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Resumen
Entre la variedad de métodos disponibles para resolver problemas de valores en la
frontera se cuentan los métodos espectrales, donde la solución u(x,t) de un cierto
problema de valores en la frontera (dependiente de  una vari able espacial x y de una

variable temporal), se aproxima por una suma finita v(x,t)= a t xkk

N ( ) ( )
=∑ 0

φκ . Para este fin se

debe, por una parte,  seleccionar la clase de las funciones φk x( ), k=1, ..., N, y  por otra,
prefijar los algoritmos adecuados para el desarrollo de los coeficientes ak .

Descriptores:  Problemas de valores en la frontera, ecuaciones diferenciales en
derivadas parciales, procesamiento paralelo, métodos pseudoespectrales

Abstract
Among the meth ods available for the so lu tion of bound ary prob lems we may find the so-called spec tral

meth ods, in which the solution u (x,t) (de pend ing upon a space-like vari able x and a time-like vari able)
is ap prox i mated by a fi nite sum v(x,t) = a t xkk

N ( ) ( )
=∑ 0

φκ . In or der to have this form, on one hand, a class 

of func tions φk x( ), k=1, ..., N, has to be se lected, and on the other, the ad e quate al go rithms for the ex -
pan sion of the co ef fi cients ak must be cho sen.

Key words:  Numerical techniques,  finite difference methods,  collocation methods, Chebyshev

approximation, Gauss-Lobatto points,  Gauss-Radau points.

Introducción

Aun cuando existe una amplia variedad de métodos
para re solver problemas de valores en la frontera,
tales como los métodos en diferencias finitas, el
método del elemento fini to, el método del volumen
fini to, etc., a la fecha, cuando se busca aproximar la
solución numérica de un problema con alta exac-
titud, son los métodos espectrales los recursos
favorecidos.

Estos se inician con el método de Fourier aplicado
a las ecuaciones diferenciales, donde la solución se
representa mediante una serie truncada, siendo las
incógnitas los coeficientes de los términos que la
integran. 

Desde épocas que anteceden a la aparición de las 
computadoras, los métodos espectrales se de-
sarrollaron y obtuvieron amplio reconocimiento,
pero al inicio de la mecánica de fluidos com-
putacional, cuando se atacaron problemas ali-
neales, aquellos mostraron severas limitaciones.

La aplicación ineficiente de las series de Fourier
truncadas, provocada por la gran cantidad de tér-
minos por estimar, desembocó en beneficio de los
métodos en diferencias y del método del elemento 
finito; en cuanto a éstos, en el estudio de proble-
mas de alta complejidad se sabe cómo su defi-
ciente capacidad de discretización constituye un
severo obstáculo para el logro de una adecuada
aproximación numérica de la solución.
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El resurgimiento actual de los métodos espectrales 
se debe especialmente a: 

I. La potencia de los modernos proce-
sadores.

II. La eficiencia de la transformada rápida de
Fourier  en la evaluación de sumas.

III. La posibilidad de expresar la solución
aproximada en términos tensoriales.

Pioneros de esta etapa fueron Kreiss (1968) y
Orzag (1969); por otro lado, Gottlieb (1978);
(1987), mostró, en cuanto la obtención de una 
representación cómoda de las funciones en el
espacio físico, la utilidad de posicionar los nodos
en la malla mediante la cuadratura gaussiana.

Si bien, el método de Fourier funciona con
propiedad en problemas periódicos, cuando se
abordan problemas aperiódicos por causa del
fenómeno de Gibbs, presenta serias deficiencias.
En este caso, otros tipos de polinomios orto-
gonales constituyen una afortunada alternativa.

De estas sencillas observaciones, se obtienen
novedosos procedimientos: las diferenciaciones
se ejecutan en el espacio espectral mientras los
productos se realizan en el espacio físico, la co-
nexión entre ambos se obtiene vía la transformada 
rápida de Fourier.

Al tratar problemas diferenciales, el carácter
global de los métodos espectrales generalmente
favorece la exactitud de los resultados. Por otro
lado, la fuerte interrelación que se muestra entre
los valores en distintos puntos, puede perturbar
significativamente los resultados. 

Estas  dificultades pueden soslayarse aplicando 
técnicas de filtrado (Gottlieb, 1997), métodos de
descomposición del dominio (Guillard et al., 1992)
o técnicas de sustracción de singularidades (Bo-
tella, 2001a y 2001b). Por lo general, las matrices
obtenidas no resultan ni simétricas ni antisimé-
tricas y suelen quedar mal condicionadas.

