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Resumen

Entre la variedad de métodos disponibles para resolver problemas de valores en la
frontera se cuentan los métodos espectrales, donde la solucion u(x,t) de un cierto
problema de valores en la frontera (dependiente de una vari able espacial x y de una

variable temporal), se aproxima por una suma finita v(x,t)=é '::0 a0 f . (x). Para este fin se

debe, por una parte, seleccionar la clase de las funciones f (x), k=1, .., N,y por otra,
prefijar los algoritmos adecuados para el desarrollo de los coeficientes a .

Descriptores: Problemas de valores en la frontera, ecuaciones diferenciales en
derivadas parciales, procesamiento paralelo, métodos pseudoespectrales

Abstract
Among the meth ods available for the so Iu tion of bound ary prob lems we may find the so-called spectral

meth ods, in which the solution u (x,t) (de pend ing upon a space-like vari able x and a time-likevariable)
isap proxi mated by afi nite sumv(x,t) :é ::0 a(t) (). Inor der to have this form, on one hand, a class

offunctionsf,(x), k=1, ..., N, has to be se lected, and on the other, the ad e quate al go rithms for the ex
pan sion of the co ef fi cients ak must be cho sen.

Keywords: Numerical techniques, finite difference methods, collocation methods, Chebyshev

approximation, Gauss-Lobatto points, Gauss-Radau points.

Introduccioén

Aun cuando existe una amplia variedad de métodos
para resolver problemas de valores en la frontera,
tales como los métodos en diferencias finitas, el
método del elemento fini to, el método del volumen
fini to, etc., a la fecha, cuando se busca aproximar la
solucion numérica de un problema con alta exac-
titud, son los métodos espectrales los recursos
favorecidos.

Estos se inician con el método de Fourier aplicado
a las ecuaciones diferenciales, donde la solucién se
representa mediante una serie truncada, siendo las
incognitas los coeficientes de los términos que la
integran.

Desde épocas que anteceden a la aparicion de las
computadoras, los métodos espectrales se de-
sarrollaron y obtuvieron amplio reconocimiento,
pero al inicio de la mecénica de fluidos com-
putacional, cuando se atacaron problemas ali-
neales, aquellos mostraron severas limitaciones.
La aplicacion ineficiente de las series de Fourier
truncadas, provocada por la gran cantidad de tér-
minaos por estimar, desemboc6 en beneficio de los
métodos en diferencias y del método del elemento
finito; en cuanto a éstos, en el estudio de proble-
mas de alta complejidad se sabe como su defi-
ciente capacidad de discretizacion constituye un
severo obstaculo para el logro de una adecuada
aproximacion numeérica de la solucion.
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El resurgimiento actual de los métodos espectrales
se debe especialmente a:

I. La potencia de los modernos proce-
sadores.

II. La eficiencia de la transformada rapida de
Fourier en la evaluacion de sumas.

lll. La posibilidad de expresar la solucién
aproximada en términos tensoriales.

Pioneros de esta etapa fueron Kreiss (1968) y
Orzag (1969); por otro lado, Gottlieb (1978);
(1987), mostro, en cuanto la obtencién de una
representacion comoda de las funciones en el
espacio fisico, la utilidad de posicionar los nodos
en la malla mediante la cuadratura gaussiana.

Si bien, el método de Fourier funciona con
propiedad en problemas periodicos, cuando se
abordan problemas aperiodicos por causa del
fendmeno de Gibbs, presenta serias deficiencias.
En este caso, otros tipos de polinomios orto-
gonales constituyen una afortunada alternativa.

De estas sencillas observaciones, se obtienen
novedosos procedimientos: las diferenciaciones
se ejecutan en el espacio espectral mientras los
productos se realizan en el espacio fisico, la co-
nexion entre ambos se obtiene via la transformada
rapida de Fourier.

Al tratar problemas diferenciales, el caracter
global de los métodos espectrales generalmente
favorece la exactitud de los resultados. Por otro
lado, la fuerte interrelacién que se muestra entre
los valores en distintos puntos, puede perturbar
significativamente los resultados.

Estas dificultades pueden soslayarse aplicando
técnicas de filtrado (Gottlieb, 1997), métodos de
descomposicion del dominio (Guillard et al., 1992)
o técnicas de sustraccion de singularidades (Bo-
tella, 2001a y 2001b). Por lo general, las matrices
dbtenidas no resultan ni simétricas ni antisimé-
tricas y suelen quedar mal condicionadas.

