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Abstract

The the o ret i cal de vel op ment of dis con ti nu ities be hav ior model us ing the com plex vari -

able the ory by means of the el lip ti cal co or di nate sys tem in or der to cal cu late stress in a 

microhole in struc tural steel is dis cussed. It is shown that dis con ti nu ities, ob served at

micrometric lev els, grow in a fractal man ner and that when dis con ti nu ity has al ready a

hy per bolic shape, with a branch at tain ing an an gle of 60 in re la tion to the hor i zon tal

line, stress value is zero. By means of com par ing val ues of stress in ten sity fac tors ob -

tained in the lab o ra tory with those ob tained us ing the the o ret i cal model, it may be as -

serted that ex per i men tal val ues re sult from the over all ef fect of the test on the probe.

Key words: Mi cro dis con ti nu ities, fractal, struc tural steel, stress in ten sity fac tor, Chev -

ron-type notch. 

Resumen

Se presenta el desarrollo teórico del modelo de comportamiento de discontinuidades

que hace uso de la teoría de vari able compleja, mediante el sistema de coordenadas

elípticas para el cálculo del esfuerzo en un micro agujero en acero estructural. Se

muestra que la forma del crecimiento de las discontinuidades, observadas éstas a

niveles micrométricos, es del tipo fractal, y que cuando la discontinuidad ha tomado ya 

una forma hiperbólica, donde alguna de sus ramas alcanza un ángulo igual a 60 con

respecto a la hori zontal, el valor del esfuerzo vale cero. Comparando los valores de los

factores de intensidad de esfuerzos obtenidos en laboratorio y los obtenidos con el

modelo teórico, se puede afirmar que los valores experimentales son el resultado de

los efectos globales de la prueba sobre la probeta. 

Descriptores: Micro discontinuidades, fractal, acero estructural, factor de intensidad de 

esfuerzos, muesca tipo Chevron.   

Intro duc tion

Based on the idea that every structure might crack, 
this research is the result of observing appearing
cracks and their corresponding structural conse-
quences. This allows us to better understand the
apparition and behavior of fissures, which pheno-

menon in structural engineering is very interesting
for many researchers. 

The development of the theoretical model of
micro discontinuities behavior in structural steel by
means of the complex variable theory, using the
elliptical coordinate system to calculate stress on a 
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microhole on evenly loaded plates is shown. As
stress on the fracture point is singular, focal lo-
cation takes place for any s0 stress other than zero, 
and predictive structural stability methods based
on Tresca and Von Mises theories to locate them
are inappropriate. This has allowed the deve-
lopment of a complex function to calculate micro
discontinuities. The fact that the Westergaard
stresses function satisfies the biharmonic equation 
D4 0f = , obtaining equations of stress Cartesian
components in terms of actual and imaginary parts
of the Westergaard stresses function is proven.

Stress due to an ellip tical microhole on
an evenly loaded plate

Elasticity problems involving elliptical or hyperbolic
boundaries are dealt with using the elliptical coor-
dinate system, figure 1. Thus:

x c y c z z= × × × =cosh cosx h, = x hsenh sen and

                                                                              (1)

where   x³0, 0 £ h< 2p and –¥ < z < ¥  with c as a 
constant and scale factors defined by: hx = hh = a
Ö( )senh sen2 2x h+  and hz=1. Figure 1 also shows

the surface polar plots on plane XY. Eliminating h

from the above equation:
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for the case x = x0, the above equation is that of
an ellipse whose major and minor axes are given
by: a = c cosh x0 and b = c senh x0.

