
INGENIERÍA Investigación y Tecnología VII. 1. 45-55, 2006
(artículo arbitrado)

Diseño de un programa en Logo para calcular
flujos máximos en redes

M.A. Murray-Lasso
Unidad de Enseñanza Auxiliada por Computadora

Departamento de Ingeniería de Sistemas, División de Ingeniería Mecánica e Industrial
Facultad de Ingeniería, UNAM

E-mail: mamurray@servidor.unam.mx

(recibido: agosto de 2004; aceptado: diciembre de 2004)

Resumen
Se muestran los pormenores del diseño de un programa Logo para calcular flujos máxi-
mos entre pares de puntos sobre redes orientadas, cuyas ramas tienen un límite supe rior
al flujo que puede circular por ellas. Para el diseño del programa se utilizan Listas, que es la

única estructura de datos soportada por Logo, pero que es muy adecuada para repre-
sentar y manipular redes que no están muy densamente conectadas, que es el caso más
frecuente en redes de flujo. Dado que Logo no soporta arreglos, y éstos resultan conve-

nientes en el programa, se muestra la manera de implementarlos utilizando la flexibilidad
de Logo en el manejo de los nombres de las vari ables. También se proporcionan listas de
programas en Logo Writer que implementan los algoritmos de etiquetado de Ford y

Fulkerson. Como apoyo a la docencia se incluyen rutinas que se pueden utilizar como
instrumentos que le permiten al maestro y alumno seguir las variaciones de las estructuras
durante el proceso. Finalmente, se resuelven en detalle dos ejemplos ilustrativos.

Descriptores: Logo, flujos máximos, algoritmos de etiquetado, listas, arreglos.

Abstract
The de tails of the de sign of a Logo pro gram to cal cu late max i mum flows be tween pairs of points in ori -
ented net works with branches hav ing up per lim its to flow are presented. For the de sign Lists, which are

the only data structures sup ported by Logo, but which are quite ap pro pri ate to rep re sent and han dle
net works not densely con nected, the most com mon case in flow net works are uti lised. Since Logo does
not sup port ar rays and they are con ve nient in the pro gram, it is shown how to im ple ment them tak ing

ad van tage of the flex i bil ity of Logo in the han dling of the names of vari ables. List ings of Logo Writer
pro grams im ple ment ing the la bel ling al go rithms of Ford and Fulkerson are pro vided. As teach ing aids,
rou tines that can be used as in stru ments to al low teach ers and stu dents to fol low the vari a tions in the

struc tures dur ing the pro cess, are also pro vided. Two ilustrative ex am ples are solved in de t ail.

Key words: Logo, max i mum flows, la bel ling al go rithms, lists, ar rays.

Introducción

El lenguaje Logo es uno de los lenguajes educa-
tivos diseñados para la enseñanza, incluyendo la
enseñanza de la programación. Se ha popularizado
entre los mae stros de educación básica y media por
tener entradas fáciles al lenguaje que permiten estar
programando desde la primera sesión. El lenguaje

generalmente funciona como un intérprete, no tie-
ne instrucción GOTO, es altamente estructurado,
favorece la creación de procedimientos que se
comunican entre sí y el uso de la recursión. El len-
guaje fue creado entre la empresa Bolt, Beranek y
Newman y el Grupo de Inteligencia Ar ti fi cial del MIT
(Instituto Tecnológico de Mas sa chu setts) y es un
derivado del LISP. Tiene suficientes diferencias

comparado con lenguajes como BASIC, Pascal y C
que orilla al programador a pensar con un estilo
diferente. Su prin ci pal (y en muchas versiones, su
única) estructura de datos, es la Lista, a la cual se
espera se le agreguen y eliminen los elementos
exclusivamente en su principio y en su final. El
lenguaje Logo ha adquirido la reputación de ser un
lenguaje de programación para niños; sin em bargo,
el poderío del lenguaje es igual al de cualquier otro
lenguaje de programación; lo que pasa es que mu-
chos libros se concentran en (y en algunos casos se
limitan a) las instrucciones elementales para dibujar
con la tortuga y casi no tratan las porciones “avan-
zadas” del lenguaje como el manejo no triv ial de
listas y la recursión no triv ial.

En este artículo se diseña un programa para el
cálculo del flujo máximo en una red, el cual re-
quiere las porciones avanzadas del lenguaje. En el
programa diseñado se implementan lo que equi-
vale a vectores de listas y arreglos bidimensionales
(no obstante que el lenguaje no los soporta), los
cuales permiten el manejo eficiente de la memoria
para redes poco densamente conectadas, que son
la regla, más que la excepción en las aplicaciones.
El propósito prin ci pal de este trabajo es mostrar
las par tes avanzadas del lenguaje Logo en un
contexto de aplicación a un caso específico, en
vez de hacerlo con el estilo de un man ual,
ilustrando con ejemplos muy cortos el uso de cada
instrucción y estructura de datos.