A pesar de estos inconvenientes, cuando se
busca representar con alta exactitud las so-
luciones de problemas asociados a funciones
suaves, se recomienda la aplicacién de los mé-
todos espectrales.

Métodos espectrales

Clasificacion y polinomios ortogonales Gtiles

En esta seccion se describen algunas de las
caracteristicas principales mas comunes a los
métodos espectrales. Estos se clasifican en dos
grandes grupos:

A. Métodos interpolantes o pseudoes-
pectrales, que demandan la satisfaccion
exacta de la ecuacioén diferencial en un cierto
conjunto de puntos de la malla. General-
mente, la solucién se busca en la forma de
una serie truncada.

B. Métodos no-interpolantes, donde la
funcion incégnita se aproxima por una serie
truncada y los coeficientes se evalGan
mediante multiplicaciones por las funciones
base y algoritmos de integracion.

A los primeros también se les conoce como
métodos de colocacion, ejemplos de los segundos
son el método de Galerkin y el método Tau de
Lanczos.

A su vez, son las condiciones de frontera las
gue determinan las funciones base; por ejemplo, si
las condiciones requieren soluciones periddicas,
se recurre a las series de Fourier, donde las

funciones sen(?) y cos(?) son las adecuadas.

Los tipos de funciones base recomendados
para distintos casos, se describen a continuacion:

I. Condiciones de frontera periddicas, se
aplican series de Fourier.

[I. Condiciones de frontera aperiddicas en
intervalos acotados, se usan polinomios de
Chebyshev o polinomios de Legendre.

[1l. Condiciones de frontera en intervalos
semi-infinitos, se recurre a los polinomios
racionales de Chebyshev TL o polinomios de

Legendre.

V. Condiciones de frontera en intervalos

infinitos, se usan polinomios racionales de
Chebyshev TB o polinomios de Hermite.
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Esquema de los métodos espectrales

Considérese ahora el operador diferencial L
definido en laregionOcon fronteraW 1 R"y sea

B una funcion definida en W estipulada por las
condiciones de frontera de Dirichlet, Cauchy o
Robin.

Se busca la solucion numérica del problema:

Problema 1
LU="fenW, @)
Bl =genW 2

En general, los métodos espectrales compren-
den los siguientes puntos:

1. En el dominio Wi R" se toma una particion

compuesta por subdominios W, ,m=1...N. Es
decir:

W=Ul,W,, WNW =f,siit .

m=1 m

La figura 1 ilustra la particion de un dominio
acotadoWI R con frontera:

TWW=W, EW, EW, EW, EW,EW, EW, .

(<7

w

Figura 1. Ejemplo de dominio Wi R? acotado
2. Cada subdominio W, es la transformacion
suave T, de un elemento tipo W.

Por su parte, el elemento de referencia wes el
producto de los intervalos | del eje real, es decir:

W:C)Llrk.

En lafigura 2 se muestra al subdominio W,,, en
el plano x -y, obtenido bajo la transformacion T,
del elemento tipo

W=[-14" [1.4
en el planox - h.

El espacioSy (W) de las funciones discretas en W

se obtiene con base en las funciones discretas
definidas en W,

Sea el isomorfismo topoldgico lineal:
F:S,(R)® S,(R"
tal que,
s\W,)=F,(s\W) m=12..M @
y de aqui
R (suw) ={o, (Fixto, 1 s, @
siendo en consecuencia

SN(V\/)={uN ‘W® Rlunjw T Su(Wa)," m} (5)

X
To(xte ), e, ) /
A h -1
/ PR BTEL)

Y

PAPEEPRN
ISETREY)

Figura 2. Subdominio W obtenido como imagen del
elemento tipo W

4. El espacio discreto posee estructura
tensorial
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SR M ©)

5. Exactitud espectral. Se ha demostrado por
(Gottlieb y Orzag, 1978); (Canuto et al., 1988) y

(Mercier, 1989) como el espacio discreto S (I

posee la denominada propiedad de exactitud
expectral; es decir, si ||d]| es una norma L2 en [

luego para enteros s > 0, existe una constante C,
tal que

inf_ lo- 0y IECSNQID'dl )
i=0

ad Sy1)

'0
%

para todaq, aqui D'0=

En otras palabras, cuando N® ¥, el error para
en S, (I) depende de la regularidad de la funcién @,
luego para funciones infinitamente diferenciables
el error decrece con razobn mayor que cualquier
potencia de N1, es decir, el orden de aproxi-
macién es infinito.