Ellipse foci are x = ± c. The ellipse shape ratio
varies as a function of x0. If x0 is very long and has
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Figure 1. Ellip tical micro-discontinuity on a plate with a) perpen dic ular s0  uniaxial load at x, and 

b) parallel s0 0 uniaxial load at x



a trend towards the infinite, the ellipse comes
close to a circle with a = b. In addition, if x0 ® 0,
the ellipse becomes a line 2c = 2a = 2b long,
which represents a crack. This case is shown as
part of the study on the intragranular fracture of a
sample 16 mm long. Theoretically, an infinite plate
with an elliptical micro discontinuity subject to a
uniaxial load, figure 1a, should be taken into
account to find that sh stresses around micro
discontinuity are given by:

s sh
x= 0

2e

[ sin ( ) / (cos cos ) ]h e h2 1 2 10
2 0

0x x hx- - --    (2)

the boundary for stresses sh is a maximum at the
end of the major axis, where cos 2h = 1.
Replacing h in equation 2: 

              ( ) ( / )maxs sh = +0 1 2a b                 (3)

After examining the result of equation 3 for two
limits, we find that when a=b or large x0, the
elliptical microhole becomes circular and that
(sh)max = 3s0. This result confirms that stresses
concentration for a circular microhole on an infinite 
plate with uniaxial load

             ( ) ( )max maxs sh h<
circular elipsolidal

           (3.1)

may be described as:

s t qrr r= = 0  y  s s qqq = +0 1 2 2( cos )      (3.2)

which represents sqq distribution around the micro
discontinuity boundary for r = a. 

The second result appears when b ® 0 or x0=0
and the elliptical micro discontinuity spreads open- 
ly, showing a fracture. In this case, equation 3 pro-
ves that [sh]max ® ¥  as b ® 0. It should be noticed 
that the maximum stress at the tip of the micro
discontinuity at the end of the ellipse major axis
tends towards the infinite, without considering the

magnitude of the s0 applied stress, which shows
that location takes place at the tip of the micro
discontinuity for any load other than zero. When
the s0 applied stress is parallel to the major axis of
the elliptical micro discontinuity, figure 1b, the sh

maximum value on the micro discontinuity boun-
dary is the extreme point of the minor axis, and

                  ( ) ( / )maxs sn b a= +0 1 2                     (4)

At the limit when b ® 0 and when the ellipse
represents a micro discontinuity, stress is (sh)max = 
s0. This does not apply at the extreme points of the 
micro discontinuity major axis, equation 4, but sh =  
-s0 for any b/a value. The theoretical solution for
the plate elliptical micro discontinuity at the limit
when b ® 0 proves distribution of stresses for the
plate elliptical micro discontinuity. It is evident that
stresses at the tip of the micro discontinuity are
singular when the micro discontinuity is perpendicu-
lar to the s0 applied stress. The fact that stresses
at the tip of the micro discontinuity are singular,
shows that focal location takes place for any s0

stress other than zero and that predictive structural 
stability methods based on Tresca and Von Mises
theories to locate them, are inappropriate. 

Complex stress func tion for micro
discon ti nu ities

Let us now introduce a complex stress function,
Z(z), pertaining to Airy stress function f, given by: 

                  f = +Re Z Zy lm                       (5)

as Z is a complex variable function, then: 

Z z u jv x y( ) ( , )= + = +j  j x y Z j lm Zy( , ) Re= +   (6)

Where z is defined as:

       z x jy re r jj= + = = +q q q(cos sin )        (7)

In order that Z is analytical in z0, it must be
defined in a z0 environment, indefinitely derivable in 
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the point given environment and must meet that
given positive numbers d and M, such as " z Î (z0

– d, z0 + d) and that the following is true for any
natural k number: 

                   Z z M kk k( ) ( !/ )< d                 (7.1)

The analyticity criterion set by 7.1 is satisfactory 
as it may be determined in an absolute manner,
but it is rather inconvenient in applications because 
it is based on knowledge of the behavior of any
type of derivative in a certain environment, given
the z0 point.

In order that Z satisfies analyticity on the area of 
interest, it must meet with the following: in order
that a Z(z) = u(x, y) + jv(x, y) = j(x, y) + j y(x, y)
function defined in a G domain is derivable at z
point of the domain as a complex variable function, 
and u(x, y) and v(x, y) functions must be able to be
differentiated at this point (as functions of two
actual variables) and the following conditions must
be met at this point:

¶ ¶ ¶ ¶u x v y/ /=   &  ¶ ¶ ¶ ¶u y v x/ /= -

If all the theorem conditions are met, the Z´(z)
derivative may be expressed using one of the
following forms, known as Cauchy-Riemann con-
ditions1 . 