A pesar de estos inconvenientes, cuando se
busca representar con alta exactitud las so-
luciones de problemas asociados a funciones
suaves, se recomienda la aplicación de los mé-
todos espectrales. 

Métodos espectrales

Clasificación y polinomios ortogonales útiles

En esta sección se describen algunas de las
características principales más comunes a los
métodos espectrales. Éstos se clasifican en dos
grandes grupos:

A. Métodos interpolantes o pseudoes-
pectrales, que demandan la satisfacción
exacta de la ecuación diferencial en un cierto
conjunto de puntos de la malla. General-
mente, la solución se busca en la forma de
una serie truncada.

B. Métodos no-interpolantes, donde la
función incógnita se aproxima por una serie
truncada y los coeficientes se evalúan
mediante multiplicaciones por las funciones
base y algoritmos de integración.

A los primeros también se les conoce como
métodos de colocación, ejemplos de los segundos 
son el método de Galerkin y el método Tau de
Lanczos.

A su vez, son las condiciones de frontera las
que determinan las funciones base; por ejemplo, si 
las condiciones requieren soluciones periódicas,
se recurre a las series de Fourier, donde las
funciones sen(?) y cos(?)  son las adecuadas. 

Los tipos de funciones base recomendados
para distintos casos, se describen a continuación:

I. Condiciones de frontera periódicas, se
aplican series de Fourier.

II. Condiciones de frontera aperiódicas en
intervalos acotados, se usan polinomios de
Chebyshev o polinomios de Legendre.

III. Condiciones de frontera en intervalos
semi-infinitos, se recurre a los polinomios
racionales de Chebyshev TL o polinomios de
Legendre.

IV. Condiciones de frontera en intervalos
infinitos, se usan polinomios racionales de
Chebyshev TB o polinomios de Hermite.
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Esquema de los métodos espectrales

Considérese ahora el operador diferencial L
definido en  la región O con frontera ∂Ω ⊆ R n y sea 
B una función definida en ∂Ω estipulada por las
condiciones de frontera de Dirichlet, Cauchy o
Robin. 

Se busca la solución numérica del problema:

Problema 1

       L( ) ,u f= en Ω                         (1)

       B( )u g= en ∂Ω                       (2)

En general, los métodos espectrales compren-
den los siguientes puntos:

1. En el dominio Ω⊂ R n se toma una partición
compuesta por subdominios Ωm m, , ...=1 N . Es
decir:

Ω Ω Ω Ω= = ≠=U Im
N

m i j i j1 , ,φ si .  

La figura 1 ilustra la partición de un dominio
acotado Ω ⊂ R2  con frontera:

∂ Ω Ω Ω Ω Ω Ω Ω Ω Ω; .= ∪ ∪ ∪ ∪ ∪ ∪1 2 3 4 5 6 7

2. Cada subdominio Ωm es la transformación
suave Tm de un elemento tipo $Ω. 

Por su parte, el elemento de referencia $Ω es el
producto de los intervalos $I k del eje real, es decir: 

$ $ .Ω =
=∏ I kk

n

1

En la figura 2 se muestra  al subdominio  Ω m , en
el plano x – y, obtenido bajo la transformación T m
del elemento tipo 

[ ] [ ]$ , ,Ω = − × −1 1 1 1

 en el plano ξ η− .

El espacio SN ( $ )Ω  de las funciones discretas en Ω
se obtiene con base en las funciones discretas
definidas en $Ω.

Sea el isomorfismo topológico lineal:

F S R S R: ( ) ( )N
n

N
n→

tal que,

        ( )S F S MmN m N m( ) ( $ ) , , . ..,Ω Ω= =1 2          (3)

y de aquí 

    ( ) ( ){ }F S F (x)| Sm N m
-

NN Nu u( $ ) $ $ ( $ )Ω Ω= ∈1     (4)

siendo en consecuencia

 { }S R SN N N |
m

( ) : | ( ),Ω Ω ΩΩ= → ∈ ∀u u mN m    (5)

4. El espacio discreto posee estructura
tensorial
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Figura 1. Ejemplo de dominio Ω ⊂ R 2  acotado
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S S IN N i
( $ ) ( $ )Ω =⊗

=i

n

i1
(6)