Algoritmo de etiquetado de Ford y
Fulkerson para el cálculo del flujo

máximo de una red

Entre los principales pioneros de la disciplina de
flujos en redes están Ford y Fulkerson (1962), quie-
nes dieron un algoritmo para calcular el flujo máxi-
mo que puede fluir entre un nodo origen y un nodo
destino en una red orientada cuyas ramas tienen
una capacidad máxima de flujo. Una típica red es la
que se muestra en la figura 1, la cual utilizaremos
como ejemplo du rante el artículo. En la red de la
figura 1 se han numerado consecutivamente los
nodos; las cantidades junto a las flechas denotan
la capacidad máxima de flujo en la dirección de la
flecha de la rama correspondiente. El nodo 1 es el
nodo origen al cual se le inyecta un flujo que sale
por el nodo destino 6. El algoritmo de Ford y
Fulkerson es un algoritmo de etiquetado.

Si llamamos a los nodos i, j, k, ..., s , t , ... (al nodo
fuente de donde parte el flujo hacia el resto de la
red le llamamos s y al nodo destino al que llega el
flujo del resto de la red le llamamos t); al flujo en la
rama (i, j), le llamamos xij, y a la capacidad de la
rama (i, j), uij, entonces el algoritmo es como sigue
(Ford y Fulkerson, 1962):

Du rante la rutina A, cada nodo está en uno de
tres estados: no-etiquetado, etiquetado y no-ras-
treado, o etiquetado y rastreado. Al principio to-
dos los nodos están en el estado no-etiquetado.

Rutina A (proceso de etiquetado)

Primero, la fuente s recibe la etiqueta (*+,ε (s) =
∞). (La fuente s está ahora etiquetada y no-ras-
treada; todos los demás nodos están no-etique-
tados.) En el paso gen eral seleccione cualquier
nodo etiquetado y no-rastreado i. Supóngase que
su etiqueta es (z ±,ε (i)). A todos los nodos j que
están no-etiquetados y tales que el flujo xij < ui j,
asígnele la etiqueta (i+,ε (j)), donde

 e e() [(),]j i u xij ij= -min (1)

(Dichas nodos j ahora están etiquetados y no-
rastreados). A todos los nodos j que ahora están
no-etiquetados, y tales que xji > 0, asígneles la
etiqueta (i–,ε (j)), donde

 e e() [(),]j i x ji=min (2)

(Los nodos j ahora están etiquetados y no-ras-
treados; i está etiquetado y rastreado).

Repítase el paso gen eral hasta que una de dos:
el nodo destino t esté etiquetado y no-rastreado

46 INGENIERIA Investigación y Tecnología FI-UNAM

Diseño de un programa en Logo para calcular flujos máximos en redes

1

2

3

4

5

6

6

1

2

23

3 8
8

7

Figura 1.

o hasta que no sea posible asignar más etiquetas
estando el nodo destino t no-etiquetado. En el
primer caso ejecute la rutina B, en el segundo caso
termina el algoritmo.

Rutina B (cambio de flujo)

El nodo destino t ha recibido la etiqueta (j±,ε (t)).
Si t está etiquetado (j+,ε (t)), reemplace x jt por
xjt+ε (t); si t está etiquetada (j– ,ε (t)) reemplace x tj

por xt j –ε (t). En cualquier caso, en seguida hay que
ponerle atención al nodo j. En gen eral, si j está
etiquetado (i+,ε (i)) reemplace xij por xij + ε (t); y si
está etiquetado (x–,ε (j)) reemplace xji por xji – ε (t) y
siga con el nodo i . Continúe de la misma manera
hasta que alcance el nodo s. Elimine las etiquetas y
regrese a la Rutina A.

El proceso de etiquetado es una búsqueda
sistemática de una vereda aumentante del flujo del
origen s al destino t. Se lleva información en las
etiquetas de modo que cuando se etiqueta al
destino t (al evento se le llama perforación), se
pueden cambiar los flujos con facilidad. Si por otra
parte, la Rutina A termina y el nodo destino t no ha
sido etiquetado (no-perforación), el flujo es máxi-
mo y los arcos que van de los nodos etiquetados a
los nodos no-etiquetados son un corte mínimo,
cuyo valor es igual a la suma de las capacidades de
las ramas que parten de un nodo etiquetado y
llegan a un nodo no-etiquetado.

Descripción de la red para uso
interno de la computadora

Hay varias maneras de describir una red para uso
interno en la computadora. Para redes densa-
mente conectadas una descripción eficiente invo-
lucra la matriz de incidencia (Ahuja et al., 1993). Dadas
las características de Logo, se utilizarán las listas
de predecesores y sucesores* de cada nodo. La ventaja
de esta descripción es que solamente se utiliza la
memoria requerida para las ramas existentes y no
para todas las posibles, además de que se adapta
muy bien a la estructura de datos lista con la que
cuenta el lenguaje Logo. En vez de explicar la
descripción en abstracto, es más fácil explicarla
ejemplificando para la red de la figura 1. La red de
la misma figura queda completamente especifi-
cada si se da:

1. El número de nodos.

2. El número de ramas.

3. El número del nodo origen.

4. El número del nodo destino.

5. Para cada rama de la red se da el no-
do inicial, el nodo final y la capacidad má-
xima de flujo de la rama. Estas cantidades se
pueden meter a una lista y darse en el orden
descrito.