El espacio fisico y el espacio en la frecuencia

Considérese el conjunto {f (x)} definido en el
intervalo |, de funciones trigonométricas o poli-
nomiales de orden k, ortogonales respecto a una
cierta funcién de peso w(x), es decir,

(f mafn) :Cmdrms

donde ¢, es una constante, d , es la funcién delta
de Kronecker y

(F .t ) =@f n (5 0WX)

La representacion en el espacio en la frecuencia
es generada por las funciones f ,:

) v =gen{f .k =0,..., N}, ©
y aqui

N
anT Sh) 0 Gy ()= A 0 «(x)

k=0

Reciprocamente, la representacion en el espacio
fisico se obtiene como se indica a continuacion:

En el conjunto E9l mediante cuadratura
Gaussiana, se fijan N+1 puntos distintos

Xo <X < Xy 1< Xy

y con base en estos puntos se construyen las
bases de Lagrange

0 1
k 0k j Xy - XJ

mismas que verifican las condiciones

l,(x)=d,, 0£i, j£ N

ij?

Luego:

donde u; =0y (x;)

Existe una relaciéon lineal T entre ambas
representaciones, se le conoce como la *trans-
formada discreta de Fourier”, a saber

0, =& T}, k=0...N (10
j=0

Mientras que el proceso de transformacién
inverso requiere, en el caso general O(N?)
operaciones, en cambio, cuando es posible aplicar
la transformada de Fourier, el nimero disminuye a
O(N log,N) operaciones.

Obviamente, cualquier operador lineal en
Sh=Sy (IA) puede expresarse mediante ambas
representaciones, tanto en el espacio fisico como
en el espacio en la frecuencia.

Por otra parte, se supone que § es cerrada
bajo la diferenciacion, si

D=;,entonces DS, | S,.

Polinomios de Chebyshev
Topicosgenerales

Los polinomios de Chebyshev del primer tipo de
grado kse definen por la expresion
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T, (X) =cosk arccosx), k= 0,1,2..., (12)
donde O £ arccos, X £p
Ahora bien, tomandox =cos ?, se deduce
T, (cosq) = cogkq) (12)
y de aqui, sin mayores dificultades, se obtienen
los polinomios
To ()=l T()=x (13)
Por otra parte, de la identidad trigopnomeétrica
cos ((k +2)q) +cos((k -1)q) =2cosq coskq

se obtiene la relacion de recurrencia

Toa(X) - 2T, (X)+T,_,(x)=0 para k31 (14)

De las ecuaciones (13) y (14) se deducen los
polinomios T,(X) para k * 3. A continuacion se

enlistan los cinco primeros polinomios de
Chebyshev:

T 39 =1L T(x)=x
Tx)=2X -1 T,(x) =4 - 3% (15)
T()=8&"-8¢+1 T, (x)=16x" - DX’ +5x,

Seguidamente se enuncian algunas propieda-
des importantes de los polinomios de Chebyshev

1 Cuando k es par, el polinomio T, es una
funcién par.

2 Cuando k es impar, el polinomio T, es
una funcién impar.

3. El coeficiente mayor del polinomio T,
cuando, k3 1 esigual a 2!

4. T/x) tiene Kk raices reales en el intervalo
(-1, 1), siendo éstas

xizs GFP i01 k-1 (16)
2K
5.8) max,;1q) ITX)I=1

(b) T, (x,)=(- 2)' donde X, =cosik£, i=01 ..k

A los puntos x; donde T, alcanza los valores
extremos 1 se les denominan puntos de

Gauss-Lobatto.

6. No existe polinomio P,(x) de n-ésimo
grado con coeficiente mayor igual a la unidad, que
se verifique

méx[_1J]|Pn(x)|<méx[_1,1]|Tn(x)|:21'" (17)

7. Las derivadas de T, se pueden obtener
mediante la siguiente relacién de recurrencia

senkq

T'= i(ccs kq)d—q:k (18)
dqg dx senq
y de aqui se deduce
¢ T
Tt — =0T (19)
k+1 k-1

8. Si se define el producto interior L2 de
los polinomios de Chebyshev Ty y Tipor

(T Tow= §, T, we (20)

con funcion de peso
w=(- x)"? (21)
entonces los polinomios son ortogonales.