Z z u x i v x v y u y' ( ) /= + = =¶ ¶ ¶ / ¶ ¶ / ¶ - ¶ / ¶

       ¶ / ¶ ¶ / ¶ ¶ / ¶ ¶ / ¶u x i u y v y i v x- = +       (7.2)

Transformation is Z(z) = (z – a)n "  n > 1. This
inequality transforms the extended plane on itself,
so that each Z(z) point has n pre-images in the z
plane. Thus: 

Z a n= + ÖZ(z)

with n points located on the apexes of a regular
polygon with n sides and center point at a. The
proposed transformation goes in accordance with
all points, except z = a and z = ¥. In this case, the 
angles with apexes at the last two points increase n
times. It should be taken into account that  Z(z)
|=|  z – a n| and that Arg(Z(z)) = n Arg(z – a), from 
which it may be deduced that every circumference
with an a = b radius, figure 1, with center point at z
= a is transformed into a circumference with an rn

radius. If point z displacing the |z – a| = r
circumference in a positive direction, that is, the
continually expanding Arg(z – a) increases by 2p, a
Z(z) point will displace n times the circumference
defined by  Z(z)=rn in the same direction. The con-
tinually expanding Arg (Z(z)) will increase by 2pn.

Now let us consider Joukowski’s function
(Kochin et al, 1958) Z(z) = ½(z + 1/z) =l (z), a
second order function that meets the l(z) = l(1/z)
condition, which means that each point of the Z(z)
plane has a Z(z) = l(z) transformation of less than
two z1 and z2, pre-images, related to each other by
z1z2 = 1. 

If one of them belongs to the inside of the unit
circle, the other belongs to the outside and vice
versa, while they have the same values. The Z(z) =
l(z) function remains in the |z| £ 1 (|z|³  1)
domain and takes various values at the |z|<  1 (o
z > 1) points, and is biunivocally and conti-
nuously transformed in a certain G domain of the
Z(z) plane. 

Theorem

The image of a g unit circumference is the
segment of the actual [–1, 1] axis displaced twice
(images of |z|= r circumferences and Arg z = a +
2kp radii), in such a manner that G domain is
formed by every point of Z(z) plane, except for
those belonging to the segment of the actual G axis 
meeting the values of the –1 £ x £ 1 interval. 
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1 This univer sally accepted denom i na tion is histor i cally unfair, as

the condi tions of 7.2 were studied in the 18th century by

D’Alambert and Euler as part of their research on the appli ca tion

of complex vari able func tions in hydromechanics (D’Alambert

and Euler), as well  as in cartog raphy and inte gral calculus (Euler). 



Dem

In order to obtain the domain’s G   boundary,
the image of the g : |z| = 1 unit circumference
must be obtained. If z = eiq  " 0  £ q £ 2p, figure 2, 
then if 

Z z e ei i( ) ( ) cos= + =-1
2

q q q " £ £0 2q p

and the images of the |z|= r circumferences and
the Arg z = a + 2kp radii

If we consider only the inside of the |z|< 1 unit
circumference and the definition of z given in equa- 
tion 7, that is:

z = rejq "  0 < r < 1  and 0 £ q £ 2p,

then:

Z(z) = ½[rejq + 1/re -jq = ½(1/r + r) cos q 

– j ½ (1/r – r) sen q

or

" 0 £ q £ 2p

                                                                   (8)

u = ½(1/r + r) cos q, v = -½(1/r – r) sen q

eliminating q parameter we obtain:
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n
    (9)

micro ellipse equation with 

a = ½(1/r + r)  and b = ½(1/r – r) 

semi-axes and ± 1 foci. 

It may be inferred from equation 8 that when q
increases continuously from 0 to 2p or, which is
the same, that point z traces the entire |z|= r
circumference only once in a positive direction, the
corresponding point traces the entire ellipse only
once, represented by equation 9, in a negative
direction. As a matter of fact, when 0 £ q £ p/2, u is 
positive and decreases from a down to 0, while v is
negative and decreases from 0 down to –b. When
p/2 < q < p, u continues decreasing from 0 down
to –a, while v increases from–b up to 0. When  3p/2
< q < 2p, u increases from –a up to 0, while v
increases from 0 up to b. Finally, when 3/2, u
increases from 0 up to a, while v decreases from b
up to 0. 