Así, para la red de la figura 1 dicha lista es:

[6 9 1 6 1 3 3 1 2 7 2 3 1 2 4 6 3 5 8 4 3 3 4 6 2 5 4 2
5 6 8]

Estructuras de datos para los
sucesores y predecesores

Para aplicar el algoritmo de Ford y Fulkerson se
necesita recorrer uno a uno los sucesores y pre-
decesores de un nodo, como paso preliminar se
armarán listas de predecesores y sucesores para
cada uno de los nodos. Para ello, se utilizará un
vec tor (arreglo unidimensional) con una compo-
nente por nodo, cuyas componentes son listas de
sucesores o predecesores. El lenguaje Logo no
maneja arreglos; la manera como se implemen-
tarán los vectores es creando vari ables indivi-
duales con nombres que incluyan los índices. Así
por ejemplo, llamamos suc1 a la primera compo-
nente, suc2 a la segunda, ... , suc6 a la sexta, si
queremos manejar un vec tor suc(i), i = 1, ... , 6.
Cada una de estas componentes será una lista con
los sucesores del nodo, cuyo índice es el número
al final del nombre. Esta estratagema, que sería im-
práctica manejarla en lenguajes como BASIC, Pas-
cal o C, es práctica en Logo porque se puede
manipular el nombre de la vari able nombre en la
instrucción

da nombre valor

 Vol.VII No.1 -enero-marzo- 2006 47

M.A. Murray-Lasso

* Son sucesores de un nodo i los nodos j a los que se puede llegar

partiendo de i, viajando por una sola rama en el sentido de su
flecha. Son predecesores de un nodo i los nodos j a los que se

puede llegar partiendo de i viajando por una sola rama en el
sentido contrario a su flecha.

En Logo nombre se puede construir por medio de
otras instrucciones. Por ejemplo, en vez de nombre
se puede escribir

(palabra “suc :indice)

y palabra se construye con las letras suc concate-
nadas con las cifras del valor (:) de indice. La
estratagema que se de scribe es equivalente a que
en los lenguajes BASIC, Pascal o C se tuvieran
instrucciones de asignación del siguiente tipo:

“suc” + índice := expresión

aquí del lado izquierdo de la asignación se está
construyendo el nombre de la vari able por conca-
tenación. Esta instrucción no existe en los lengua-
jes mencionados, ya que en los tres se requiere
que del lado izquierdo de una asignación aparezca
literalmente el nombre legal de una vari able.

Esta posibilidad existente en Logo (y en LISP)
permite el estratagema para manejar arreglos sin
que el lenguaje los soporte por medio de nom-
bres adecuadamente seleccionados de vari ables
simples.

El siguiente procedimiento suc utiliza la estra-
tagema indicada para construir el arreglo de
sucesores de los nodos.

para suc :datos
si vacia? :datos [alto]
da (palabra “suc pr :datos) pul pr mpr
:datos cosa (palabra ”suc pr :datos)
da (palabra “f pr :datos ”, pr mpr :datos) 0
da (palabra “u pr :datos ”, pr mpr :datos)
pr mpr mpr :datos
suc mpr mpr mpr :datos
fin

Antes de ejecutar suc (en el procedimiento
datos que se muestra más abajo) se le quitan a la
lista datos (que se le pasa como parámetro al
procedimiento suc), los cuatro primeros números,
de modo que en datos se tiene para cada rama un
trío con el nodo inicial, el nodo final y la capacidad
de flujo máxima de la rama. La segunda línea de
suc detiene el procedimiento (alto) cuando se
vacía la lista datos, con lo cual se detiene la

recursión de la última línea de suc, ya que el
procedimiento se llama a sí mismo en la última línea.
En la tercera línea de suc se le asigna (da) a la lista
cuyo nombre (palabra) está formado por la conca-
tenación de suc con el primer elemento (pr) de la
lista datos, lo que se forma al agregar al final (pul) el
segundo elemento (pr mpr) de datos al resultado
(cosa) del objeto cuyo nombre (palabra) es “suc
concatenada con el primer elemento de datos.

En las líneas 4 y 5 de suc se aprovecha que ya
se está recorriendo la lista datos para formar e
inicializar dos arreglos bidimensionales de flujos y
capacidades de flujo máximo en las ramas. Se
emplea la misma estratagema de ponerle a varia-
bles individuales nombres que incluyen los dos
índices separados por una coma. A los flujos se le
inicializa con ceros y a las capacidades se les
ponen los valores tomados de la lista datos.

Todo lo que se especifica en el procedimiento
suc se hace con los primeros tres elementos de la
lista datos. Para hacer las operaciones con todos
los demás se hace una llamada recursiva en la
sexta línea cambiando el parámetro datos por la
misma lista, a la cual se le eliminan sus primeros
tres elementos. Esto se hace con la instrucción mpr
que significa menosprimero, cuyo efecto sobre una
lista es eliminar el primer elemento. Al aplicar la
instrucción tres veces, el efecto es eliminar el
primer trío de elementos.

