Ingenieria Investigaciéon y Tecnologia, ISSN en tramite
V1. 3. 177-186, 2005 (articulo arbitrado)

Sobre el uso de Logo en inteligencia artificial

M.A. Murray-Lasso
Unidad de Ensefianza Auxiliada por Computadora

Departamento de Ingenieria de Sistemas. Division de Ingenieria Mecanica e Industrial

Facultad de Ingenieria, UNAM
E-mail: mamurray @servidor.unam.mx

(recibido: agosto de 2004; aceptado: abril de 2005)

Resumen

Por ser un lenguaje derivado de LISP, el lenguaje Logg no obstante de tener fama de ser
un lenguaje para nifios, es un lenguaje adecuado para escribir programas de inteligencia
arti fi cial. El articulo se propone establecer lo ante rior. En vez de hacerlo escribiendo un
proyecto real de inteligencia arti fi cial implementando enLogo, lo que llevaria a un articulo
muy largo, se opta por tomar de la literatura de inteligencia arti fi cial un par de ejemplos
cortos elaborados en LISP, transcribirlos a Logo y hacer comparaciones entre los
programas en ambos lenguajes. Se espera con esto resaltar la similitud entre Logoy LISP.
Debido a la gran variedad de versiones de LISP existentes, y a que muchas versiones
tienen implementadas caracteristicas foraneas al origen y filosofia del lenguaje, se
escogié una version “pura” de LISP para hacer la comparacion.

Descriptores: Logo, LISP, inteligencia arti fi cial, programa, lenguaje de programacion.

Abstract
Since the Logo language was de rived from LISP, the clas si cal lan guage of ar tifi cial in teli gence, Logo, in

spiteofitsreputationasalanguagefor children, isad e quate forwriting ar tificial intel ligence programs.

The pur pose of the ar ti cle is to es tab lish this fact. In stead of do ing it by ex hib it ing a real ar tifi cial
intelligence pro ject im ple mented in Logo, which would re sult in a long pa per, we choose to select from the
artificialintel ligence literatureapairof shortexamplesimple mentedin LISP, trarscribe them to Logo,
and com pare the pro grams in both lan guages. Itis hoped that this will high light the sim i larity be tween
Logo and Lisp. Due to the great va ri ety of avaible LISP ver sions, and to the fact that many versions
have im ple mented characteristicas for eign to the or i gin and phi los 0 phy of the lan guage, a “pure” ver-
sion of LISP has been se lected to carry out the com par i son.

Keywords: Logo, LISP, artificial in tel ligence, program, programming lan guage.

<,
1

[SEALERVFA ™

MR,
oM,

257

T INEY

Introduccién

El Lenguaje Logo es un lenguaje disefiado para la
educacioén a todos los niveles, el cual ha adquirido la
reputacién de ser un lenguaje para nifios con el que
se pueden hacer dibujos interesantes y aprender
conceptos geométricos. En realidad, se trata de un
lenguaje completo, al igual que otros lenguajes como
FORTRAN, BASIC, C o Pascal, aunque con diferente
estilo y propositos, que en algunas versiones llega a

tener del orden de 700 o maés instrucciones
diferentes y que en algunas versiones tiene un
enfoque orientado a objetos y facilidades ca-
paces de manejar multimedios. El lenguaje fue
desarrollado comenzando alrededor de 1970,
entre el Laboratorio de Inteligencia Artificial del
MIT y la empresa Bolt, Beranek & Newman. Al
principio, el lenguaje corria en una DEC PDP-10
y tenia una tortuga robot que se desplazaba en
el piso, recibiendo Ordenes de avanzar,

Sobre el uso de Logoeninteligenciaarti fi cial

retroceder, girar a la derecha o a la izquierda, subir
0 bajar una pluma con la cual dibujaba sobre un
papel colocado en el piso al desplazarse. Con la
aparicion de las microcomputadoras, la tortuga
robot fue sustituida por una tortuga dibujada en la
pantalla de la computadora y se pudieron agregar
algunas instrucciones como MUESTRATOR-
TUGA Yy ESCONDETORTUGA que hacen que la
tortuga esté o no visible para evitar que estorbe la
vision del dibujo en la pantalla. En algunas ver-
siones de Logo se pueden manejar varias tortugas,
y en las mas poderosas, la cantidad es esen-
cialmente ilimitada (restringida solamente por la
capacidad de memoria de la maquina). Aunque el
lenguaje ha adquirido su mayor popularidad con
grupos de estudiantes a nivel primaria y se-
cundaria, en algunos lugares como MIT se le utiliza
a nivel licenciatura y posgrado, debido a que
ademds de poder ser Util en la ensefianza de la
geometria elemental, la tortuga y sus habilidades
pueden también orientar en conceptos mas
avanzados como Geometria de Riemann, Teoria de
Relatividad, Dinamica de particulas y de cuerpos
solidos, simulacion, robética y animacion, por
mencionar sélo algunos. Por otra parte, como
tiene instrucciones para manejar listas ligadas con
las que se pueden representar estructuras de
datos como arboles y redes, y tiene operadores
aritméticos, logicos y relacionales, asi como
instrucciones especiales para manejo de textos
largos y de musica, se puede utilizar para la
ensefianza de muchos otros temas incluyendo
gramatica, literatura, historia, ciencias sociales,
guimica, matematicas, musica y computacion.