If r radius of the |z| = r circumference varies
from 0 to 1, a is decreased from ¥ down to 1 and b
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Figure 2. 2a long crack on an infi nite plate subject to 0  biaxial load



is decreased from 8 down to 0; the corresponding
ellipses will trace the entire group of ellipses of w = 
Z(z) plane with ± 1 foci. From the above may be
deduced that w = l (z) transforms biunivocally the
unit circle in the G domain representing the outside 
of the G segment. In addition, the image of the
center of the unit circle is the infinite point and the
image of the unit circumference is the G segment
displaced twice. 

For the image of the 

z = qeia  " 0 £ q < 1 

radius, first we obtain the equation: 

"0£ q <1 

w = ½(1/ q+ q) cos a – i ½(1/q – q) sen a

or                                                              (10)

u=½(1/q+q) cos a, v = –½(1/q–q) sen a

This shows that the images of two radii symme-
trical to the actual axis (if a angle corresponds to
one of them, –a angle are also symmetrical in
relation to the actual axis; while the images of two
radii symmetrical to the imaginary axis (if a angle
corresponds to one of them, p – a angle corres-
ponds to the other one) are symmetrical to the
imaginary axis. Therefore, it is only necessary to
take into account the images of the radii belonging, 
for instance, to the first quadrant: 0 £ a £ p/2.

It should be noticed that for a = 0, it is ne-
cessary that: u = ½(1/q + q),  v = 0  "  0 £ q < 1. 
This is an infinite semi-interval of the actual axis: 1
< u £ ¥. The interval that is symmetrical to this –8
£ u < –1, is the radius image corresponding to a = 
p. For a =p /2, u  = 0,  v = – ½(1/q – q) " 0 £  q
< 1. This is the imaginary semi-axis:  – ¥ £ v < 0.
The other imaginary semi-axis 0 < v £ ¥, is the
radius image corresponding to a = – p/2. 

To summarize, the image of the unit circumfe-
rence horizontal diameter is the infinite interval of
the actual axis that goes from point –1 up to point
+1, passing through ¥; while the image of the unit
circumference vertical diameter is the whole length 
of the imaginary axis, except for coordinates origin,
including the infinite point.

Let us, now, suppose that 0 < a < p/2. If we
eliminate the q parameter from equations in num-
ber 10, we obtain: 

                
u n2

2

2

2
1

cos sina a
- =

æ

è
ç

ö

ø
÷              (11)

This is the equation of the hyperbola with actual
semi-axis a = cos a, the imaginary semi-axis b =
sin a and ± 1 foci. Nevertheless, point w does not
completely trace the hyperbola when point z des-
cribes the whole length of z = qeiq " 0 £ q < 1
radius. As a matter of fact, it might be deduced,
based on equations in number 10, that when t
increases from 0 up to 1, u decreases from ¥ down 
to cos a, while and v increases from –¥ to 0.
Therefore, the point traces only a fourth of the
hyperbola belonging to the fourth quadrant. Based
on this observation, the fourth belonging to the first 
quadrant, i.e., the part symmetrical to the one
given in relation to the actual axis, will be the image 
of the radius symmetrical to the given radius, in
relation to the actual axis, i.e. of the radius
corresponding to the –a angle. However, it would
be unfair to say that the entire branch of the
hyperbola that passes through the first and fourth
quadrants is the image of the pair of radii referred
to. In fact, the apex of hyperbola u = a, v = 0 does 
not belong to this image. The images of the radii
corresponding to the p – a and a + p or a – p
angles are fourths of the same hyperbola, located
in the third and second quadrants. The complete
hyperbola, except its two apexes, is the image of
the radii quatern: ±a, p ± a. It must be noticed
that the image of each of the diameters formed by
these radii will be part of the hyperbola formed by
the pairs of its fourths, which are symmetrical to
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the coordinates point of origin and that are inter-
linked at the infinite point.