5. Exactitud espectral. Se ha demostrado por
(Gottlieb y Orzag, 1978); (Canuto et al ., 1988) y
(Mercier, 1989) como el espacio discreto S IN ( $)
posee la denominada propiedad de exactitud
expectral; es decir, si || $||υ  es una norma L2 en $I,
luego para enteros s > 0, existe una constante Cs
tal que

inf ||$ $ || || $||
$ ( $ )u i

s

u u u
N NS I

N S
-s lC N D

∈ =
− ≤ ∑

0

          (7)

para toda $u, aquí  Dl
l

lu d u
dx

$
$

$
=

En otras palabras, cuando N→ ∞, el error para $u
en SN ( $I ) depende de la regularidad de la función $u,
luego para funciones infinitamente diferenciables
el error decrece con razón mayor que cualquier
potencia de N–1 , es decir, el orden de aproxi-
mación es infinito.

El espacio físico y el espacio en la frecuencia

Considérese el conjunto { ( )}φ k x  definido en el
intervalo $I , de funciones trigonométricas o poli-
nomiales de orden k, ortogonales respecto a una
cierta función de peso w (x), es decir,

( , ) ,φ φ δm n m mnc=

donde cm es una constante, δ mn es la función delta
de Kronecker y

( ) ( ) ( ) ( )$φ ,φ φ φ ωm n mI nx x x= ∫

La representación en el espacio en la frecuencia 
es generada por las funciones φ k:

S N},N = =gen kk{ , , ... ,φ 0 (8)
y aquí

$ ( $ $ ( ) $ ( )u u x u xk kN N N
k =0

N

S I)∈ ⇔ = ∑ φ

Recíprocamente, la representación en el espacio
físico se obtiene como se indica a continuación:

En el conjunto $ $I I∪∂  mediante cuadratura
Gaussiana, se fijan N+1 puntos distintos

 x x x x0 1 1< < <−... N N

y con base en estos puntos se construyen las
bases de Lagrange

l x x x

x x
j

k

k jk k j

N
( )

,

−

−= ≠
∏
0

 ,

mismas que verifican las condiciones 

l x i j Nj i i j( ) , ,= ≤ ≤δ 0

Luego:

           $ ( $ $ ( ) ( )u u x l xjN N N j
j= 0

N

S I) u∈ ⇔ = ∑              (9)

donde u u xj j= $ ( )N

Existe una relación lineal T entre ambas
representaciones, se le conoce como la “ trans-
formada discreta de Fourier”, a saber

              $ { } , ,...,u T u kk j
j

= =
=
∑ 0

0

N
N

(10)

Mientras que el proceso de transformación
inverso requiere, en el caso general O(N2)
operaciones, en cambio, cuando es posible aplicar 
la transformada de Fourier, el número disminuye a
O(N log2N) operaciones.

Obviamente, cualquier operador lineal en
SN =SN ( $I ) puede expresarse mediante ambas
representaciones, tanto en el espacio físico como
en el espacio en la frecuencia.

Por otra parte, se supone que SN  es cerrada
bajo la diferenciación, si 

D DS SN N= ⊆
d
dx$

, entonces .

Polinomios de Chebyshev 

Tópicos gener ales

Los polinomios de Chebyshev del primer tipo de
grado k se definen por la expresión 
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    T x k xk ( ) (= cos arccos ), k=  0,1,2...,            (11)

donde 0 ≤ arccos, x ≤ π

Ahora bien, tomando x  = cos  ?, se deduce 

T (kk ( ) )cos cosθ θ= (12)

y de aquí, sin mayores dificultades,  se obtienen
los polinomios

 T T0 11( ) , ( )x x x= = (13)

Por otra parte, de la identidad trigonométrica 

( ) ( )cos cos (k -1) cos cos( )k k+ + =1 2θ θ θ θ

se obtiene la relación de recurrencia 

    T T Tk k kx x x x k+ −− + = ≥1 12 0 1( ) ( ) ( ) para       (14)

De  las ecuaciones (13) y  (14) se deducen los
polinomios Tk(x) para k ≥ 3. A continuación se
enlistan los cinco primeros polinomios de
Chebyshev:

      T T0 11( ) , ( ) ,x x x= =
     T T2

2
3

32 1 4 3( ) , ( ) ,x x x x x= − = − (15)    
T T4

4 2
5

5 38 8 1 16 20 5( ) , ( ) ,x x x x x x x= − + = − +

Seguidamente se enuncian algunas propieda-
des importantes de los polinomios de Chebyshev