En particular,

(T, T)w :gdmck (22)

donde d,, es la delta de Kronecker y

j2 si k=0
Crx =1 . (23)
i1 si k31

Método de colocacion

Sea la aproximacion de la funcién u(x) dada por la
serie truncada

U, =3 (T, x) a £xEb (24)

k=0
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Se introduce ahora el residual Ry dado por
RN =Uu- Uy (25)

luego si uy(X) aproxima la solucién de la ecuacion
diferencialLu —f = 0, Ry(X) = Lupn—f.

El método de colocacion anula el residual en N+1
puntos denominados puntos de colocacion

Por lo general, se toman como puntos de
colocacién los denominados puntos de

Gauss-Radau o los puntos de Gauss-Lobatto
(Canuto et al., 1988) y (Mercier, 1989).

>  Puntos de Gauss-Radau, dados por

% =C0S 2p , 1=0,...,N
2N +1

>» Puntos de Gauss-Lobatto dados ya por
la ecuacidn (16), corresponden a aquellos puntos

x; donde
L- x*)Tg =0 (26)

Presentan las siguientes particularidades

L T,)=(-12, i=0,.N 27)
2 T ,(x)=0, i=L..,N-1
(28)
3 Tﬁ(xi)z(-lj;lNz, i=1.,N-1  (29)
1-x

La aproximaciéon de Chebyshev recurre a las
formulas de la cuadratura Gaussiana, la cual
aplicada a una cierta funcién fx) conduce a la
expresion

1

)
0, @ﬁg

/-\

X.

(30)

ol

Donde
|2 si k=006 k=N
I1 si 1£KEN-1

Sif(x) es un polinomio de grado menor o igual a
2 N -1, entonces la integral (30) es exacta. Ahora

(31)

Ck =

bien, como el producto T, T, es un polinomio cuyo
grado no excede a2 N -1, entonces de la ecuacién

(20) es posible deducir la relacion de ortogo-
nalidad discreta estimando la integral en cuestion
con la férmula de cuadratura (30) aplicada en los
puntos de Gauss-Lobattox;, a saber:

1 _¢
! C,—T L ()T, (%) = 5 Nd,, (32)

Qo

Donde

O£k IEN
Evaluacion de los coeficientes de Chebyshev

Para estimar los coeficientes 0 de la ecuacién
(24), mediante el método de colocacién, se procede
aanular el residual Ry = u-u,en ciertos puntos del
dominio W elegidos de antemano, en el presente
caso se opta por los puntos de Gauss-Lobatto,
especificados ya por la ecuacion (16).

Denotando u; = u(x) = uy (x;) y utilizando Ty =
cos (kos-1x), dondexi [-1, 1] se deduce

N
uié coslﬂ, i=0,1..,N (33)
k=0 N

La expresion anterior, corresponde a un sis-
tema algebraico de ecuaciones, siendo su matriz
asociada

. ki=0,..,N (34)

esta matriz es invertible y mediante la relacion de
ortogonalidad discreta se deduce

é2(cospi) u
1 _é N l;' P
T _e Ul k,l _01"-1 N (35)
e
e

€. TN g

a

Luego, no es dificil verificar que la solucién del
sistema de ecuaciones algebraicas (33) resulta
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Diferenciacion en el espacio fisico
Cuando se abordan problemas de valores en la
frontera con el método de colocacidn, las incég-
nitas corresponden a valores de malla, y en con-

secuencia, se requiere expresar también a las
derivadas en funcion de dichos valores.