To summarize, the w = l (z) = ½(z + 1/z)
function biunivocally transforms both the inside
and the outside of the unit circle on the outside of
the second case –1 £ u £ 1 of the actual axis. The
|z|= r circumferences are transformed into ellip-
ses with ±1 foci and similar (semi-axes): ½|1/r ±
r|, and the pairs of diameters symmetrical to the
coordinate axes formed by radii z = ± reia  "  0 £ r
< 1 are transformed into hyperbolas with ±1 foci
and |cos a|, |sen a| semi-axes, except for the
apexes of these hyperbolas.

Cauchy-Riemann conditions 7.2 lead us to: 

              Ñ2 Re Z = Ñ2 Im Z = 0              (12)

This result proves that the Westergaard stress
function automatically satisfies biharmonic equa-
tion: Ñ4 f = 0, which may be written as follows:

¶ f ¶ ¶ f ¶ ¶ ¶ f ¶4 4 4 2 2 4 42 0/ / /x x y y+ + =    (13)

Highlighted functions and functions in bold type
of the Z stress function in equation 5 indicate in-
tegration, i.e.: 

dZ / dz = Z       or       Z =  Z dz

            dZ / dz = Z       or       Z =  Z dz          (14)   

dZ / dz = Z´      or       Z =  Z´ dz

where bold type and the differential indicate inte-
gration and differentiation, respectively. If represent
stress by a f stress function such as: 

s ¶ f ¶xx y= +2 2/ W

s ¶ f ¶yy x= +2 2/ W

t - ¶ f ¶ ¶xy x y=
2 /

where W (x, y) is a stress-body field.

Substituting in equation 12, equations of stress
Cartesian components are given in terms of the ac- 
tual and imaginary parts of the Westergaard stress
function:

s ¶ f ¶ ¶ ¶xx y +y y= + = + =2 2 2 2/ (Re Im /W WZ Z)

Re ImZ y Z-

            s ¶ ¶yy +y x= + =2 2(Re Im /Z Z) W       (15)

Re ImZ y Z+

t ¶ ¶ ¶xy +y y x y Z= - = -2 (Re Im / Re 'Z Z)

Equations in number 15 produce stress for Z(z)
analytical functions. Besides, the stress function
may be selected to meet the corresponding boun-
dary conditions of the problem under study. The
formula provided in number 15, originally proposed 
by Westergaard, relates correctly stress singularity
to the tip of the crack. In addition, terms may be
added to correctly represent the stress field in re-
gions adjacent to the tip of the micro discontinuity.
These additional terms may be introduced in later
sections distributed with experimental methods to
measure KI. 

The typical problem in fracture mechanics, figu-
re 1a, is an infinite plate with a central crack 2a
long. The plate is subject to biaxial stress. The Z
stress function applied in order to solve this problem
is: 

                 Z z= s0 / Ö ( )z a2 2-                (16)

Substituting equation 16 in equation 15 for z ®
¥ , we obtain sxx = syy = s0 and t´xy = 0, as it is
needed to meet the boundary conditions of the
external field. On the discontinuity surface, where y
= 0 and z = x, for –a £ x £ a, Re Z = 0 and sxx =
txy = 0. It is clear that the Z stress function given in
equation 16 meets the boundary conditions on the
surface free from micro discontinuities.
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It is more convenient to relocate the point of
origin of the coordinate system and the plate at the 
tip of the micro discontinuity, figure 2.b. To tran-
slate the point of origin, z must be replaced in
equation 16 by z + a, the new function being: 

          Z = [s0(z + a) / Öz z a( )]+2             (17)

A small region near the tip of the micro discon-
tinuity, where z áá a, should then be taken into con-
sideration. As a result, equation 17 is reduced to: 

                 Z=Ö ( / )a z2 0

1
2s -                    (18)

Substituting equation 6 in equation 18: 

