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Abstract

Since gas turbines are very complex and potentially unreliable machines, the improvement of their monitoring sys-
tems becomes an essential part. Considering this necessity, the present paper performs a gas turbine diagnostic al-
gorithm testing. The methodology proposed is formed by three stages. In the first stage, the commercial software
ProDiMES (Propulsion Diagnostic Method Evaluation Strategy) is used to simulate an engine fleet and generate data
with fault and no-fault conditions. In the second stage, a baseline model testing is implemented to improve the
healthy engine performance approximation. Finally, a fault recognition stage based on a pattern recognition techni-
que (Multi-Layer Perceptron) performs the diagnosis and calculates the probability of correct diagnostic decisions.
The results obtained show that: a) the software ProDiMES is an easy and convenient tool to evaluate gas turbine
diagnostic methods, b) the baseline model testing is a key step because it allows reducing the errors that can negati-
vely influence the diagnostic process and c) the algorithm correctly performs the fault recognition task.

Keywords: gas turbine diagnostics, baseline model, fault recognition, ProDiMES, multi-layer perceptron.
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Resumen

Debido a que las turbinas de gas son mdquinas muy complejas y potencialmente no fiables, el mejoramiento de sus sistemas de
monitoreo se vuelve una parte esencial. Considerando esta necesidad, el presente trabajo realiza una prueba de algoritmo de di-
agnostico de turbinas de gas. La metodologia propuesta se forma por tres etapas. En la primera, el Software comercial ProDiMES
(Propulsion Diagnostic Method Evaluation Strategy) se emplea para simular una flota de motores y generar datos con condicio-
nes de falla y sin falla. En la sequnda etapa, se implementa una prueba de modelos de referencia para mejorar la aproximacién de
rendimiento de motor sano. Finalmente, una etapa de reconocimiento de fallas basada en una técnica de reconocimiento de pa-
trones (Perceptrén Multicapa) que diagnostica y calcula la probabilidad de decisiones diagndsticas correctas. Los resultados ob-
tenidos muestran que: a) el software ProDIMES es una herramienta ficil y conveniente para evaluar métodos de diagndstico de
turbinas de gas, b) la prueba de modelos de referencia es un paso clave porque permite reducir los errores que influyen negativa-
mente al proceso de diagnodstico y c) el algoritmo realiza correctamente la tarea de reconocimiento de fallas.

Descriptores: diagnéstico de turbinas de gas, modelo de referencia, reconocimiento de fallas, ProDiIMES, perceptron multicapa.

INTRODUCTION

Gas turbines are very sophisticated and costly systems
that have been used in the past decades for different
industrial applications due to the capacity to produce
great amount of energy and because of their high effi-
ciencies (Boyce, 2006). Since faults and gradual deterio-
ration affect extremely the reliability and maintenance
costs, gas turbines need advanced condition based
maintenance and condition monitoring systems to en-
sure a correct operation (Rao, 1996). The success of the-
se systems depends on the enhancement of monitoring
software, the degree to which engine critical elements
are covered and the accuracy of diagnostic decisions.
Nowadays, different gas turbine diagnostic algorithms
are developed to identify as accurate as possible faults
conditions of major components (e.g., compressor,
combustion chamber and turbine). Gradual deteriora-
tion and abrupt faults (Meher et al.,, 2001) and sensor
faults (Kobayashi and Simon, 2008) can be detected as
well. This is achieved by measuring principal gas path
parameters such as pressure, temperature, rotation
speed, fuel rate, etc.