1. Cuando k es par, el polinomio Tk es una
función par.

2. Cuando k  es impar, el polinomio Tk es
una función impar.

3. El coeficiente mayor del polinomio T k,
cuando, k ≥ 1 es igual a 2k–1

4. Tk(x) tiene k  raíces reales en el intervalo
(–1, 1), siendo éstas

x i ki = = −cos (2i+1)
2k

π , , , .. .,0 1 1          (16)

5.(a)  máx x∈[–1,1 ] |Tk(x)|=1

(b)  T x x i
k

i kk i i
i( ) ( ) cos , , , ...,= − = =1 01donde π

A los puntos xi donde Tk alcanza los valores
extremos ±1 se les denominan puntos de
Gauss-Lobatto.

6. No existe polinomio Pn(x) de n–ésimo
grado con coeficiente mayor igual a la unidad, que
se verifique 

       
[ ] [ ]máx máx1,1 1,1− −

−< =| ( )| | ( )|P Tn n
nx x 21      (17)

7. Las derivadas de Tk se pueden obtener
mediante la siguiente relación de recurrencia

T
k

d
d

k d
dx

k
senk

sen
′ = =

θ
θ

θ θ

θ
( )cos              (18)

y de aquí se deduce

T

k +

T

k -
Tk

k k+
′ ′

− =−1

1 1
21 (19)

8. Si se define el producto interior L2 de
los polinomios de Chebyshev Tk y Tl por

 ( , )T T T Tk lk l w wdx=
−∫ 1

1
(20)

con función de peso 

w x= − −( ) /1 2 1 2 (21)  

entonces los polinomios son ortogonales.

En particular, 

( , )T Tlk kl kw c= π δ
2

(22)

donde δ kl es la delta de Kronecker y

c
k
k

k =
≥





2
1 1

si = 0
si

(23)

Método de colocación

Sea la aproximación de la función u(x) dada por la
serie truncada

u x x xN k
k =0

N

uT( ) $ ( ),= ≤ ≤∑ α β              (24)
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Se introduce ahora el residual RN dado por

 R N N= −u u (25)

luego si uN (x) aproxima la solución de la ecuación
diferencial Lu – f = 0, RN(x) = Lu N– f. 
El método de colocación anula el residual en N+1
puntos denominados puntos de colocación.

Por lo general, se toman como puntos de
colocación los denominados puntos de
Gauss-Radau o los puntos de Gauss-Lobatto
(Canuto et al., 1988) y (Mercier, 1989).

� Puntos de Gauss-Radau, dados por

x i ii =
+

=cos 2
2 1

0π
N

N, , ...,     

� Puntos de Gauss-Lobatto dados ya por
la ecuación (16), corresponden a aquellos  puntos
xi donde

( ) ( )1 02− =′x xTN (26)

Presentan las siguientes particularidades

1. T NN ( ) ( ) , , ...,x ii
i

= − =1 0 (27)

2. T NN

' ( ) , , ...,x ii = = −0 1 1
(28)

3. T
x

N N -N
2′ ′

+

=
−
−

=( ) ( ) , , ...,x ii

i

i

1
1

1 1
1

2
         (29)

La aproximación de Chebyshev recurre a las
fórmulas de la cuadratura Gaussiana, la cual 
aplicada a una cierta función f(x) conduce a la
expresión

 f x w x dx ( )
ci

( ) ( ) ≅
−∫ ∑π

N
f xi

i= 0

N

1

1
                (30)

Donde

         c
k k

k =
= =
≤ ≤





2 0
1

si ó
si 1

N
N - 1k

(31)

Si f(x) es un polinomio de grado menor o igual a
2 N – 1, entonces la integral (30) es exacta. Ahora

bien, como el producto Tk Tl es un polinomio cuyo
grado no excede a 2 N –1, entonces de la ecuación
(20) es posible deducir la relación de ortogo-
nalidad discreta estimando la integral en cuestión
con la fórmula de cuadratura (30) aplicada en los
puntos de Gauss-Lobatto xi, a saber:

1
2c

x x c

i
i i

i=0

N

k l k,lT T N∑ =( ) ( ) δ (32)

Donde 

0 ≤ k, l  ≤ N

Evaluación de los coeficientes de Chebyshev

Para  estimar los coeficientes $u de la ecuación
(24), mediante el método de colocación, se procede 
a anular el residual RN = u – un en ciertos puntos del
dominio Ω elegidos de antemano, en el presente
caso se opta por los puntos de Gauss-Lobatto,
especificados ya por la ecuación (16).