                   Z=Ö(a/2r)s0z-jq/2                    (19)

remembering that:

               e±jq = cos q ±  j sen q               (20)

and replacing equation 20 in equation 19, it is
proven that the actual part of Z is: 

                Re Z =Ö (a/2r)s0 cos (q/2)              (21)

Along the line of the crack, where q and y are
both equal to zero, from 21 and 13: 

                      syy = Re Z =Ö (a/2r)s0                  (22)

This result proves that syy ® ¥ stress is of a 1/Ör 
singular order as it gets closer to the tip of the mi-
cro discontinuity along the x axis. At last, equation
22 may be substituted in the following equation 

              KI = lim r®0 (Ö2prsyy)        (23)
which is the treatment in the singular stress field
introducing a known quantity as a stress intensity
factor, KI, where the coordinate system shown in
figure 2.a and syy is evaluated at the limit along the  
q = 0 line. Therefore: 

                      KI = Öp a s0                     (24)

This result proves that KI stress intensity factor
varies as a lineal function of s0 applied stress and
increases along with the length of the micro dis-
continuity as a function of Öa, as shown in figure 3.

Appli ca tion to labo ra tory tests

Usually, every theoretical solution to a physical pro- 
blem must be proven in an experimental manner.
That is why it is necessary to carry out laboratory
tests in order to verify an analytical model. In this
research, it is necessary to verify that the proposed
solution model goes in accordance with obser-
vations carried out in the laboratory. The type of
test was selected in accordance with ASTM E 399-
90 (1993) test, which is used in order to determine 
the fracture resistance value on flat strain for me-
tallic materials. During the preparation of samples
was established a structural steel with a ¾ thick-
ness (1.905 cm). The type of material used
complies with ASTM A-588 standard. Cutting and
machining of samples were carried out by water
and abrasive cutting with numerical control. Experi- 
mental design took into account a pilot sample in
accordance with ASTM requirements, then the
samples were instrumented and assayed after
Dally y Riley’s (1991) recommendations. 

The four instrumented samples were assayed in
accordance with that programmed in the experi-
mental design, based on the pre-assay test. A
metallographic treatment was carried out, which
included: sample cutting, trimming and polishing
with chemicals in order to make visible the mi-
crostructural features of the metal so that it could
be subject to observation with digital scanning
microscopy.

To apply the developed mathematical model,
the elliptical and hyperbolic equations presented by 
micro discontinuities found during the microscopy
session must be established. This has been possi-
ble generating a scale grid on the digital photo-
graphs obtained with the microscope, in order re-
cord the behavior of every micro discontinuity.
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Coordinates were recorded by scaling each pho-
tograph, tracing the contour of the micro discon-
tinuity, placing a reference point of origin and
tracing vertical and horizontal lines, depending on
the shape of the micro discontinuity, at equal dis-
tances (similar to way a seismograph makes re-
cords), to read coordinates and create graphs u-
sing any type of spreadsheet, and determine the
ideal equation for every micro discontinuity.

Ideal equa tions of various micro
discon ti nu ities

From all micro fractures observed in samples
studied, it was decided to analyze those shown in
figures 12 and 13 (Arteaga and Casanova, 2005),
because they appear clearly in photographs. In
figure 4, upper left corner, shows the generation of
a micro discontinuity perpendicular to the horizon-
tal fissure. 

This perpendicular micro discontinuity shows
that its behavior coincides with the mathe- matical
model shown in figure 1. The spreadsheet in figure
5 shows the tracing of these two micro
discontinuities as well as the ideal behavior of the  

x y2

2

2

214 0 3645
1+ =

æ

è
ç

ö

ø
÷

.

ellipse (with dotted lines) governing the behavior of
the lower micro discontinuity.

