustituidos en (49) ofrecen una solucién exacta
al problema con error cero:

0.5581

0.5971
1523.7| 5.8889 | +

0.0134

-0.612

0.3525 1400
0.3786 1500
11559.14| 3.930 |=| 15100 (50)
-0.131 0]
0.5981 0]

La funcién de costos, después de los cambios
de produccién, se ve modificada por el volumen de
produccién de llantas por planta manteniéndose
constante el costo unitario de cada llanta por hora
planteado inicialmente, es decir, en promedio
$250 por cada llanta fabricada en cada planta:

C =67082.71y, +45417.29y,
C =67082.71(1523.7) + 45417.29(1559.14)
C =$173026336.11 (51)

Sin embargo, aun cuando el problema ha sido
resuelto, es necesario manejar los nimeros para
presentarlos en la situaciéon real propuesta por la
compania. Es por eso que al efectuar los productos
senalados en (50) se tendria, en las tres primeras
filas de los vectores, la produccién semanal de
llantas para cada una de las plantas Ay B:

Tabla 6
Medida de Produccion semanal Demanda
llanta Planta A Planta B semanal
R15 850.46 549.54 1400
R14 909.75 590.25 1500
R13 8973.02 6126.98 15100

Considerando que en la semana se trabajan 5
dias, y que cada dia consta de 8 horas, se tendria
que dividir la produccién semanal entre 40 para
obtener la produccién por hora (ver tabla 7).
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Tabla 7

Medida de Produccién por hora Demanda
llanta Planta A Planta B semanal
R15 21.26 13.74 1400
R14 22.75 14.76 1500
R13 224.33 153.17 15100

Costos por

hora inicial $8500 $5750

Costos por

hora modificada $67 082.71 $45 417.29

En resumen, para la situacion que enfrenta la
compania se presentan tres opciones en donde la
viabilidad de la solucién propuesta depende, en
gran medida, de factores inherentes a la produc-
cién que podrian ser detonantes de costos muy
elevados que alterarian el resultado final; por
ejemplo, los costos por almacenamiento del pro-
ducto sobrante y cierre de una planta como se
muestra en el método simplex, el incumplimiento
de la demanda en el caso del método con espacios
covariante y contravariante, o los costos que re-
presentaria un cambio de produccion en la Ultima
solucién propuesta, por lo que es necesario ana-
lizar profundamente cada una de las soluciones
propuestas y en un caso real contemplarlo directa-
mente en la funcién de costo.

Asi pues, se tendrian que observar las situa-
ciones en que podrian verse aplicadas las solu-
ciones antes senaladas. Por ejemplo, en un caso
de seguridad nacional y que en lugar de
produccién de llantas se produjeran distintos tipos
de armas y, ademas se estuviese en guerra, los
costos de fabricacién no serian “tan” importantes
(sin im- portar cuantos turnos diarios fueran
necesarios) como la satisfaccion al 100% de la
demanda de- bido al peligro que se enfrentaria el
pais al no cumplirla, por lo tanto, la solucion
mostrada por el método simplex, y la mostrada con
los cambios de produccidon mostrados en la tabla
7, serian las 6ptimas, aceptandose de entre éstas
la que menor costo represente. Otro escenario, en
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el que la premura de cumplir la demanda no sea
relativamente urgente, se podria pensar tanto en los
cambios de produccidon como en la construccién o
reparacion de la fabrica C, mientras lo anterior
acontece se podria producir con los niveles mos-
trados por la solucidn con los espacios covariante y
contravariante (34), o con los vistos por la solucion
del método simplex, siendo por supuesto el opti-
mo, el que constituya menores pérdidas para la
compania.

Conclusiones

Como se vio a lo largo del articulo, existen muchas
diferencias entre el método de espacios covariante
y contravariante (algebra tensorial), y el método
simplex, motivo por el cual se ha hecho hincapié
en los aspectos mas relevantes que puedan inte-
resar al lector, lo cual redundard en una mejor
comprension de la optimizacion.

Por ejemplo, en el caso del método simplex se
puede hablar de la posible obtencién de ceros en
las variables de optimizacion lo que significaria el
nulo funcionamiento del factor que acompana a
dichas variables, 1o que representa costos o pér-
didas. Otro detalle reside en la adicién de mas
variables de optimizacién o en el nimero de rest-
ricciones, lo cual complica el tratamiento de los
problemas con el método simplex, requiriendo asi,
paqueteria de cOmputo muchas veces especia-
lizada en la cual sélo se mantiene un proceso
mecanizado. Por su parte, el “método tensorial”
con espacios covariante y contravariante no com-
plica su forma de operacién, ya que resulta ana-
loga a los ejemplos mostrados, aun cuando se
anadan mas variables de optimizacién o restric-
ciones. Ademas, una ventaja adicional del método
con espacios covariante y contravariante, se mues-
tra en la nula participacion de la funcién a opti-
mizar, permitiendo reformularla y contemplar mas
factores que intervengan en ella, como lo fue en su
momento en los cambios de produccion.

Un aspecto importante que se senala es la
visualizacion fisica que se puede tener para la
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resolucion de los problemas, pues el mundo en
que habitamos no es puramente matematico; es
por esto que al afadir las variables de holgura,
excedentes y artificiales en el método simplex, se
sefala que dichas variables no forman parte del
problema original, por lo que el método con espa-
cios covariante y contravariante las omite y se
limita a trabajar s6lo con la informacién propor-
cionada. También, dicha visualizacién permite la
cuantificacion del vector error, el cual fue calcu-
lado tanto para el método simplex como para el
método con espacios covariante y contravariante,
mostrandose en los ejemplos que la magnitud del
vector error generado en el método simplex resulta
mayor que el generado por el método de espacios
covariante y contravariante, pues el primero no
posee el concepto de mejor aproximaciéon con los
datos proporcionados y esto se pone de mani-
fiesto de manera mas explicita en el ejemplo de la
compania llantera; de igual forma, estos resultados
se reflejan en las funciones que se desed opti-
mizar, siendo el método con espacios covariante y
contravariante el que obtuvo las cifras econémicas
mas ventajosas, permitiendo ademas realizar en
cualquier caso, los cambios de produccion perti-
nentes que, de otro modo, serian imposibles de
observar con el método simplex. Cabe admitir que si
bien el método simplex satisface todas las res-
tricciones, irbnicamente no arroja el resultado opti-
mo como se demuestra con el vector error, por lo
que resulta en este sentido mucho mas viable el
método con espacios covariante y contravariante.

Para finalizar, existe mucha literatura acerca de
optimizacién y programacion lineal, asi como de
diversos métodos como el simplex que abordan
estos temas (Mangasarian, 2004; Lin et al., 1998;
Monteiro et al., 2004; Pan, 2005; Byrd et al,
2005). Se invita al lector a revisar dichos métodos
y a compararlos con el método con espacios co-
variante y contravariante, notando que los pri-
meros son abordados de manera mas complicada
y en su mayoria inaccesible para el entendimiento
de la gran mayoria de la gente, limitandose,
desgraciadamente, a ser manejados por personas
especializadas en la materia.

En el caso del nuevo método presentado, todo lo
que el lector necesita es la cuidadosa lectura del
capitulo 1 del libro de Flligge (1972) sobre defini-
ciones basicas de bases covariantes y contrava-
riantes y del algebra relacionada con ellas (Urrutia,
2003).
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