Denotando u i = u(xi) = uN (xi) y utilizando Tk =
cos  (k cos –1x ), donde x∈  [–1, 1] se deduce

u u k i ii
k

$ , , ...,
=
∑ =

0

0 1
N

N
Ncos π             (33)

La expresión anterior, corresponde a un sis-
tema algebraico de ecuaciones, siendo su matriz
asociada 

T
N

N=








 =

cos k i
k i

π
, , , ...,0 (34)

esta matriz es invertible y mediante la relación de
ortogonalidad discreta se deduce

           T N
(c c N

N
k i

− =



















=1 0

2(cosπi

k i

)

, , , ...,            (35)

Luego, no es difícil verificar que la solución del
sistema de ecuaciones algebraicas (33) resulta
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212 Ingeniería Investigación y Tecnología, ISSN en trámite



       $ , ,.. . ,u
c

u k i kk
k

i= =∑2 1 0
N c N

N
ii=0

N

cos π        (36)

Diferenciación en el espacio físico

Cuando se abordan problemas de valores en la
frontera con el método de colocación, las incóg-
nitas corresponden a valores de malla, y en con-
secuencia, se requiere expresar también a las
derivadas en  función de dichos valores.

Sea pues la matriz de diferenciación D definida
por

[ ]D N= =d i ji j,
( ) , , , .. .,1 0 (37)

Luego las derivadas de primer y segundo orden
se pueden expresar, respectivamente,  por

             U D U( p)( ) ,p p= =con 1 2               (38)

donde

 ( )U N N
( ) ( ) ( ) ( )( ), . .., ( ( )p p

n
p

n
pu x u x x= 0           (39)

Aquí

u d u x p ip
i j
p

j
j=

N i N

N

(x )= N( )
,

( ) ( ), , , . ..,
0

12 0∑ = =

(40)

Si ahora se define la base de Lagrange {lj}
asociada a los puntos de colocación 

x j jj j= − =− ≤ ≤cosθ
πcos ,
N

N0 ,

ubicados en el conjunto I ∪∂i  por

l x
x x

x x
j

j

j

( )
( ) ( ) ( )

( )
=

− −

−

+ ′1 11 2 T

c N
N

j
2

                (41)

entonces

u x h u xp
i j

p
jN N

j=0

N
( ) ( )( ) ( )= ∑ (42)

Comparando las ecuaciones (40) y (42) se
infiere que 

d h xi j
p

j
p

i,
( ) ( ) ( )=

 y además,  no es difícil verificar que los términos
de la matriz D son

d

c
c x x

l j

x
l j

i j

l
i j

j l j

j,

( )
( )

,

)=

−
−

≠

−

−
≤ = ≤ −

+1

1
12

si

x

2(
sij N 1

2 1
6

0

2 1

6

2

2

( )

( )

N

N
N

+
= =

−
+

= =

















si

si

l j

l j

           (43)

Finalmente, los términos de la matriz D(2) se
pueden obtener mediante la siguiente ecuación 

d d di j i k
k

k i,
( )

,
( )

,
( )2 1

0

1=
=
∑
N

(44)

Resultados numéricos

Introducción

Para ilustrar la bondad de los métodos espec-
trales, se presentan a continuación dos ejemplos
de aplicación a problemas de valores en la
frontera.

Ambos casos fueron resueltos numéricamente,
tanto con el método del elemento finito, como
con un método espectral, con base en los
polinomios de Chebyshev.

Los respectivos programas computacionales
fueron instrumentados en la computadora Origin
2000 de la UNAM; la carga de trabajo quedó
distribuida entre cuatro procesadores y se apro-
vecharon los recursos de la paquetería Sequent.

Los errores de las soluciones numéricas se
presentan en las figuras 3 y 4 en escalas
logarítmicas.
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� El eje de las abscisas corresponde al
logaritmo en base 10 del número de nodos
interiores de la malla ( log10(Num.nodos)).

� El eje de las ordenadas  corresponde al
aditivo inverso del logaritmo en base 10 del error
absoluto (–log10(| u – $u|)).