Debido a que Logo es descendiente de LISP, uno
de los lenguajes preferidos de los investigadores
en inteligencia artificial, tiene muchas caracteris-
ticas en comudn con él. Por esta razén, en este
articulo trataremos de exhibir con base en ejem-
plos, que Logoes un lenguaje adecuado para llevar
a cabo estudios e investigaciones en inteligencia
artificial. Lo que haremos sera exhibir una serie de
programas en Logocon comentarios que hacen la
misma labor que otros programas escritos en LISP
tomados de fuentes bibliograficas del campo de la
inteligencia artificial. Dado que existen muchas
versiones de LISP y de Logo, se han tomado como
referencias muLispy LogoWriter, por tener ambas
versiones disponibles para probar los ejemplos.

El muLISP “Puro”

Los lenguajes que se utilizan en la practica pueden
tener manuales de referencia que ocupan varios
cientos de paginas, razén por la cual no se pueden
resefiar en un articulo corto como este. Muchas de
las instrucciones no son fundamentales y se tienen
disponibles para comodidad de los programa-
dores, evitdndoles o simplificAndoles su trabajo.
Por ejemplo, si se quieren intercambiar los valores
de dos variables, basta tener la instruccion de
asignacion para que con tres instrucciones se haga
la operacidn. Es decir, para intercambiar los va-
lores de las variables Ay B se puede escribir: T:=
A, A:=B, B:=T. Lo anterior se simplifica si se
cuenta con la funcion SWAP (A,B), que en una
sola instruccion logra el mismo resultado y ahorra
la introduccién de la variable temporal auxiliar T..
Si nos concentramos en las instrucciones real-
mente elementales, se podra establecer el pa-
recido y la equivalencia entre LISP y Logo en un
espacio relativamente corto. La version mas
recortada de muLISP conocida como muLISP Puro
(The Software House, 1984) reconoce como
primitivas fundamentales o basicas, a las instruc-
ciones CAR, CDR, CONS, EQ, y ATOM.Tanto LISP
como Logo manejan como principal estructura de
datos la lista, la cual se representa como un renglén
de elementos encerrados entre paréntesis () para
LISP, o entre corchetes [] para Logo. Los elementos
de una lista pueden ser otras listas, las cuales tienen
el mismo tipo de representacion. El elemento con
es tructura méas simple de LISP es un atomo, con-
cepto que corresponde al de nombre en Logo. (En
Logo, los nimeros también son a la vez nombres).

La funcion CAR de LISP toma una lista como

argumento que le extrae y produce como salida el
primer elemento de la misma, cualquiera que sea
su naturaleza. La correspondiente funcién en Logo
se llamaPRIMERO que se abrevia PRy hace exac-
tamente la misma funcién. Cabe hacer aqui la
aclaracion que el lenguaje Logq por su propdsito
educativo, generalmente se utiliza en el lenguaje
propio de cada pais, razon por la cual se presenta
en espanol. El LISP, por otra parte, se utiliza en
inglés.

La funcion CDR de LISP toma una lista como
argumento y produce como salida la misma lista,

178 Ingenieria Investigacion y Tecnologia, ISSN en tramite

M.A. Murray-Lasso

menos el primer elemento. La correspondiente
funcion en Logose llama MENOSPRIMERO vy se
abrevia MPR. Los nombres CAR y CDR tienen un
origen historico, basados en secciones de instruc-
ciones de la maquina IBM 704, primera en la que se
implementé LISP. La tradicion ha conservado
estos nombres y seria dificil desterrarlos. Por otra
parte, Logo, siendo un lenguaje mas reciente, utiliza
palabras que tienen un significado asociado con la
funcion que desempefian.

La funcion CONS de LISP, a la inversa de las
funciones CAR y CDR que seccionan listas, sirve
para construir listas a partir de pedazos; toma
como argumentos un atomo y una lista y los une
de manera que el &tomo se convierte en el CAR de
la lista y la lista se convierte en el CDR de la
misma, o lo que es lo mismo, a la lista le afiade por
el principio como un primer elemento, el &tomo.
La funcion corespondiente en Logo es PON-
PRIMERO, que se abrevia PPR. (Se esta ignorando
la posibilidad de hacer un CONS con dos atomos,
en cuyo caso se obtiene un “par con punto”,
concepto que no se trata aqui).