Sea pues la matriz de diferenciacion D definida
por

D:[d§j’ ij,=0,.... N (37)

Luego las derivadas de primer y segundo orden
se pueden expresar, respectivamente, por

u®=p®y con p=12 (38)

Aqui

U‘N")(xi)=gdff)UN(X;)’ p=12 i=0,..,N
j=0
(40)

Si ahora se define la base de Lagrange {i}
asociada a los puntos de colocacion

X; =-00sq; =- cos%,OEjEN,

ubicados en el conjunto I E i por

entonces

Comparando las ecuaciones (40) y (42) se
infiere que

di(ﬂ) = ij)(Xi)

y ademas, no es dificil verificar que los términos
de la matriz Dson

:acwﬂ . ]
i &% - x)
- X
L s 1EI=jEN-1
G ) =i ZZ(%-ZXJ])) (43)
i + .
i 5 Si I=j=0
| 2
|-2(N +3 si I=j=N
i 6

Finalmente, los términos de la matriz D2 se
pueden obtener mediante la siguiente ecuacion

N
d® =a dPd¥ (44)

Resultados numéricos
Introduccion

Para ilustrar la bondad de los métodos espec-
trales, se presentan a continuacién dos ejemplos
de aplicacion a problemas de valores en la
frontera.

Ambos casos fueron resueltos numéricamente,
tanto con el método del elemento finito, como
con un método espectral, con base en los
polinomios de Chebyshev.

Los respectivos programas computacionales
fueron instrumentados en la computadora Origin
2000 de la UNAM; la carga de trabajo quedd
distribuida entre cuatro procesadores y se apro-
vecharon los recursos de la paqueteria Sequent.

Los errores de las soluciones numeéricas se
presentan en las figuras 3 y 4 en escalas
logaritmicas.
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> El eje de las abscisas corresponde al
logaritmo en base 10 del ndmero de nodos

interiores de la malla ( log, (Num.nodos)).

> El eje de las ordenadas corresponde al
aditivo inverso del logaritmo en base 10 del error
absoluto (-log, (] u-al)).

Ejemplo de aplicacion
Se busca la solucién numérica de la ecuacion

g 1
—Uu(X,y)+—ulx,y) =0 45
0 u(x,y) P u,y) (45)

en el dominioW=[0,1] " [0, 1], dadas las siguientes
condiciones de frontera

i 0 cuando O£ x£1 y=0
{ enh(y) cuando x=0 O0£y£1l
: s k)senh(l0) cuando O£ x£1 y=1
fcos@O)senhy) cuando x=1 O£y£1l

Se efectuaron 5 experimentos numeéricos con
pasos de malla

h=

o |

,h :llh:i’h:i,h:i'
8 10 12 4

[

dbteniéndose, respectivamente, 25, 49, 81, 121y
225 nodos interiores.

Las aproximaciones numéricas obtenidas con
los métodos del elemento finito y el método es-

pectral, con base en los polinomios de Chebyshev,
se contrastan con la solucion exacta del problema,
a saber,

u(x, y) =cos(x) " sen h(y)

En la figura 3 se presenta la grafica de los errores
obtenidos.

Ejemplo de aplicacion 2

Se busca la solucién numérica de la ecuacion

T T
ﬂ7U(><,y)+ W ux,y)=0 (46)

en el dominio W=[0,1] " [0,1], dadas las siguientes
condiciones de frontera

I X +y% - cos(20px) cuando O0£x£1, y=0

Ty-y?-e®™ cuando x=0 0E£y£1
: X +x° - cos(20px)e *®® cuando O£x£1, y=1
f2+y-y?-e? cuando x=1 0£y£1

En este caso, la solucion exacta del problema es
X +y+x° -y - cos0px)e *°”
Las aproximaciones numéricas obtenidas con

los métodos del elemento finito y el método
espectral con base en los polinomios de

o Método espectral

* Método del elemento finito

—logio(|error|)

7 -

20 60

260 log10(Num.nodos)

Figura 3. Errores de aproximacion en la aplicacion 1
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o Método espectral

x  Método del elemento finito

—logio(|error|)

7k

e 1 I I T T S N

Lo

50 100 200

500 1OI00 log10(Num.nodos)

Figura 4. Errores de aproximacion en la aplicacién 2

Chebyshev, se contrastan con la solucion exacta
del problema.

En la figura 4 se presenta la grafica de los
errores obtenidos. En el presente ejemplo, el
grado maximo de precisién se logré con un paso
de malla h = 2, ala cual le corresponden 1089

nodos interiores.

Conclusiones

La solucion numérica de ambos ejemplos de
aplicacion, se obtuvo con la computadora Origin
2000 de la UNAM.