En forma sim i lar a como se procedió para for-
mar el arreglo de sucesores, se forma un arreglo de
predecesores con el procedimiento pred.

para pred :datos
si vacia? :datos [alto]
da (palabra “pred pr mpr :datos) pul pr
:datos cosa (palabra ”pred pr mpr :datos)
pred mpr mpr mpr :datos
fin

Procedimientos preliminares
para introducir datos e inicializar

arreglos

Antes de llamar a suc y pred se ejecuta el
procedimiento datos, cuya función es inicializar
la lista datos que de scribe la red, luego tomar los

48 INGENIERIA Investigación y Tecnología FI-UNAM

Diseño de un programa en Logo para calcular flujos máximos en redes

primeros cuatro elementos de la lista orig i nal
datos, asignarle los primeros cuatro valores a las
vari ables globales nn, nr, ni, nf que representan
el número de nodos, número de ramas, nodo
inicial (origen) y nodo final (destino) respec-
tivamente, y eliminar estos cuatro elementos de
la lista para que en la lista datos (que es un objeto
global) queden exclusivamente los tríos de las
ramas.

para datos
da “datos [6 9 1 6 1 3 3 1 2 7 2 3 1 2 4 6 3 5
8 4 3 3 4 6 2 5 4 2 5 6 8]
da “nn pr :datos
da “nr pr mpr :datos
da “ni pr mpr mpr :datos
da “nf pr mpr mpr mpr :datos
da “datos mpr mpr mpr mpr :datos
fin

A continuación con initetiq se inicializan las
etiquetas, todas con (0, 0), excepto el nodo origen
que recibirá la etiqueta (* +, 9999). El número 9999
es el número más grande que utiliza LogoWriter y
lo usamos en vez de infinito (∞).

para initetiq :n
si :n = 0 [da (palabra “e :ni) (lista ”*+
9999) alto]
da (palabra “e :n) [0 0]
initetiq :n - 1
fin

Nótese como en initetiq el cambio de
índices se logra con una llamada recursiva. El
número de nodos se le proporciona al
procedimiento por medio del parámetro n. Para
inicializar los “arreglos” de listas de prede-
cesores y sucesores se ejecuta el procedi-
miento initpredsuc, en el cual todas las listas
iniciales están vacías.

para initpredsuc
da “n 1 repite :nn [da (palabra ”suc :n) []
da (palabra “pred :n) [] da ”n :n + 1]
fin

Como se indicó antes, los “arreglos” f y u para
los flujos en las ramas y las capacidades de flujo
máximas, se inicializan en el procedimiento suc.

Procedimientos principales para
calcular el flujo máximo

Ahora se diseñarán los procedimientos principales
para implementar el algoritmo de Ford y Fulkerson
para el cálculo del flujo máximo. Se utilizan cuatro
procedimientos : flujo, etiqsuc, etiqpred, incflujo.
El primero hace la prueba para determinar si ya se
ha alcanzado el flujo máximo, borra las etiquetas al
final de cada perforación y reinicializa un nuevo
intento para encontrar una vereda que aumente el
flujo y lleva el con trol de la lista de los nodos
etiquetados y rastreados. Los dos siguientes proce-
dimientos (etiqsuc y etiqpred) realizan el proceso
de etiquetar a todos los sucesores y predecesores
del nodo al que se le está dando servicio en la lista
de nodos etiquetados y no rastreados. El proce-
dimiento incflujo hace las operaciones necesarias
para incrementar el flujo en las ramas adecuadas
cuando hay una perforación.

Para llevar cuenta en la computadora de
cuáles nodos están etiquetados y no rastreados
y cuáles están etiquetados y rastreados, se
utilizan dos listas: la que almacena para cada
perforación los nodos etiquetados y rastreados
se llama ee y es un objeto global. La que al-
macena en cada perforación los nodos etique-
tados y no rastreados se llama lista, se le pasa
como parámetro al procedimiento flujo y está
vigente en la ejecución de los tres proce-
dimientos etiqsuc, etiqpred e incflujo. A los
elementos almacenados en lista se les va dando
servicio para entonces, desde ellos etiquetar
sucesores y predecesores. Para que un nodo se
etiquete es necesario que no esté etiquetado, es
decir, que no sea miembro ni de ee ni de lista. Una
vez que desde un nodo se etiquetan sucesores y
predecesores, al nodo se le elimina de lista y se le
agrega a ee. Para eliminarlo se llama recursiva-
mente a los procedimientos etiqsuc y etiqpred
con el argumento mpr lista en vez de lista. Para
agregar un nodo al final de una lista se utiliza la
instrucción de Logo pul elemento lista.

para flujo :lista
si (y vacia? :lista no (ul cosa (palabra “e
:nf)) > 0) [resultados altotodo]
si vacia? :lista [initetiq :nn da “ee []
flujo (lista :ni)]