La funcién EQ de LISP es un caso de una funcion
predicado, la cual sirve para hacer pruebas logicas.
Normalmente, dichas funciones producen como
resultado, cierto o falso. La funcién toma como ar-
gumentos dos atomos y produce cierto (que en LISP
se representa con T)si los a&tomos son iguales yfalso
si no lo son. El resultado falsose representa en LISP
con la palabra especial NIL, la cual también se
utiliza para representar a la lista vacia sin elementos
y que también se puede escribir (). En Logo, la
correspondiente funcion ldgica se llama IGUAL? y
se le puede aplicar tanto a atomos como a listas.
(En LISP también existe una funcién de predicado
EQUAL que se le aplica tanto a &tomos como a
listas. Existen ciertas diferencias sutiles entre EQ y
EQUAL de LISP en cuyos detalles no vamos a
entrar). Otra diferencia entre LISP y Logo es queLogo
maneja los operadores numéricos +, —, *, /; y los
operadores relacionales <, >, = en notacion infijo
(ademas de hacerlo en notacion prefijo como LISP,
por lo que se puede aplicar una prueba logica con
expresiones parecidas a las de FORTRAN. Por
ejemplo, si a = b <tal cosa>. Este tipo de detalles
los comentaremos mas a fondo en las ilustraciones
posteriores.

La funcién predicado ATOMde LISP toma un 6b-
jeto como parametro y regresa T si el objeto es un

atomo y NIL si no lo es. En Logo se utiliza la funcién
I6gica PALABRA? con igual efecto que en LISP,

excepto gue contesta cierto o falso.

Con las cinco funciones primitivas basicas de
muLISP Puro que se describen anteriormente, se
pueden escribir otras funciones importantes (esen-
cialmente todas las demas). Como ejemplo se exhibi-
ran dos o tres de ellas. Utilizaremos la funcién DEFUN
gue proviene de las palabras DEfine FUNction y que
tiene la siguiente forma general:

(DEFUN nonbre (LAMBDA (argl arg2 ...)
tareal
tarea2
)
Los atomos <argl>, <arg2>, ... son los

nombres formales de los argumentos o para-
metros que se utilizan para referirse a los argu-
mentos concretos de la funcion. El cuerpo de la
funcidn contiene una o mas tareas.

La funcion NULL es una funcion importante de
LISP que se puede utilizar para determinar si una
lista estd vacia. Su definicion en términos de las
cinco primitivas basicas es la siguiente:

(DEFUN NULL (LAVBDA (OBJ)
(EQ GBJ NIL)))

Si le aplicamos la funcion NULL a algunas listas
obtenemos lo que se muestra a continuacién (lo

indentado es la contestacion de LISP)

$ (NULL ‘(A B Q)
NI L

$ (NULL ())
T

En la interaccidbn que se muestra aparece el
simbolo $ que es una invitacién (en inglés se llama
prompt) de LISP para que tecleemos una expresion
simbolica entre paréntesis, seguida por la opresion
de la tecla de retorno del carro para que LISP nos
la interprete y evalle. Los resultados producidos
por el lenguaje estan indentados. Todas las funcio-
nes en LISP producen algo, esta es una diferencia

Vol.VI No.3 -julio-septiembre- 2005 179

Sobre el uso de Logoeninteligenciaarti fi cial

con Logoen el cual hay funciones como las de LISP y
comandos, cuyo trabajo se logra por medio de
efectos colaterales, tales como que la tortuga
dibuje una linea o cambie el color del fondo de la
pantalla. Otra cosa gque notamos es la aparicion
del apodstrofe antes de la lista (A B C). LISP
interpreta la primera palabra de cualquier lista
como una funcién y las siguientes palabras como
los argumentos de la funcion. Sin embargo, a
veces alguno de los argumentos es una lista de
dbjetos y no queremos que se interprete al primer
elemento de dicha lista como una funcion. Para
lograr esto, se antecede la lista de un apostrofe
gue indica que hay que tomar la lista literalmente
como lo que se ve. Este es el caso de la lista (A B
C), pues no queremos que LISP crea que A es una
funcion y By C sus pardmetros. EnLogo se usa una
convencioén similar, pero en vez de un apoéstrofe se
usa un par de comillas “ . En Logo, las funciones
son cadenas de simbolos que no necesariamente
aparecen como el primer elemento de una lista
rodeada de corchetes. Por lo tanto, cualquier
cadena de simbolos que no incluye los simbolos “
- [1 () | yquenocoincide con las palabras
reservadas del lenguaje, es interpretado en Logo
como un comando o funcion. Los parentesis
circulares () se utilizan en Logo para delimitar
algunas funciones que tienen un ndmero
indeterminado de pardmetros y para cambiar las
prioridades de las diversas operaciones, sobre-
todo en expresiones en infijo. No se utilizan para
listas, ya que para ellas se utilizan los corchetes [].
Las variables siempre van precedidas, ya sea de :
gue denota valor, o de “ que denota tomar los
simbolos literalmente. Los espacios vacios son
importantes como separadores, tanto en LISP
como en Logo, pero da lo mismo un espacio que
varios.