In order to contribute to the diagnostic process im-
provement, the aim of this paper is to perform a gas
turbine diagnostic algorithm testing. In previous works
(Cisneros et al., 2015; Felipe et al., 2015), only prelimi-
nary results were obtained and some algorithms were
tested separately. However, in gas turbine monitoring
systems, an integrated approach is necessary to have
more exact and reliable results. For this reason, the pre-
sent investigation proposes a methodology comprising
three unified stages. In the first stage, the gas turbine
data is obtained using the software ProDiMES which
works with no-fault conditions, faults and degradation
mechanisms. This software is used because not only si-
mulates a complete turbofan engine fleet based on a

high-fidelity thermodynamic model but also allows
evaluating gas turbine diagnostic algorithms (Simon et
al., 2008 and 2013). To simulate real behavior for each
engine, the software assigns unique deterioration profi-
les, noise levels and operation modes.

In the second stage, a baseline model testing is ca-
rried out to improve the healthy engine performance
approximation. Besides, baseline models allow compu-
ting deviations, which are indicators of an engine’s sta-
te (Loboda et al., 2004). Three variations are proposed
using simulated data with no-fault scenarios through
ProDiMES and the model with the lowest total error is
selected for the fault recognition stage. A baseline mo-
del can be developed based on a thermodynamic model
or artificial neural networks (Loboda and Feldshteyn,
2010). The first option needs complex algorithms while
the second one requires considerable execution time for
training. Consequently, the present paper uses a poly-
nomial function to ease the diagnostic algorithm. The
least squares method is employed to calculate model
coefficients determining the baseline model.

In the third stage, the baseline model selected is
used as a basis to perform the fault recognition. With
the intention of extracting the diagnosis information
from raw data, it is necessary to use deviations calcula-
ted using actual measurements generated by simula-
ting fault scenarios and healthy engine values. Three
steps are proposed to compute deviations:

1) Initial deviation computation using a general model,
2) Creation of individual models and
3) Final deviation computation using individual models.

With these final deviations, normalized vectors (also ca-
lled patterns), can be obtained to form a diagnostic space
and perform the fault recognition. Gas turbine fault diag-
nostics, particularly the gas path fault identification, is
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based on pattern recognition techniques such as Radial
Basis Network (Loboda et al., 2010), Probabilistic Neural
Network (Tsalavoutas et al., 2000), Bayesian Network
(Romessis and Mathioudakis, 2004) and Multi-Layer Per-
ceptron (MLP) (Roemer and Kacprzynski, 2000; Volponi
et al., 2000; Sampath and Singh, 2004). The latter techni-
que has been applied widely in the past years and has
shown that is it not inferior to other methods (Loboda et
al., 2010). Therefore, this work uses the MLP to calculate
the probability of correct diagnosis. The methodology
utilized is implemented in Matlab. Its neural network
toolbox (Beale et al., 2014) assists in an efficient develop-
ment of the algorithm.

The paper is organized as follows. Section 2 gives
the description of the methodology proposed. Section 3
describes the pattern recognition method used. Section
4 presents the results obtained for the baseline model
testing and the gas turbine fault recognition.

METHODOLOGY PROPOSED FOR GAS TURBINE DIAGNOSTICS

The methodology proposed (Figure 1) includes the fo-
llowing main stages:

1) Gas turbine data simulation using the software Pro-
DiMES (Propulsion Diagnostic Method Evaluation
Strategy),

2) Baseline model testing to enhance the healthy engi-
ne performance approximation and

3) Gas turbine fault recognition and the calculation of
diagnosis accuracy. The stages are described in the
below subsections.

(GAS TURBINE DATA SIMULATION USING THE SOFTWARE
PrRODIMES

Most of the real gas turbine faults are not so severe or
rarely occur in practice to be sufficient for a complete
fault description. Also, physical experimentation is not
a feasible option because of the very high costs. Instead,
mathematical models are applied (Saravanamuttoo and

Maclsaac, 1983). This work uses the software ProDi-
MES as a tool to simulate a fleet of engines and study
the algorithms for gas turbine fault diagnostics. ProDi-
MES was developed by the NASA Glenn Research Cen-
ter originally intended for benchmarking international
gas path diagnostic methods (Simon et al., 2008, 2013).
ProDiMES includes an Engine Fleet Simulation
(EFS) that generates simulated measurement parame-
ter histories for each engine of the fleet. To simulate real
engine behavior, it works with a deterioration profile,
noise level and operation mode (takeoff and cruise)
unique for each engine. The EFS is implemented in
Matlab and consists of a Graphical User Interface (GUI),
a Case Generator and a C-MAPPS Steady State engine
model (Simon, 2010). Each element is described below.