 Vol.VII No.1 -enero-marzo- 2006 49

M.A. Murray-Lasso

etiqsuc cosa (palabra “suc pr :lista) pr
:lista
etiqpred cosa (palabra “pred pr :lista) pr
:lista
da “ee pul pr :lista :ee
flujo mpr :lista
fin

para etiqsuc :x :n
si vacia? :x [alto]
si (y ((cosa (palabra “u :n ”, pr :x)) -
(cosa (palabra “f :n ”, pr :x))) > 0 no
miembro? pr :x :lista no miembro? pr :x
:ee) [da (palabra “e pr :x) (lista (palabra
:n ”+) (min ul cosa (palabra “e :n) (cosa
(palabra ”u :n “, pr :x)) - (cosa (palabra
”f :n “, pr :x)))) da ”lista pul pr :x
:lista]
si (ul cosa (palabra “e :nf)) > 0 [incflujo
:nf ul cosa (palabra ”e :nf) initetiq :nn
da “ee [] flujo (lista :ni) alto]
etiqsuc mpr :x :n
fin

para etiqpred :y :m
si vacia? :y [alto]
si (y (cosa (palabra “f pr :y ”, :m)) > 0 no
miembro? pr :y :lista no miembro? pr :y :ee)
[da (palabra “e pr :y) (lista (palabra :m
”-) (min ul cosa (palabra “e :m) (cosa
(palabra ”f pr :y “, :m)))) da ”lista pul pr
:y :lista]
si (ul cosa (palabra “e :nf)) > 0 [incflujo
:nf ul cosa (palabra ”e :nf) initetiq :nn
da “ee [] flujo (lista :ni) alto]
etiqpred mpr :y :m
fin

para incflujo :nnn :ff
si :nnn = :ni [alto]
si (ul pr cosa (palabra “e :nnn)) = ”+ [da
(palabra “f mul pr cosa (palabra ”e :nnn) “,
:nnn) :ff + cosa (palabra ”f mul pr cosa
(palabra “e :nnn) ”, :nnn)]
si (ul pr cosa (palabra “e :nnn)) = ”- [da
(palabra “f :nnn ”, mul pr cosa (palabra “e
:nnn)) cosa (palabra ”f :nnn “, mul pr
cosa (palabra ”e :nnn)) - :ff]
incflujo mul pr cosa (palabra “e :nnn) :ff
fin

En los procedimientos etiqsuc y etiqpred se
utiliza la función min, ya que el algoritmo de
Ford y Fulkerson lo requiere. La función min
reporta (o regresa) el mínimo de sus dos argu-
mentos numéricos. Como LogoWriter no cuenta
con esta función, ésta se ha implementado
como sigue:

para min :a :b
si :a < :b [re :a]
re :b
fin

El procedimiento etiqsuc etiqueta a los
sucesores del nodo al que se está dando servicio
en la lista ; etiqpred hace lo correspondiente para
los predecesores. Detecta cuando el nodo destino
recibe una etiqueta y llama al procedimiento
incflujo cuando esto sucede. Controla que al
regreso de esta llamada se borren y reinicialicen la
lista ee, asi como las etiquetas, y se llame de nuevo
al procedimiento flujo para dar servicio al primer
elemento en la lista. El procedimiento incflujo se
encarga de incrementar (o decrementar cuando la
primera parte de la etiqueta tiene signo menos) los
flujos en todas las ramas que forman una vereda
del origen al destino. Para encontrar la vereda en
sentido contrario, comenzando con el destino, se
va fijando en las primeras par tes de los nodos,
cada una de las cuales apuntan al nodo eti-
quetador.

Arranque del programa y generación
de resultados

En los procedimientos ff y calc se hacen las
llamadas a los procedimientos que arrancan todo
el proceso para calcular los flujos máximos. El
procedimiento ff finalmente llama a los proce-
dimientos datos, initpredsuc, suc, pred y calc.
Todos, menos calc, han sido explicados an-
teriormente. El procedimiento calc inicializa la
lista ee, llama al procedimiento que inicializa los
“arreglos” de etiquetas y para arrancar los cálculos
de flujo máximo, finalmente llama al procedi-
miento flujo para realizar los cálculos. En la
llamada a flujo utiliza como parámetro lista, la
misma que cuenta con un solo elemento consis-
tente en el nodo origen de la red, ni. Cuando la

50 INGENIERIA Investigación y Tecnología FI-UNAM

Diseño de un programa en Logo para calcular flujos máximos en redes

llamada a flujo se detiene, se llama al procedi-
miento resultados , que imprime los flujos en las
ramas que producen el flujo máximo, dando para
cada rama de la red su nodo inicial, final y el valor
del flujo en la rama, así como el valor del flujo
máximo entre el nodo origen, destino y los nodos
que especifican el corte mínimo. Para calcular los
flujos máximos entre un par de nodos en una red,
el usuario solamente debe, desde el ed i tor de
procedimientos de LogoWriter, colocar en el
procedimiento datos la lista que de scribe la red y
desde el centro de mandos teclear ff seguido de la
tecla de re torno. A continuación, se muestran los
procedimientos ff, calc y resultados .