Un segundo ejemplo de una funcion atil que es
primitiva en todas las versiones de LISP es la
funcién APPEND. Esta funcién lo que hace es unir
dos listas que se le dan como argumentos Yy
producir una sola con los elementos ordenados de
los argumentos, como elementos de la lista
resultado. Asi, si las listas son (ABC) y (DEF)el
resultado seria la lista (ABCD EF) vy silas listas
son ((ab)(cd)) y (efgh) el resultado seria la lista
(@ b) (c d)efgh). En otras palabras, le quita a
cada una de las listas argumento los paréntesis

exteriores, encadena todos los elementos y les
agrega paréntesis exteriores a la cadena resul-
tante. La definicion de APPEND en términos de
las primitivas basicas es

(DEFUN APPEND (LAVBDA (LST1 LST2)
((NULL LST1) LST2)
(CONS (CAR LST1) (APPEND (CDR
LST1) LST2))))

Al aplicarle esta funcion a algunas listas
obtenemos

$ (APPEND ‘ (JUAN PEDRO JAVIER) ° (
LU S ANTONI O))

(JUAN PEDRO JAVI ER LU S ANTONI O)
$ (APPEND ‘((AB) CD) ‘())

((A B) C D)

Notamos que con APPEND una lista vacia
como argumento desaparece del resultado final,
pues al quitarle los paréntesis no queda nada.
También que en la definicibn de APPEND aparece
la propia funcion APPEND. A esto se le llama
recursion. Aungue pareceria que la definicion es
circular, cada invocacion de APPEND se hace con
un argumento mas sencillo, pues al usar el CDR le
estamos quitando un elemento a la lista LST1, y
eventualmente la lista LST1 quedaréa vacia, por lo
que se aplicara la segunda linea de la definicién.
Tanto LISP como Logo son muy propensos a
elegantes definiciones recursivas. Desgraciada-
mente la recursion no es un tema sencillo, lo cual
junto con lo oscuro de los primeros manuales de
LISP ha hecho que dicho lenguaje adquiriese
injustamente la fama de ser un lenguaje dificil. Lo
gue si admitimos es que es diferente la manera de
pensar de los programadores de LISP (y Logo) al
compararlos con el tipico programador de
FORTRAN, Pascal, BASIC o C.

En la definicién de APPEND tenemos un ejemplo
de lo que en muLISP Puro es una tarea condicional,
gue se distingue de las tareas simples. Una tarea
simple es aquella cuyo CAR de la lista para
ejecutarla es un atomo; por ejemplo, (NULL ‘(A B
C)). Cuando el CAR de la lista correspondiente a la
tarea no es un &tomo como en ((NULL LST1) LST2),
el CAR de una tarea condicional es el predicado de la
condicional. Si el predicado regresa NIL, el valor de
la tarea también es NIL y la evaluacion del cuerpo

180 Ingenieria Investigacion y Tecnologia, ISSN en tramite

M.A. Murray-Lasso

de la funcién continGa con la siguiente tarea, en
caso de existir. Si el predicado regresa cualquier
cosa diferente de NIL, las tareas restantes en el
cuerpo de la funcion son ignoradas y la evaluacién
continlia usando el CDR de la tarea condicional
como las tareas restantes.

Un tercer ejemplo de una funcion util en LISP
definida por medio de las cinco funciones
primitivas basicas, es la funcion REVERSE que
invierte el orden de los elementos de una lista y
gue es primitiva en cualquier version de LISP. Su
definicidn es la siguiente:

(DEFUN REVERSE (LAMBDA (LST)
((NULL LST) NIL)

(APPEND (REVERSE (CDR LST)) (CONS
(CAR LST) NIL))))

Al aplicarle la funcion REVERSE a una lista se
dbtiene lo siguiente

$ (REVERSE ‘(1 2 3 4 5 6))
(6 54321)

Notese que para definir REVERSE se utilizé
APPEND, la cual fue definida previamente en
términos de las funciones primitivas bdésicas.
Conviene aclarar que la definicion de REVERSE
dada es muy ineficiente, pues llama a la funcién
para cada elemento del argumento. Hay defi-
niciones recursivas de REVERSE mucho maés
eficientes que la demostrada, ya que utilizan dos
listas, una de ellas inicialmente vacia para irse
llenando con los elementos de la lista a invertir en
orden inverso. Por economia de espacio sola-
mente se exhibe su definicion; y para distinguirla
de la anterior la llamaremos REVERSE2.

(DEFUN REVERSE2 (LAMBDA (LST1 LST2)
((NULL LST1) LST2)

(REVERSE2 (CDR LST1) (CONS (CAR
LST1) LST2))))

Para encontrar una lista invertida, hay que
ponerla como primer parametro de REVERSE2 y

poner la lista vacia como segundo parametro
como se muestra. (En algunas versiones de LISP
como muLISP se pueden omitir parametros, y éstos

toman el valor de la lista vacia como default — que
es lo que se necesita en este caso — la lista vacia

es a la vez un atomo).