Figure 7 is the graphic representation of the
image in figure 6. It was not possible to establish
the ideal equation or behavior equation for this mi-
cro discontinuity, because its starting point coin-
cides with the upper boundary of the notch, as
shown in the figure. Therefore, it is not possible to
obtain reference parameters, which renders it vir-
tually impossible to establish their equation without 
resorting to a greater number of suppositions,
which could lead to obtaining incorrect data
regarding the behavior of such micro fracture. 
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Stress intensity factors KI  
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                                                                a=4 
                                            a=9 
 
     
                                                                                         
 
             a=1 
 
 
 
                                       
                                    applied stress s0 

Figure 3. K I I stress inten sity factor as func tion of 0 applied stress applied with breakage length a as a param eter [2]
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Figure 4. Ellip tical micro discon ti nuity and gener a tion of the micro discon ti nuity perpen dic ular to such, with prob able 

hyper bolic behavior
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Figure 5. Graphic repre sen ta tion of micro discon ti nu ities shown in figure 4
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Figure 6. Fractal micro discon ti nuity
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Figure 7. Graphic repre sen ta tion of the discon ti nuity shown in figure 6



Figure 8 shows a micro fracture in sample number
three, which has an elliptical behavior, while figure
9 shows its graphic representation. This micro frac- 
ture appeared on its own, without any hyperbolic
behavior micro fractures. Figure 10 shows a series
of micro fractures appearing in sample number one 
in an intergranular manner.

This figure shows generation of an elliptical
micro fracture and the branches of hyperbolic mi-
cro fractures. Their ideal or particular equations we-
re calculated, equations in number 15 were calcu-
lated afterwards. Figure 11 shows their graphic
representation. On the other hand, figure 12 shows 
the left branch of the hyperbolic micro fracture, its
ideal mirror, and the elliptical micro fracture and its 
ideal equation given by

x y2

2

2

21 0 398
1+ =

.

Figure 13 shows the hyperbolic micro disconti-
nuity with its two branches, the ideal mirror and the 
line of asymptotes needed to establish the equa-
tion of such hyperbola. Finally, figure 14 shows the
left branch of the hyperbolic micro discontinuity

and the hyperbolic function graph representing the
ideal behavior of the micro fracture accompanied
by its asymptotes.

Calculation of stress on micro discontinuities in
terms of the actual and imaginary parts of the
Westergaard stress function, equation 15, uses e-
quations obtained from the elliptical and hyperbolic 
representation of micro discontinuities shown in
figure 10. Therefore, the equations of the ellipse
and hyperbola to be transformed to the complex
plane are, respectively:

x y2

2

2

21 0 398
1+ =

.
and                                                            (25)

x y2

2

2

20 633 1 218
1

. .
- =

where a =1, b = 0.398 y c = 0.9174. The sx = s0

applied stress is:

sx = 8,333 kg/cm2 = s0

The measured value of the r radius is equal to
0.79993, i.e.: a = b = 2.00083 * 0.398 = r. 
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Figure 8. Ellip tical micro discon ti nuity of sample number three
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Figure 9. Graphic repre sen ta tion of the micro discon ti nuity in figure 8

 

Figure 10. Hyper bolic and ellip tical micro discon ti nu ities in sample number one
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Figure 12. Left hyper bolic branch, ideal mirror, ellip tical micro frac ture and ideal repre sen ta tion given by 
x y2
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Figure 14. Left hyper bolic branch with ideal hyper bolic behavior line given by 
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Stress and actual stress inten sity factors 
based on the complex variable model 

To calculate the equation of the micro fracture, the
following is substituted in equation 1: 

x = 0.9174 * cosh 1 * cos 5p/6

& 

y = 0.9174 * senh 1 * sen 5/p6(*)

a = 0.9174 cosh 1=  2.004

&

b = 0.9174 senh 1 = 1.1624

we must remember that x0 = 1, is the starting
point of the micro fracture and that the equation of
the ellipse is: 

x

c h

y

c h

2

2 2

2

2 2cos sinx x
+   

or
x y2 2

2 004 1 1624. .
+  

Theoretically, the sh stress around the micro-
hole under study is: 

 s h = s 0 0 e2x
2[ásin h 2x00(1 – e -2 0x

-20) / cos h 20 x0 – 

cos 2hñ – 1] 

= 8333 kg/cm2  e2x [ásin h 2(1 – e -2
-2) / cos h 2 – 

cos(5.236)ñ –1] = -10,050 kg/cm2

2

The sh stress boundary is a maximum at the end 
of the major axis when cos 2h = 1; in this case:
cos(10/6) = 0.5000106. 