para ff
datos
initpredsuc
suc :datos
pred :datos
calc
fin

para calc
da “ee []
initetiq :nn
flujo (lista :ni)
fin

para resultados
datos
(es “RESULTADOS) (es ”) (inserta “I) tab
(inserta ”F) tab (es “flujo) (es ”)

da “fff 0 repite :nr [(inserta pr :datos)
tab (inserta pr mpr :datos) tab (es cosa
(palabra ”f pr :datos “, pr mpr :datos))
si (pr :datos) = :ni [da ”fff :fff + cosa
(palabra “f pr :datos ”, pr mpr :datos)] da
“datos mpr mpr mpr :datos]
(es “) (es ”|FLUJO MAXIMO DE| :ni “A :nf ”=
:fff)
(es “) (es ”|CORTE MINIMO {S} =| :ee)
fin

Ahora se muestra lo que producen los programas
con la información del listado de datos que se
anotó arriba, el cual corresponde a la red de la
figura 1. El resultado se logra tecleando en el centro
de mandos ff seguido de la tecla de re torno.

RESULTADOS

I F flujo

1 3 3
1 2 6
2 3 1
2 4 5
3 5 7
4 3 3
4 6 2
5 4 0
5 6 7

FLUJO MAXIMO DE 1 A 6 = 7
CORTE MINIMO {S} = 1 2 4

 Vol.VII No.1 -enero-marzo- 2006 51

M.A. Murray-Lasso

1

2

4
7

10

11

8

8
7

6 61 1

20

14
16

4

7

17

3

5

8

6

9

12

1 3

8

7

7
4

5

9

12

17

1013

17

12
14

6

9

3

Figura 2.

Ejemplo adicional

Para probar el programa con una red un poco
mayor, se resolverá un ejemplo tomado de (Jensen
y Barnes, 1980). La red se muestra en la figura 2.
Junto a cada rama aparecen sus capacidades de
flujo máximas. Si se toma como nodo origen el
nodo 1 y como nodo destino el 13, notamos que
la red tiene 13 nodos y 28 ramas. La
representación de la red en forma de lista es la
siguiente:

[13 28 1 13 1 2 6 1 3 8 1 4 8 1 5 20 2 7 7 2 9
7 2 13 4 3 2 3 3 7 12 4 3 7 5 4 4 5 6 17 5 7
14 6 10 17 6 12 8 7 6 16 7 9 5 7 10 13 8 2 11
8 7 7 8 9 6 9 13 17 10 9 12 10 11 10 10 13 14
11 12 9 11 13 9 12 13 6]

Esta lista se in tro duce en el procedimiento
datos con la instrucción da “datos lista, ya sea
en vez de la que actualmente aparece o a conti-
nuación (pues en este último caso la asignación
simplemente sobreescribe en lista lo dejado por la
an te rior instrucción). Luego se teclea ff seguido
de la tecla de re torno. Los resultados que se
obtienen se muestran a continuación.

RESULTADOS

I F flujo

1 2 6
1 3 8
1 4 7
1 5 20
2 7 0
2 9 5
2 13 4
3 2 3
3 7 12
4 3 7
5 4 0
5 6 17
5 7 3
6 10 14
6 12 6
7 6 3
7 9 5
7 10 7
8 2 0

8 7 0
8 9 0
9 13 17
10 9 7
10 11 0
10 13 14
11 12 0
11 13 0
12 13 6

FLUJO MAXIMO DE 1 A 13 = 41

CORTE MINIMO {S} = 1 4

Revisando los resultados constatamos:

1) que se satisfacen los límites máximos sobre
todos los flujos,

2) que se satisface la Ley de Conservación de
Flujos de Kirchhoff en cada uno de los nodos
habiendo un exceso de flujo que sale del nodo
origen igual al exceso de flujo que llega al nodo
destino, ambos con valor igual a la capacidad o
valor del corte mínimo, el cual corresponde a las
ramas que atraviesan la superficie gaussiana que
encierra los nodos 1 y 4. La teoría de flujos nos
dice que basta que se satisfagan las restricciones
máximas de flujo en todas las ramas, la ley de
conservación de flujo en todos los nodos y que el
flujo entre origen y destino sea igual al valor de
algún corte con respecto a origen y destino para
que dicha distribución de flujos corresponda a un
flujo máximo entre origen y destino. De esta
manera, se tiene la certeza de que la solución
producida por el programa es correcta.

Instrumentación adicional para el
programa

El programa desarrollado en este artículo tiene
propósitos educativos, por ello, conviene agre-
garle instrumentos adicionales que sean útiles en
la de teoría de flujos en redes, en gen eral y de la
enseñanza del algoritmo de Ford y Fulkerson para
el cálculo de flujos máximos, en par tic u lar. Ante
todo, conviene que el alumno pueda ver las
estructuras de datos en lugares estratégicos del
programa para comparar con lo que el alumno
haría manualmente. Algunas estructuras de datos

52 INGENIERIA Investigación y Tecnología FI-UNAM

Diseño de un programa en Logo para calcular flujos máximos en redes

no cambian du rante todo el proceso, por lo que se
pueden imprimir una vez. Este es el caso de las
listas de predecesores y sucesores y las vari ables
nn, nr, ni, nf con la cantidad de nodos, ramas, el
nodo origen y el nodo destino, así como las
capacidades máximas de flujo de las ramas y sus
nodos inicial y final.