$ (REVERSE2 ‘(1 23456) ‘())
(6 5432 1)

Para extraer el segundo y tercer elemento de
una lista se pueden utilizar combinaciones de CAR
y CDR. Por ejemplo, si se quiere obtener el
segundo elemento de una lista se puede definir
una funcién llamada SEGUNDO vy para el tercer
elemento TERCERO, asi como sigue:

(DEFUN SEGUNDO (LAVBDA (LST)
(CAR (CDR LST))))
(DEFUN TERCERO (LAVBDA (LST)
(CAR (CDR (CDR LST)))))
$ (SEGUNDO ‘(1 2 3 4 5))
2
$ (TERCERO ‘(1 (2 3) (4 5) 6 7))
(4 5)

Las combinaciones funcionales (CAR (CDR
LST)), (CAR (CDR (CDR LST))) y otras similares, se
usan tan frecuentemente que todas las versiones
de LISP las tienen como primitivas: a la primera se
le llama CADR a la segunda CADDR, y en general,
las funciones comienzan con la letra C y terminan
con la letra R; asimismo, cada A intermedia repre-
senta CAR y cada D intermedia representa CDR.
Normalmente se limita el nimero de letras inte-
rmedias a 3 0 4. Estas primitivas ejecutan mas
rapidamente que las combinaciones de CARy CDR
correspondientes, requieren menos trabajo de te-
clear y menos paréntesis, por lo que son pre-
feribles. Usando estas primitivas, las definiciones
de SEGUNDO y TERCERO quedarian

(DEFUN SEGUNDO (LAVBDA (LST)
(CADR LST)))
(DEFUN TERCERO (LAVBDA (LST)
(CADDR LST)))

Se han mostrado algunos ejemplos de como
con las funciones primitivas bésicas se pueden
definir otras funciones primitivas de LISP. Dado
gue también se han dado las equivalentes funcio-
nes de Logo, no resulta demasiado dificil concluir
que cualquier cosa que se pueda escribir en LISP

Vol.VI No.3 -julio-septiembre- 2005 181

Sobre el uso de Logoeninteligenciaarti fi cial

se puede traducir a Logo y viceversa, con tra-
ducciones que son muy similares en sintaxis y en
forma de ejecutar, pero con diferentes nombres de
funciones, de las cuales las de Logo son mas
mnemonicas. Para ilustrar esta aseveracion ha-
remos la traduccion a LogoWriter de algunos
programas sencillos en LISP tomados de Barr y
Feigenbaum (1982) y modificados ligeramente para
que queden en muLISP.

Versiones en Logo de algunos Programas
en LISP

Uno de los temas favoritos de los inves-
tigadores de inteligencia artificial es la solucion de
acertijos por medio de computadora. Entre las
mas elegantes soluciones de acertijos estan las
que se logran por medio de funciones recursivas.
Un acertijo muy popular es el conocido como “La
Torre de Hanoi,” en el cual se tienen tres agujas y
un conjunto de N discos de diametros crecientes
colocados los mayores hasta abajo y los menores
arriba, como se muestra en la figura 1. El acertijo
consiste en decir qué movimientos de discos hay
que hacer para lograr colocar todos los discos en
la aguja B en la misma forma que estan actual-
mente en la aguja A, con la condicién de que
durante los movimientos nunca quede un disco
mayor arriba de uno menor.

La solucién recursiva del acertijo se razona de
la siguiente manera:

1. Supongase que se tiene una estrategia
valida para mover los primeros N-1 de los

discos de la aguja en la que estan, a la aguja
gue se quiera, utilizando como aguja auxiliar
la aguja restante.

2. Entonces lo que se hace para mover los N

estrategia los primeros N-1 discos de la
aguja A a la C, utilizando la aguja B como
auxiliar; mover el disco N de laagujaAalaBy
finalmente mover con la estrategia los pri-
meros N-1 discos de la aguja C a la B,
utilizando la aguja A como auxiliar.

La estrategia descrita es esencialmente la que
utiliza la induccion matematica, que dice que si se
puede pasar del caso N-1 al caso N y puedo
resolver el caso N = 1, entonces tengo la solucién
para todos los enteros positivos.

A continuacién, se muestra la solucién del
acertijo de la Torre de Hanoi por medio de un
programa en LISP tomado de Barr y Feigenbaum
(1982).