To calculate sqq= s0(1 + 2cos 2q) radial stress, 
the value of the q angle on the upper branch has
been measured directly from graph 12, this angle
being 60°, thus: 

s qq =8,333kg /cm2 (1+2 cos(120)) = 0 kg/cm2

2

On the lower branch, q value is 30°, thus:  

s qq =8,333kg /cm2 (1+2 cos(60)) 

= 16,666 kg/cm2

2

Therefore, the  function is: 

Z z re rej j( ) / [ / ]= + -1 2 1q q

= +æ

è
ç

ö

ø
÷ - +æ

è
ç

ö

ø
÷1 2

1
1 2

1
/ cos / sin

r
r j

r
rq q

For =60°

Z(z) = ½ (1/0.8  +  0.8) cos 60 – ½ j (1/0.8 

–  0.8) sin 60  = 1.025 cos 60 – 0.225 j sin 60 

and the equation of the micro ellipse with
semi-axes a = 1.025 and b = 0.225 is: 

1 025 2

1 0506

0 225 2

0 0506

. cos

.

. sin

.

q q
+ =1

and

0 9756 4 4466 12 2. cos . sinq q+ =

For q =30°

Z(z) = 1.025 cos 30 – 0.225 j sin 30

Equations for stress Cartesian components in
terms of the actual and imaginary parts of the
stress function are: 

Re cos |Z
a

r
= æ

è
ç

ö

ø
÷ × æ

è
ç

ö

ø
÷ =

2 2
0 60s

q
q

1

2 0 8
8333 30 5 705 215 2

×

æ

è
ç

ö

ø
÷× =

.
. cos( ) , . kg / cm

and
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Re cos |Z
a

r
= æ

è
ç

ö

ø
÷ × æ

è
ç

ö

ø
÷ =

2 2
0 30s

q
q

1

2 0 8
8333 15 6 363 34 2

×

æ

è
ç

ö

ø
÷× =

.
. cos( ) , . kg / cm

Along the line where q and y are both zero, we
obtain:

s syy Z
a

r
Z= = æ

è
ç

ö

ø
÷ × =Re Re

2
0

1

2 0 8
833 6 587 8 2

×

æ

è
ç

ö

ø
÷ =

.
. , . kg / cm

and its stress intensity factor is: 

k aI = × × =p s0  1.7725 * 8,333 kg/cm2 

= 14,769.86 kg/cm3/2 

It must be noticed that, when observing figure
14 and comparing it with figure 1, becomes evi-
dent that a branch of the hyperbola has an angle
such as that of the fracture under study, namely
60º, and that radial stress value is zero. This hap-
pens because when this hyperbola exists, the tip of 
the crack has disappeared and stress begins to be
distributed over a much greater surface, leading to
a decrease of such value and bringing about a
change of sign. It may also be observed that, the
smaller the hyperbola branch angle is, the greater
the stress will be, which will tend to increase the
closer the stress gets to zero (which means that it
gets closer to the tip of the fracture), confirming
the singularity of the stress at the tip of the frac-
ture. 

Conclu sions

In micro fracture in figure 12 may be observed that
the expansion of the crack at micrometric levels
behaves in a fractal manner. Its equation is not

presented. The distribution of particles close to the
tip of the Chevron-type notch is circular in the well
defined area of the plastic zone, which shows that
the probe was subject to a high stress concen-
tration. Applying the complex variable theory pro-
vides a complete view of the complexity of the
theoretical problem involved. The w = (z) = ½(z +
1/z) function transforms biunivocally both the
inside and the outside of the unit circle on the
outside of the second case –1 £ u £ 1 of the actual 
axis. It may be observed that, when there is a micro 
fracture that has already taken a hyperbolic shape
and when the angle of some of its branches is 60º
to the horizontal, the stress value is zero. Com-
paring the values of stress intensity factors taken at 
the laboratory and the theoretical results obtained,
it may be ascertained that experimental values are
the result of the overall effect of the test on the
probe.
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