GRrAPHICAL USER INTERFACE (GUII)

In the Graphical User Interface (GUI), the user can con-
trol the type and the number of faults occurring in the
engine fleet. The maximal number of possible simula-
ted faults is 18 plus a no-fault case. Table 1 shows these
fault cases and their magnitudes, within which the
faults are distributed uniformly. Module faults (ID 1-5)
corresponding to Fan, LPC, HPC, HPT and LPT are si-
mulated by adjusting at the same time efficiency and
flow capacity parameters. Actuator faults (ID 6-7) co-
rresponding to VSV and VBV result from a mis-schedu-
ling between the commanded and current actuator
position. There are also 11 different sensor faults (ID
8-18) whose magnitudes are in units of average measu-
rement noise standard deviation o. It is important to
mention that in EFS, each individual engine only expe-
riences a single fault type. Other aspects to consider
are: the number of flights to generate the output data
(the maximal number is 5000 flights per engine); the
fault evolution type (abrupt or rapid); the flight of fault
initiation (the 11" flight is the lowest value) and the sen-
sor noise (on or off).

The EFS works with eleven sensed variables. The se-
ven measured variables shown in Table 2 are available
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for monitoring and are represented by a vector Y. Table
3 shows four measured variables used as operating con-
ditions represented by a vector U. All the variables co-
rrespond to an engine standard measurement system.

CASE GENERATOR

The case generator produces parameter histories after
the user has selected the number and type of faults in
the GUI stage. One important characteristic is the ran-
dom generation of unique faults, degradation profiles
and operating history for each engine in the fleet. This
also includes the following assignations: the date
when the collection of the engine data starts, the city
pairs for the takeoffs of the engine, the ambient pres-
sure, the atmospheric temperature, the Mach number
and power setting parameters for takeoff and cruise.
The level and rate of gradual performance deteriora-
tion for each engine are also considered by the Case
Generator. They emulate the degradation that an air-
craft engine experiences during its lifetime due to di-
fferent effects such as fouling, erosion, and corrosion
of blades and vanes. The gradual deterioration is not
considered a fault and its development is much slower
than the produced by faults.

Table 1. Simulated fault cases (Simon, 2010)

ID Fault description Fault magnitude
0 No-fault -

1 Fan fault 1a7%
2 LPC fault 1a7%
3 HPC fault 1a7%
4 HPT fault 1a7%
5 LPT fault 1a7%
6 VSV fault 1a7%
7 VBV fault 1a19%
8 Nf sensor fault +lal0o
9 Nc sensor fault +lal0o
10 P24 sensor fault +lal0o
11 Ps30 sensor fault +lal0o
12 T24 sensor fault +lall0o
13 T30 sensor fault +lal0o
14 T48 sensor fault +lall0o
15 Wf sensor fault +lall0o
16 P2 sensor fault +lal0o
17 T2 sensor fault +lal0o
18 Pamb sensor fault +lal9co

*LPC=Low Pressure Compressor, HPC=High Pressure Compressor,
HPT=High Pressure Turbine, LPT=Low Pressure Turbine, VSV= Variable
Stator Vane, VBV =Variable Bleed Valve

Table 2. Monitored variables (Simon, 2010)

ID Variable Symbol
1 Physical core speed Nc

2 Total pressure at LPC outlet P24

3 Static pressure at HPC outlet Ps30
4 Total temperature at LPC outlet T24

5 Total temperature at HPC outlet T30

6 Total temperature at HPT outlet T48

7 Fuel flow Wit

Table 3. Operating conditions (Simon, 2010)