(DEFUN MOVETOWER (LAMBDA (Di skLi st
PegA PegB PegC)

((NULL DiskList) NL)

(MOVETOMAER (CDR Di skList) PegA
PegC PegB)

(PRINT (LI'ST * Move (CAR DiskList)
‘from PegA ‘to PegB))

(MOVETOMER (CDR Di skList) PegC
PegB PegA))))

La ejecucién del programa para resolver el
acertijo de N=3 discos se muestra a continuacion:

(MOVETOAER * (Di sk3 Di sk2 Di sk1)
lC)

‘A'B

(Move Diskl fromA to B)
(Move Disk2 fromAto O
(Move Diskl fromB to Q)
(Move Disk3 fromA to B)
(Move Diskl fromCto A)
(Move Disk2 fromC to B)
(Move Diskl fromA to B)

discos de la aguja A a la B es pasar con la NI L
Aguja Aguja Aguja
A B C
Figura 1

182 Ingenieria Investigacion y Tecnologia, ISSN en tramite

M.A. Murray-Lasso

A continuacién, se muestra la version en Logo para
que el lector pueda apreciar la similitud

para MOVETOAER : Di skLi st : PegA : PegB
- PegC
si no vaci a? :Disklist [MOVETOAER npr
: Di skLi st : PegA : PegC

:PegB (escribe (lista “Mieve pr
:DiskList “de :PegA “a

: PegB)) MOVETONER npr : Di skLi st
: PegC : PegB : PegA]
fin

La correspondiente ejecucion es la siguiente:

MOVETONER [Di sco3 Disco2 Discol “A “B
“C

Mueve Di scol de
Mueve Di sco2 de
Mueve Di scol de
Mueve Di sco3 de
Mueve Di scol de
Miueve Di sco2 de
Miueve Di scol de

>0 0> 0> >
SV VR I I DR)
W >WOOW

El segundo programa es la funcion que casi
invariablemente se utiliza para explicar la recursién
en LISP, a saber, la funcion factorial.

(DEFUN FACTORI AL (LAVBDA (N)
(COND ((EQ N 1) 1)

(T (TIMES N (FACTORI AL
(DIFERENCE N 1)))))))

La ejecucion con el argumento N =5es

(FACTORI AL 5)
120

En Logo el correspondiente programa es

para FACTORIAL :n

si :n=17Jre 1]
re :n* FACTORIAL :n - 1
fin

La ejecucion paran =5 es

escri be FACTORIAL 5

120

Conviene hacer notar que los programas no
revisan el rango del pardmetro N o n, el cual debe
ser un numero entero positivo. Un programa
profesional si lo revisaria y ademas escribiria
comentarios en caso de encontrar parametros
invalidos.

El tercer ejemplo es un programa para sustituir
en una lista llamada Object, cada apariciéon de un
atomo Old por un atomo New, sin importar la
complejidad de la lista.

El programa que hace esto en LISP es el

siguiente:

(DEFUN SUBSTI TUTE (LANMBDA (Object O d
New)
(COND ((ATOM nj ect) (COND ((EQUAL
Object Ad) New) (T Object)
(T (CONS (SUBSTI TUTE (CAR
bj ect) A d New)
(SUBSTI TUTE (CDR

Object) Ad New))))))
Un ejemplo de ejecucion sigue:

(SUBSTI TUTE * (PLUS (TIMES A X) X) ‘X
“(PLUS 2 3))

(PLUS (TIMES A (PLUS 2 3)) (PLUS
2 3))

La traduccion a Logo es la siguiente:

para SUBSTI TUTE : Cbject :Ad : New
si vacia? :object [re []]
siotro no lista? :Object [siotro
:Object =:Ad [re : New]

[re :oject]] [re ppr SUBSTI TUTE
pr :Object:Ad : New

SUBSTI TUTE npr : Cbhject : O d : New
fin

La ejecucién correspondiente al ejemplo dado
arribaes:

escribe SUBSTI TUTE [PLUS [TI MES A X]
X] “X [PLUS 2 3]

PLUS [TIMES A [PLUS 2 3]] [PLUS 2 3]

Vol.VI No.3 -julio-septiembre- 2005 183

Sobre el uso de Logoeninteligenciaarti fi cial

Notamos que a diferencia de lo escrito por el
programa en LISP, lo escrito por el programa en
Logo no tiene los corchetes inicial y final de lista.
Esto se debe a que la instruccion “escri be”
despliega los elementos de una lista sin ponerle
los corchetes inicial y final; en cambio, la
instruccion “nuest ra” si se los coloca.

La similitud entre los dos lenguajes debe ser
evidente. Algunas de las diferencias tienen que ver
con el hecho de que LogoWriter considera error
tratar de sacar el primer elemento, o la lista
menosprimero de una lista vacia, mientras que
muLISP regresa NIL en ambos casos. Por esta
razon, en LogoWriter hay que prever con mas
cuidado que ciertas listas no se vacien para que la
ejecucion no se interrumpa por error.