Las cantidades que varían du rante el curso de la
aplicación del algoritmo son: las etiquetas de los
nodos, los flujos en las ramas, el flujo total entre
origen y destino.

Se utilizarán los siguientes procedimientos
auxiliares: n, p, s, c, e, f, ee, li, los cuales
imprimen respectivamente las cantidades de no-
dos, ramas, nodo inicial y final; las listas de pre-
decesores, las listas de sucesores, las capacidades
de flujo máximo en las ramas, las etiquetas de los
nodos, los flujos en las ramas obtenidos hasta el
momento y el flujo total de origen a destino ob-
tenido hasta el momento; el contenido de la lista
ee de nodos etiquetados y rastreados hasta el
momento; y el contenido de la lista lista con los
nodos etiquetados y no rastreados hasta el
momento.

Los listados de los procedimientos auxiliares
son:

para n
(es “nn “= :nn “nr “= :nr “ni “= :ni “nf “=
:nf)
fin

para p
(inserta “Nodo) tab (es “|Lista
Predecesores|)
da “i 1 repite :nn [(inserta :i) tab (es

cosa (palabra “pred :i)) da “i :i + 1]
fin

para s
(inserta “Nodo) tab (es “|Lista Sucesores|)
da “i 1 repite :nn [(inserta :i) tab (es
cosa (palabra “suc :i)) da “i :i + 1]
fin

para c
datos

(es “|Capacidades Maximas de Flujo|)
(inserta “I) tab (inserta “F) tab (es
“|capacidad máxima|)
da “i 1 repite :nr [(inserta pr :datos) tab
(inserta pr mpr :datos) tab (es cosa
(palabra “u pr :datos “, pr mpr :datos))
da “datos mpr mpr mpr :datos]
fin

para e
(es “Etiquetas)
(inserta “Nodo) tab (es “Etiqueta)
da “i 1 repite :nn [(inserta :i) tab (es

cosa (palabra “e :i)) da “i :i + 1]
fin

para f
datos
(es “|Flujos en Ramas|)
(inserta “I) tab (inserta “F) tab (es
“flujo)
repite :nr [(inserta pr :datos) tab
(inserta pr mpr :datos) tab (es cosa
(palabra “f pr :datos “, pr mpr :datos)) da

“datos mpr mpr mpr :datos]
fin

para ee
(es “ee “= :ee)
fin

para li
(es “li “= :lista)
fin

Se pueden insertar llamadas a los procedi-
mientos en lugares estratégicos del programa para
visualizar el proceso algorítmico y la manera como
cambian los resultados intermedios.

A con tinuación se in dica una posibilidad:

Llamadas a n : En el procedimiento calc in-
mediatamente antes de flujo (lista :ni)

Llamadas a p : Inmediatamente después de la
llamada a n.

Llamadas a s: Inmediatamente después de la
llamada a p.

Llamadas a c : Inmediatamente después de la
llamada a s.

 Vol.VII No.1 -enero-marzo- 2006 53

M.A. Murray-Lasso

Llamadas a e: En el procedimiento etiqsuc in-
mediatamente después del “[“ en la línea que
comienza si (ul cosa etc. En el procedimiento
etiqpred inmediatamente después del “[“ en la
línea que comienza si (ul cosa etc.

Llamadas a f: En el procedimiento incflujo in-
mediatamente después del “[“ en la segunda línea
que comienza si :nn = etc.

Llamadas a ee: En el procedimiento flujo in-
mediatamente antes de la penúltima línea que dice
flujo mpr :lista.

Llamadas a li: En el procedimiento flujo in-
mediatamente antes de la línea que comienza
etiqsuc cosa etc.

A continuación, se muestra un segmento corto
de una parte intermedia de la salida producida por
el programa cuando está instrumentado con los
procedimientos listados arriba y con las llamadas
colocadas en los lugares indicados. Los datos
corresponden al la red de la figura 2.

li = 1
ee = 1
li = 2 3 4 5
Etiquetas
Nodo Etiqueta
1 *+ 9999
2 1+ 6
3 1+ 8
4 1+ 8
5 1+ 20
6 0 0
7 2+ 6
8 0 0
9 2+ 6
10 0 0
11 0 0
12 0 0
13 2+ 4
Flujos en Ramas
I F flujo
1 2 4
1 3 0
1 4 0
1 5 0
2 7 0
2 9 0
2 13 4
3 2 0

3 7 0
4 3 0
5 4 0
5 6 0
5 7 0
6 10 0
6 12 0
7 6 0
7 9 0
7 10 0
8 2 0
8 7 0
8 9 0
9 13 0
10 9 0
10 11 0
10 13 0
11 12 0
11 13 0
12 13 0
li = 1
ee = 1
li = 2 3 4 5
ee = 1 2
li = 3 4 5 7 9
ee = 1 2 3
li = 4 5 7 9
ee = 1 2 3 4
li = 5 7 9
ee = 1 2 3 4 5
li = 7 9 6
ee = 1 2 3 4 5 7
li = 9 6 10