ID Variable Symbol
1 Physical fan speed Nf

2 Total pressure at fan inlet P2

3 Total temperature at fan inlet T2

4 Ambient pressure Pamb

C-MAPSS STEADY-STATE ENGINE MODEL

The Commercial Modular Aero-Propulsion System Simula-
tion (C-MAPSS) Steady State is a high-bypass turbofan
engine model created for diagnostics research (Simon,
2010). This model is run inside the EFS and receives the
outputs from the Case Generator to produce the simu-
lated measurement parameter histories for each engine,
at takeoff and cruise of each flight. C-MAPSS works
with two spool speeds (fan and core speed). Figure 2
shows the station numbers, the modules and the simu-
lated sensor variables of the C-MAPSS Steady-State
model.

BASELINE MODEL TESTING

In order to know the current gas turbine condition by
means of measured gas path variables, it is necessary to
describe correctly its healthy state. According to Loboda
et al. (2004), a good approximation of healthy engine per-
formance, also called baseline model, can be given by
complete second order polynomials. Also, polynomials
have shown to be better than other techniques (Loboda
and Feldshteyn, 2010). Considering one monitored gas
path variable as function of four operating condition ar-
guments , the baseline model can be expressed as

Y, (U) =a, +a,u, +au, +a,u, +au, +auu, +a,uu, +

2
aguu, +au,u, +a, u,u, +a, uu, +a,u +

ey

uZ

2 2
ﬂ13u2 + a14u3 + alS 4

where a,, ..., a,; are the model coefficients calculated
using the least squares method for all monitored
variables.
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To find an adequate baseline model, three model varia-
tions are proposed by simulating no-fault cases (healthy
engine scenarios) through EFS for cruise operation
point. These variations are specified in Table 4 contai-
ning their principal characteristics and are briefly des-
cribed as follows. Variation 1 is created using 100
engines and 5000 flights per engine, however, only the
first 90 flights are taken into consideration to form the
model because the deterioration is not so great in that
interval. Variation 2 works with 1 engine and 5000
flights. Variation 3 simulates 300 engines and 5000
flights per engine but, only 270 flights are considered
for model creation. For all variations, the number of
model coefficients is k=15 and sensor noise is not consi-
dered. The criterion to select the best variation is based
on the lowest total model error. First, an error for one
monitored variable dY is calculated as

Table 4. Characteristics of baseline model variations

@

Figure 2. C-MAPSS Steady-State station
numbers, modules and sensors (Simon,
2010)

T48

SY=— 0 @)

where Y* and Y, are measured and baseline model va-
lues respectively. Then, the total error ¢ for each varia-
tion is obtained by using the Root Mean Square (RMS)
of N (mx1)-vectors 5Y produced by all engines and
flights considered for model (see Table 4)

1

€= N flzl 6?1‘2 ®)

After finding the model variation with the lowest €, the
model coefficients are passed to the gas turbine fault
recognition stage within a matrix C.

. EFS Number of Total flights Flights considered =~ Number of model Sensor
Baseline model . H . .
fault type engines per engine for model coefficients noise
Variation 1 No-fault 100 5000 90 15 Off
Variation 2 No-fault 1 5000 5000 15 Off
Variation 3 No-fault 300 5000 270 15 Off
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(GAS TURBINE FAULT RECOGNITION
DEVIATION COMPUTATION

Due to the variation of gas turbine operation condi-
tions, absolute gas path monitored parameters change
as well. Since these changes are greater than the produ-
ced by faults, the latter remain hidden. Therefore, a
diagnostic process requires an important step of devia-
tion computation to reveal deterioration and faults
effects (Loboda et al., 2004). Three steps are proposed to
calculate deviations needed for the gas turbine diag-
nostic algorithm:

1) Initial deviation calculation using a general model,
2) Creation of individual models,
3) Final deviation calculation using individual models.