El ultimo ejemplo que consideraremos tomado
también de Barr y Feigenbaum (1982), tiene que
ver con la manipulacion de hechos y reglas. El
conjunto de tres programas que se exhibieron,
hace deducciones légicas de una base de datos
con aseveraciones representadas en LISP por
medio de listas. Las aseveraciones son de dos
tipos: hechos que indican que es verdadero cierto
predicado sobre cierto objeto (por ejemplo (HOM-
BRE Sdcrates) asegura que SOcrates es un hom-
bre), y reglas generales que indican que un pre-
dicado implica a otro. Estas reglas quedaran repre-
sentadas por listas de la forma (TODO predicado,
predicado ,); por ejemplo (TODO HOMBRE MOR-
TAL) asegura que todos los hombres son mortales.

El programa PROVE, cuyo listado en LISP apa-
rece abajo, toma dos argumentos: una aseve-
racion como (MORTAL Socrates) y una base de
datos en la forma de una lista de aseveraciones; asi
también regresa T si la declaracion se puede
deducir de la base de datos y NIL si no se puede.
La funcién PROVE utiliza dos funciones auxiliares
FINDASSERTION y PROVESIT. La primera peina la
base de datos buscando, ya sea una aseveracion
igual a la que se quiere demostrar, 0 en su de-
fecto, una aseveraciébn que partiendo de un
predicado se implique un segundo predicado mas
una aseveracion que asegure que el segundo
predicado sea verdadero. Por ejemplo, si se quiere
demostrar (MORTAL Sdcrates) y no estando dicha
aseveracion en la base de datos se encuentra
(TODO HOMBRE MORTAL) y también (HOMBRE

Socrates), se puede deducir que como todo
hombre es mortal y Sécrates es hombre, entonces
Socrates es mortal, que es lo que queriamos
demostrar. La segunda funcion se encarga de los
detalles, de analizar si se da la cadena de
razonamiento mencionada.

$ (DEFUN PROVE (LAMBDA (Statenent
Dat aBase)

(FI NDASSERTI ON Dat aBase)))
$ PROVE

$ (DEFUN FI NDASSERTI ON (LAMBDA
(Rest Of Dat aBase)
(COND ((NULL Rest Of Dat aBase) NIL)
((OR (PROVESIT (CAR
Rest Of Dat aBase))
(FI NDASSERTI ON (CDR
Rest Of Dat aBase)))))))
$ FI NDASSERTI ON

$ (DEFUN PROVESI T (LAMBDA (Assertion)
(OR (EQUAL Statenent Assertion)
(AND (EQUAL (CAR Assertion) ‘ALL)
(EQUAL (CADDR Assertion)
(CAR Statenent))
(PROVE (CONS (CADR
Assertion) (CDR Statenent))

)))
$ PROVESI T

Dat aBase)

Vamos a suponer el caso muy sencillo de que se

quiere demostrar que es verdadero (MORTAL
SoOcrates) y que nuestra base de datos tiene las
siguientes aseveraciones (TODO HOMBRE MOR-

TAL) y (HOMBRE Sécrates), entonces lo que se
debe ejecutar es

$ (PROVE ‘ (MORTAL Socrates) *((HOVBRE
Sécrat es) (TODO HOVBRE MORTAL)
T

La version en LogoWriter de las tres funciones es

para PROVE : Statenment : DataBase
re FlI NDASSERTI ON : Dat aBase
fin

par a FI NDASSERTI ON : Rest Of Dat aBase
si vaci a? : Rest Of Dat abase [re “fal so]

184 Ingenieria Investigacion y Tecnologia, ISSN en tramite

M.A. Murray-Lasso

si PROVESIT pr :Rest O DataBase [re
“cierto]

si FI NDASSERTI ON npr : Rest Of Dat aBase
[re “cierto]

re “fal so

fin

para PROVESIT :Assertion

si igual? :Statenent :Assertion [re
“cierto]

si no igual? pr :Assertion “ALL [re
"fal so]

si (cuenta :Assertion) < 3 [re “fal so]
si no igual? pr npr npr :Assertion pr
:Statenent [re “fal so]

si no PROVE ppr pr npr :Assertion npr
:Statenment :DataBase [re “fal so]

re “cierto

fin

En la version de LogoWriter por el asunto de los
errores al querer tomar el primer elemento o la
menosprimer lista de una lista vacia, se tuvieron
que expandir en el procedimiento PROVESIT las
expresiones légicas compuestas en expresiones
sencillas, probando primero si la lista que
representa la aseveracion en la base de datos tiene
menos de tres elementos, para que al momento
de tomar el pr mpr mpr no se genere un errory se
suspenda la ejecucion. Fuera de detalles como
este, la l6gica en los dos trios de procedimientos
LISP y LogoWriter es la misma y los detalles muy
parecidos.

Al ejecutar la siguiente linea se obtiene lo que
se muestra

escribe PROVE [MORTAL Sobcr at es]
[[HOMBRE S6crates] [TODO HOVBRE

MORTAL]]
cierto

Si por otro lado, la aseveracién a demostrar es
[MORTAL Sdcrates] y la base de datos fuera
[HOMBRE Sécrates] [TODO ANIMAL MORTAL], en
la corrida con estos datos los procedimientos
contestarian falso. Asimismo, si se plantea la
misma aseveracion a demostrar y la base de datos
fuese [HOMBRE Sécrates] [TODO HOMBRE

ANIMAL] [TODO ANIMAL MORTAL], entonces la
corrida contestaria cierto.