> Tanto los coeficientes de Chebyshev
como los términos correspondientes a la dife-
renciacion, se obtuvieron mediante el proce-
samiento paralelo con cuatro procesadores, apro-

vechando la pagueteria Sequent.

> El sistema de ecuaciones lineales se

resolvi6 también con cuatro procesadores re-
curriendo al paquete ScaLAPACK.

Como estos recursos, al presente sélo operan
célculos aritméticos con simple precision, es asi

que las aproximaciones numéricas no exceden a
ocho digitos.

Los dos ejemplos de aplicacion presentados,
se eligieron con base en los siguientes criterios:

> Segun el tipo de la solucién del
problema de valores en la frontera:

1. En el ejemplo de aplicaciéon 1, la
solucién del problema se expresa mediante una
funcion trascendente.

2. En el ejemplo de aplicacion 2, la
solucion se expresa como la suma de una funcién
trascendente y una funcién polinomial.

> Atendiendo al ndmero méximo de osci-
laciones o periodos que presenta la solucion en el
dominio:

1. En el ejemplo de aplicacién 1 se obtuvo
menos de un periodo.

2. En el ejemplo de aplicacion 2 se obtuvo
un nimero considerable de oscilaciones.

En ambos ejemplos de aplicacion se verifico el
excelente funcionamiento del método espectral
con base en los polinomios de Chebyshev; en este
punto procede mencionar que otro tanto sucedio
en los experimentos numeéricos desarrollados para
el estudio de diversos problemas unidimensionales.

El ejemplo de aplicacién 2 ilustra como en
aquellos problemas de valores en la frontera
donde la solucidn presenta un elevado numero de
oscilaciones, aun con mallas construidas con unas
cuantas decenas o centenas de nodos, se ob-
tienen excelentes resultados; para tal propdsito, el
paso de la malla h debera ser de magnitud tal, que
permita captar las posibles variaciones de la
solucion del problema en el dominio de su de-
finicion. En otras palabras, la naturaleza del error
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Solucién numérica de problemas de valores en la frontera con alta exactitud por métodos espectral es

es semejante a la asociada a problemas de inter-
polacién, donde la magnitud de aquél depende de
la suavidad de la solucién.

Aqui es obvia la utilidad de instrumentar en
futuras etapas del presente tema algoritmos tipo
h-p que conjugen automaticamente la norma de la
malla con el orden de los polinomios de Chebyshev.

Agradecimientos

Agradezco al M.1. Alberto Templos Carvajal por su
apoyo y cooperacién para el desarrollo de este
articulo.

Referencias

Botella O., Forestier M.Y., Pasquetti R., Peyret
R. y Sabbah C. (200l1a). Chebyshev
Methods for the Navier-Stokes Equations:
Algorithms and Applications. Nonlinear
Anal, 47, pp. 4157-4168.

Botella O. y Peyret R. (2001b). Computing
Singular Solutions of the Navier-Stokes
Equations with the Chebyshev-Collocation
Method. Int. J. Numer. Methods Fluids 36, pp.
125-163.

Canuto C., Hussaini M.Y., Quarteroni A.y Zang
T.A. (1988). Spectral Methods in Fluid
Dynamics. Springer, New York.

Gottlieb D. y Orzag S.A. (1978). Numerical
Analysis of Spectral Methods: Theory and
Applications. SIAM-CBMS, Philadelfia.

Gottlieb D., Lustman L. y Tadmore E. (1987).
Stability Analysis of Spectral Methods for
Hyperbolic Initial-Boundary Value Problems.
SIAM J. Numer. Anal, 24, pp. 241-258.

Gottlieb D. y Shu C.W. (1997). On the Gibbs
Phenomenon and its Resesolution. SIAM
Review, 39, pp. 644-668.

Guillard H., Malé ..M. y Peyret R. (1992).
Adaptative Spectral Methods with Appli-
cations to Mixing Layer Computations. .
Comput. Phys, 102, pp. 379-388.

Kreiss O. (1968). Stability Theory for Diffe-
rence Approximations of Mixed Initial
Boundary Value Problems I. Math. Comput,
22, pp. 703-714.

Mercier B. (1989). An Introduction to the Nu-
merical Analysis of Spectral Methods. Springer
Verlag, Berlin.

Orzag S.A. (1969). Numerical Methods for the
Simulation of Turbulence. Phys. of Fluids,

12, (Suppl.ll), pp. 250-257.