1. Initial deviations using a general model. After selec-
ting the variation model with the lowest error, the
(kxm)-matrix C of model coefficients is used to form the
general baseline model. It can be expressed as

Yo=0'C (4)

where Y¢ is a (I1xm)-vector and W is a (1xk)-vector of
components 1, u;, u,, ..., u,’,u,’ obtained from simula-
ted data using fault cases. An initial deviation AY is
obtained in the same way as equation (2) computing a
relative difference between measured elements Y* and
general baseline values Y¢ of a monitoring variable

YY)
T

AY

®)

Using the mean of these deviation vectors for the first
n=10 simulated flights per engine (before the fault ini-
tiation) and considering one engine, we have

" AY,
= ]

n

5Yo- ©)

where §Y¢ is a correction deviation vector and j is the
index for flights.

2. Creation of individual models. As mentioned before,
the Case Generator randomly assigns a unique opera-
ting history and deterioration profile to each engine in
the fleet. However, the general model (4) does not con-
tain these individualities. For this reason, individual
models are needed before calculating the final devia-
tions. Considering one flight and one engine, an indivi-

dual model vector for all monitored variables is given
by

Yp=Yo(1+5Y9) )

where §Y¢ and Y¢ are vectors of correction deviations
and general model values respectively.

3. Final deviation calculation using individual models.
Using individual baseline values Yp for a monitored
variable, we obtain

Y*-Yp

5Yp=
P= Y,

8)

where dYp is a final deviation. These deviations are the
base of fault class formation.

FAULT CLASS FORMATION

With the intention of having a homogeneous diagnostic
process, deviations (8) are normalized as follows

_oYp

Oy

zZ ©)

where 0, is a mean deviation error. One vector Z of m
monitored variables represents a fault pattern to be re-
cognized and built the diagnostic space where fault
class formation is conducted. Since there is a considera-
ble variation of engine faults in gas turbine diagnostics,
they are separated into a limited number of classes. Ba-
sed on the pattern recognition theory, a state D can be
considered as only one of present classes

D, D, .. D, (10)
Thus,
> 1. PD,)=1 and P_(D,/D,)=0 (11)

In ProDiMES, each fault class is constructed from pat-
terns with the change of only one fault parameter (sin-
gular fault class).

TRAINING AND VALIDATION

In a pattern recognition process, the data can be separa-
ted into two parts: training and validation sets. Both
sets are described shortly below and summarized in
Table 5. The training set Z; unites patterns of all classes
and is employed to train the method under analysis. It
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is formed by simulating all the 19 fault cases available
in ProDiMES for better verification of the diagnostic al-
gorithm (18 faults + 1 no-fault case), a determined num-
ber of engines per class and flights per engine for cruise
operating point. The flight fault initiation selected is 11
with the option “fixed”, this means that the first 10
flights will not experience any fault. The fault evolution
rate is selected as “rapid”. Since accuracy of fault clas-
ses’ description depends on the number of simulated
patterns, 100 engines per class and 50 total flights per
engine are considered. However, the number of flights
per engine for rapid fault evolution is 34. For this rea-
son, 3400 patterns per class are employed. Thus, the to-
tal size of the training set is 64600 patterns (19 fault
cases x 100 engines x 34 flights).

The validation set Z, is created to verify that the net-
work can generalize the fault classes correctly. It is for-
med in the same manner as the training set Z;; however,
its size is ten times smaller because it works with 340
patterns per class. Therefore, the total size of the valida-
tion set is 6460 patterns (19 fault cases x 10 engines x 34
flights). Every pattern in the validation set belongs to a
known class.

Figures 3-5 exemplify the fault class formation using
patterns of Z, in the space of two normalized devia-
tions: Figure 3 shows class 1 (no fault) and class 4 (HPC
fault); Figure 4 shows faults 2-8 including component
and actuator faults; Figure 5 shows sensor faults 10-14.