Conclusiones

El proposito de este articulo ha sido exhibir la
similitud del lenguaje Logo representado por la
version LogoWriter con el lenguaje LISP, que a su
vez, es representado por la version muLISP. Para
mostrar dicha similitud, se analizaron las funciones
primitivas béasicas de lo que se llama muLISP Puro
y se hizo una correspondencia muy cercana con
instrucciones de LogoWriter. Al mismo tiempo, se
sefialaron las similitudes de las estructuras de da-
tos que manejan los dos lenguajes: listas, nombres
y numeros. En general, las versiones de LISP que
se tienen en el mercado tienen mas funciones que
las de Logo, pues el LISP es utilizado por
profesionales de la computacion, en particular, de
la inteligencia artificial, mientras que Logo es
utilizado en la ensefianza, frecuentemente por
estudiantes de primaria y secundaria. No obstante,
esperamos haber convencido al lector de que en
esencia son equivalentes los dos lenguajes, cosa
gue no debe extrafiarnos, pues ambos fueron
creados por investigadores de inteligencia arti-
ficial. Hay algunas diferencias que, descartada la
diferencia de numero y variedad de funciones,
inclina la balanza en favor de Logo, en opinién del
autor. Entre estas diferencias, estan el uso de
operadores aritméticos con notaciéon de infijo,
como estan acostumbrados los estudiantes de
matematicas. Se descarga el uso del paréntesis
que es una de las criticas fuertes en contra de LISP
gue obliga a la cuenta cuidadosa de normalmente
muchos paréntesis. En Logo, los paréntesis se
utilizan para cambiar la prioridad de las opera-
ciones en notacion infijo y para manejar funciones
con un numero variable de argumentos. Para las
listas, en Logo se utiliza el corchete. Otra de las
ventajas de Logo, es que los nombres son mas
mnemaonicos que en LISP y se tienen versiones en
las lenguas locales. Finalmente, entre las ventajas
importantes esta la tortuga y las facilidades para
hacer dibujos. Adicionalmente, casi todas las
versiones de Logo tienen instrucciones para ma-
nejar notas musicales y algunas como LogoWriter
tienen instrucciones para manejar textos largos.

La conclusion final es que Logo es un lenguaje
adecuado para estudiar inteligencia artificial,

Vol.VI No.3 -julio-septiembre- 2005 185

Sobre el uso de Logoeninteligenciaarti fi cial

precisamente por su similitud con LISP que es el
lenguaje de computadora de la inteligencia

artificial por antonomasia.

Referencias

Barr A. y Feigenbaum E.A. (1982). The
Handbook of Artificial Intelligence.
HeurisTech Press, Vol. I, Stanford, CA.

The Software House (1984). Tutorial System for
muLISP-83 (software).

Bibliografia sugerida

Charniak E. y McDermott D. (1985).
Introduction to Artificial Intelligence. Addison-
Wesley Publishing Company, Reading, MA.

Logo Computer Systems, Inc. (1990). Logo
Writer: Guia de Referencia. Macrobit Editores
SA. de CV, México.

Winston P.H. (1977). Artificial Intelligence. Addi-
son-Wesley Publishing Company, Reading,
MA.

Semblanza del autor

Marco Antonio Murray-Lasso. Realiz6 la licenciatura en ingenieria mecanica-eléctrica en la Facultad de Ingenieria de la UNAM. EI
Instituto de Tecnologia de Massachussetts (MIT) le otorgd los grados de maestro en ciencias en ingenieria eléctrica y
doctor en ciencias cibernéticas. En México, ha laborado como investigador en el Instituto de Ingenieriay como profesor en

la Facultad de Ingenieria (UNAM) durante 43 afios; en el extranjero, ha sido asesor de la NASA en disefio de circuitos por
computadora para aplicaciones espaciales, investigador en los Laboratorios Bell, asi como profesorde la Universidad Case
Western Reserve y Newark College of Engineering, en los Estados Unidos. Fue el presidente fundador de la Academia

Nacional de Ingenieria de México; vicepresidente y presidente del Consejo de Academias de Ingenieria y Ciencias
Tecnoldgicas (organizacion mundial con sede en Washington que agrupa las Academias Nacionales de hgenieria) y
secretario de la Academia Mexicana de Ciencias. Actualmente es jefe de la Unidad de Ensefianza Auxiliada por

Computadora de la Division de Ingenieria Mecanica e Industrial de la Facultad de Ingenieria de la UNAM, investigador
nacional en ingenieria, consejero educativo del MIT y consultor de la UNESCO.

186 Ingenieria Investigacion y Tecnologia, ISSN en tramite