Ejemplo de aplicación

Se busca la solución numérica de la ecuación 

∂

∂

∂

∂
2 2

2 2

0
x

u x y
y

u x y( , ) ( , )+ = (45)

en el dominio Ω=[0,1] × [0, 1], dadas las siguientes 
condiciones de frontera

0 0

10

cuando 0 1

cuando =0 0 1

≤ ≤ =

≤ ≤

x y

sen h y x y
x sen h

( )
( ) (.cos )

( . ) ( )

cuando 0 1

cuando 0 1

≤ ≤ =

= ≤ ≤








 x y

sen h y x y

1

10 1cos

Se efectuaron 5 experimentos numéricos con
pasos de malla 

h h h h h= = = = =1
6

1
8

1
10

1
12

1
14

, , , , ,

obteniéndose, respectivamente, 25, 49, 81, 121 y
225 nodos interiores.

Las aproximaciones numéricas obtenidas con
los métodos del elemento finito y el método es-
pectral, con base en los polinomios de Chebyshev, 
se contrastan con la solución exacta del problema, 
a saber,

u x y x sen h y( , ) ( ) ( )= ×cos

En la figura 3 se presenta la gráfica de los errores
obtenidos.

Ejemplo de aplicación 2

Se busca la solución numérica de la ecuación

∂
∂

∂
∂

2

2

2

2 0
x

u x y
y

ux y( , ) ( , )+ = (46)

en el dominio Ω= [0,1] × [0,1], dadas las siguientes 
condiciones de frontera

x y x y
y y e y

+ − ≤ ≤
− − ≤

2

2 20

20cos x
x =0

( )π
π

cuando 0 1, =0
cuando 0 y

cos x
≤

+ − ≤ ≤ =
+ − −

−

−

1
cuando 0 1,x x x e y

y y e y

2 20

2 20

20 1
2

( )π π

π cuando =1 0 1x ≤ ≤








 y

En este caso, la solución exacta del problema es

x y x y x e y+ + − − −2 2 2020cos( )π π

Las aproximaciones numéricas obtenidas con
los métodos del elemento finito y el método
espectral con base en los polinomios de
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Chebyshev, se contrastan con la solución exacta
del problema.

En la figura 4 se presenta la gráfica de los
errores obtenidos. En el presente ejemplo, el
grado máximo de precisión se logró con un paso
de malla h = 1

34
, a la cual le corresponden 1089

nodos interiores.

Conclusiones

La solución numérica de ambos ejemplos de
aplicación, se obtuvo con la computadora Origin
2000 de la UNAM.

� Tanto  los coeficientes de Chebyshev
como los términos correspondientes a la dife-
renciación, se obtuvieron mediante el proce-
samiento paralelo con cuatro procesadores, apro-
vechando la paquetería Sequent.

� El sistema de ecuaciones lineales se
resolvió también con cuatro procesadores re-
curriendo al paquete ScaLAPACK.

Como estos recursos, al presente sólo operan
cálculos aritméticos con simple precisión, es así
que las aproximaciones numéricas no exceden a
ocho dígitos.

Los dos ejemplos de aplicación  presentados,
se eligieron con base en los siguientes criterios:

� Según el tipo de la solución del
problema de valores en la frontera:

1. En el ejemplo de aplicación 1, la
solución del problema se expresa mediante una
función trascendente.

2. En el ejemplo de aplicación 2, la
solución se expresa como la suma de una función
trascendente y una función polinomial. 
� Atendiendo al número máximo de osci-

laciones o períodos que presenta la solución en el
dominio:

1. En el ejemplo de aplicación 1 se obtuvo
menos de un período.

2. En el ejemplo de aplicación 2 se obtuvo
un número considerable de oscilaciones.

En ambos ejemplos de aplicación se verificó el
excelente funcionamiento del método espectral
con base en los polinomios de Chebyshev; en este
punto procede mencionar que otro tanto sucedió
en los experimentos numéricos desarrollados para
el estudio de diversos problemas unidimensionales.

El ejemplo de aplicación 2 ilustra cómo en
aquellos problemas de valores en la frontera
donde la solución presenta un elevado número de
oscilaciones, aun con mallas construidas con unas
cuantas decenas o centenas de nodos, se ob-
tienen excelentes resultados; para tal propósito, el 
paso de la malla h deberá ser de magnitud tal, que
permita captar las posibles variaciones de la
solución del problema en el dominio de su de-
finición. En otras palabras, la naturaleza del error
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es semejante a la asociada a problemas de inter-
polación, donde la magnitud de aquél depende de
la suavidad de la solución.

Aquí es obvia la utilidad de instrumentar en
futuras etapas del presente tema algoritmos tipo
h–p  que conjugen  automáticamente la norma de la
malla con el orden de los polinomios de Chebyshev.
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