Bibliografia sugerida

Alencar H., Do Carmo M. y Marques F.C.
(2001). Upper Bounds for the First
Eigenvalue of Operator Lr and Some
Applications. Illinois J. of Math. No. 45, pp.
851-863.

Arias J. (2000). Pointwise Convergence od Fourier
Series. Springer Verlag, New York.

BLACS <http:// www.netlib.org/blacs/index.
html>.

Bertola M., Eynard B. y Harnad J. (2002).
Duality, Biorthogonal Polynomials and
Multi-Matrix Models. Commun. Math. Phys,
229, pp. 73-120.

Bertola M., Eynard B. y Harnad J. (2003).
Differential Systems for Biorthogonal
Polynomial Appearing in 2-Matrix Models
and Associated Riemann-Hilbert Problems.
Commun. Math. Phys, 243, pp. 193-240.

Forum MPI: A Message Passing Interface
<ftp://www.netlib.org/mpi/mpi-report.ps=>

Herrera |., Camacho A. y Hernandez J. (1997).
Domain Decomposition Methods for Model
Parallelization. Proceedings of the Second
UNAM-CRAY Supercomputing Conference,
Garcia F., Cisneros G., Fernandez-Eguiarte
A.y Alvarez R. (Eds), Cambridge University
Press, pp. 258-265.

Herreral., HernandezJ., Camacho A. y Garfias
J. (1997). Parallelization Using TH-Collo-
cation. Proceedings of the Second UNAM-
CRAY Supercomputing Conference, Garcia
F., Cisneros G., Fernandez-Eguiarte A. y
Alvarez R. (Eds), Cambridge University
Press, pp. 266-275.

Intel Corporation, Intel Supercomputer
Technical Publications Home Page .

Langtangen H.P. (1997). Improving Efficiency
of Diffpack Simulators for PDE’s’ Numerical
Objects Report Series No. 1997:8, Nume-
rical Objects AS, Oslo Noruega, <http://
www.nobjects.com/Reports/>.

216 Ingenieria Investigacion y Tecnologia, ISSN en tramite



A. Camacho-Galvén, B. Guardian-Soto y M. Rodriguez-Green

Langtangen H.P. (1997). Details of Finite Last Y. y Simon B. (1999). Eigenfunctions,
Element Programming in Diffpack. Nume- Transfer Matrices and Absolutely
rical Objects Report Series, No. 9, Numeri- ScalLAPACK <http://www.netlib.org/scalapack
cal Objects AS, Oslo Noruega, <http:// /index.html>
www.nobjects.com/Reports/>. Shubin M.A. (2001). PseudoDifferential Operators

and Spectral Theory. Springer Verlag, Berlin.

Semblanza de los autores

Abel Camacho-Galvan. Obtuvo las licenciaturas en ingenieria civil en la Universidad de Guadalajara y matematicas en la Facultad
de Ciencias de la UNAM, asimismo, las maestrias en ingenieria por parte de la UNAM y matematicas por la UAM-Iztapalapa.
Logro6 el doctorado en ciencias en el Instituto de Geofisica de la UNAM. Ha colaborado como académico e investigador en
el Instituto de Ingenieria, el Instituto de Geofisica y en la Facultad de Ingenieria, todas instituciones pertenecientes a la
UNAM, asi como en el Instituto Mexicano del Petrdleo, en UAM-Atzcapotzalco y UAM-Iztapalapa.

Beatriz Dolores Guardian-Soto. Obtuvo la licenciatura en computacion por la UAM-Iztapalapa y la maestria en ciencias por el
Instituto Politécnico Nacional. Es profesora investigadora de la misma institucion en la ESIME-Cu, en el Departamento de
Computacion. Actualmente cumple con los créditos del doctorado en Ciencias Sociales, UAM- Xochimilco.

Mario Rodriguez-Green. Curso la licenciatura en matematicas en la Facultad de Ciencias de la UNAM. Particip6 en proyectos de
investigacion en la Facultad de Ingenieria de la UNAM. Actualmente, colabora en el desarrollo de métodos de analisis
numérico y su instrumentacion computacional aplicados en la explotacion de yacimientos petroleros.

Vol.VI No.3 -julio-septiembre- 2005 217



	Sin título