Conclusiones

Se ha presentado el diseño y realización de un
programa en el lenguaje Logo para el cálculo de
flujo máximo en una red orientada con capaci-
dades de flujo máximo en las ramas. El programa
se basa en el algoritmo de Ford y Fulkerson. La
estrategia encuentra veredas aumentantes de flujo
en orden de número de ramas, por lo que se puede
garantizar la eficiencia cúbica del algoritmo, a
diferencia del algoritmo orig i nal de Ford y Fulker-
son que podría tardarse un tiempo exponencial
(Ahuja et al ., 1993). Se desarrolló el programa en
Logo con el propósito de ilustrar el poderío de
dicho lenguaje en aplicaciones en las que nor mal-
mente se utilizan lenguajes como FORTRAN, Pas-

54 INGENIERIA Investigación y Tecnología FI-UNAM

Diseño de un programa en Logo para calcular flujos máximos en redes

cal, C o BASIC, los cuales soportan arreglos uni y
multidimensionales, así como algunos de ellos
(Pascal y C), listas ligadas y apuntadores. Logo no
soporta arreglos; sin em bargo, se puede implantar
el equivalente a los mismos por medio de distintas
vari ables para cada componente, incorporando los
índices en el nombre de la vari able. En el artículo
se muestra la manera de hacerlo. De esta forma, se
puede ahorrar memoria e incluir solamente las
vari ables que aparecen en la red, las cuales en
aplicaciones re ales son un porcentaje muy bajo de
las posibles. Por otra parte, los componentes de
los “arreglos” que se manejan en el artículo,
frecuentemente son listas de longitud vari able du -
rante el curso del programa, y las listas si son
estructuras de datos que maneja bien el lenguaje
Logo. En este artículo se proporciona un listado
completo del programa en LogoWriter con una
discusión detallada de su implantación y dos redes
resueltas en todo detalle. Aquí no se pretende
enseñar LogoWriter. El lector que requiera ayuda
con las instrucciones puede consultar Logo Com -
puter Sys tems Inc., 1990. Para hacer más útil el
programa en la educación, también se propor-
ciona un juego de instrumentos educativos (proce-
dimientos) para que el mae stro y estudiante pue-
dan observar el curso del algoritmo, como los
cambios en las estructuras de datos para poder
comparar con lo que se obtendría al aplicar ma-
nualmente el algoritmo de Ford y Fulkerson.

El autor espera que después de leer este artículo,
el lector quede convencido que el lenguaje Logo
no es sólo un lenguaje para niños, sino un lenguaje
completo que tiene algunas entradas simples,
desde las cuales lo pueden abordar los niños pero
que les puede servir para crecer intelectualmente y
utilizarlo el resto de su vida en aplicaciones tan
complejas como aquellas en las que utiliza otros
lenguajes de computadora.

Referencias

Ahuja R.K., Magnanti T.L. y Orlin J.B. (1993).
Network Flows: Theory, Algo rithms, and Appli ca -
tions. Prentice-Hall, Upper Saddle River, NJ.

Ford Jr. L.R. y Fulkerson D.R. (1962). Flows in
Networks. Princeton Univer sity Press,
Princeton, NJ.

Jensen P.A. y Barnes J.W. (1980). Network Flow
Programming. John Wiley & Sons, Inc., New
York, pp. 165.

Logo Computer Systems, Inc. (1990).
LogoWriter: Guía de Referencia. Macrobit
Editores, México.

Bibliografía sugerida

Cristofides N. (1975). Graph Theory an Algo -
rithmic Approach. Academic Press, Inc.,
Londres.

 Vol.VII No.1 -enero-marzo- 2006 55

M.A. Murray-Lasso

Semblanza del autor
Marco Antonio Murray-Lasso. Realizó la licenciatura en ingeniería mecánica-eléctrica en la Facultad de Ingeniería de la UNAM. E l

Instituto de Tecnología de Massachussetts (MIT) le otorgó los grados de maestro en ciencias en ingeniería eléctrica y
doctor en ciencias cibernéticas. En México, ha laborado como investigador en el Instituto de Ingeniería y como profesor en
la Facultad de Ingeniería (UNAM) durante 44 años; en el extranjero, ha sido asesor de la NASA en diseño de circuitos por

computadora para aplicaciones espaciales, investigador en los Laboratorios Bell, así como profesor de la Universidad Case
Western Reserve y Newark College of Engi neering, en los Estados Unidos. Fue el pres i dente fundador de la Academia
Nacional de Ingeniería de México; vicepresidente y pres i dente del Consejo de Academias de Ingeniería y Ciencias

Tecnológicas (organización mundial con sede en Wash ington que agrupa las Academias Nacionales de Ingeniería) y
secretario de la Academia Mexicana de Ciencias. Actualmente es jefe de la Unidad de Enseñanza Auxil iada por
Computadora de la Secretaría de Estudios de Posgrado de la Facultad de Ingeniería de la UNAM, investigador nacional,

consejero educativo del MIT y consultor de la UNESCO, así como Presidente Fundador del Consejo de Honor de la
Academia Mexicana de Ciencias, Artes, Tecnología y Humanidades.