DIAGNOSIS ACCURACY

The fault recognition method selected classifies each
pattern of the set Z,, producing the diagnosis d,. Com-
paring d, with a known class D, for all validation set
patterns, a confusion matrix is generated. Its diagonal is
formed by correct pattern classification probabilities
per class. A mean number Pis obtained from these pro-
babilities representing the total diagnosis accuracy of
the gas turbine fault recognition.

FAULT RECOGNITION METHOD

The fault recognition method chosen for this work is
the Multi-Layer Perceptron (MLP). The MLP is an arti-

ficial neural network intended for classification pro-
blems. It uses a back-propagation algorithm that pro-
pagates a signal for a given input vector, producing an
output and adapting unknown coefficients based on
the error between a target and the network output. Fi-
gure 6 shows the general structure of the MLP. The in-
put for each hidden layer neuron is given by the sum of
an input vector Z multiplied by weights in a matrix W,
and a bias value (from a vector b,). The result is passed
through a differentiable transfer function f, (tansig)
producing the neuron output (contained in a vector 4,)
within an interval of [-1, 1]. For the output layer neu-
rons, the computation is repeated in the same way
using the vector 4, as input to the layer, a matrix W,, a
bias vector b,, and a transfer function f, (logsig), produ-
cing the network output contained in a vector 4, within
an interval of [0, 1]. The MLP is trained on known pair’s
vectors: the input vector and the target vector formed
by 1 and 0 representing the membership of a class. The
number of input layer neurons is seven, which repre-
sent the seven monitored variables. There are nineteen
output layer neurons corresponding to the nineteen fault
cases. Since the variation of the hidden neuron number
produces different results, it is necessary to find the opti-
mal setting by trial and error that yields the maximal
diagnosis accuracy. Another parameter to set is the num-
ber of epochs, which is the number of iterations to upda-
te weights and biases. The network training also needs
some additional parameters such as the type of activa-
tion function and the back-propagation method.

DIAGNOSTIC ALGORITHM RESULTS

ERRORS OF MODEL VARIATIONS

As shown in (Cisneros et al., 2015), Variations 1 and 3
contain displacements in their plots of errors dY at cer-
tain intervals due to the influence of each engine. This
situation was addressed in Subsection deviation com-
putation to correct individualities of all engines. Figure
7 shows the errors of Variation 2 for 5000 flights and
one monitored variable. Here, the engine degradation
effect is observable through all flights. Each engine in
the fleet experiences this inevitable situation.

Table 5. Characteristics of training and validation sets

Number of Engines Total flights Flight FauI.t Flights for fault Sensor
Set ; of fault evolution . -
classes perclass perengine . .. evolution noise
initiation rate
Training 19 100 50 11 Rapid 34 On
Validation 19 10 50 11 Rapid 34 On
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The total error e for each of the three variations was
calculated using the RMS of the vectors Y for all engi-
nes and flights. Table 6 shows these results. Variation 2
has the greater error (a mean for all monitored variables
of 0.0114). The reason of this could be because the de-
gradation is greater using 5000 flights. Variation 1 and
Variation 3 yield the lowest errors (a mean of 0.0021 and
0.0023 respectively). Since the errors remain very close,
any variation of the two can be chosen. However, Varia-
tion 3 works with more data (300 engines x 270 flights)
than Variation 1 (100 engines x 90 flights) resulting in

oA XS
\.‘%\s& R

fi

Figure 4. Component and actuator faults

Figure 5. Sensor faults

more execution time. For this reason Variation 1 is the
model selected for the gas turbine diagnostic algorithm.

FAULT DIAGNOSIS ACCURACY

In order to have the highest diagnosis accuracy, two
MLP parameters were tuned: the number of hidden la-
yer neurons and the number of epochs. After perfor-
ming different computations, 54 neurons and 2000
epochs produced the maximal validation probability.
Figure 8 shows an example of this tuning. Figure 9 pre-

5000

INPUT HIDDEN LAYER OUTPUT LAYER Figure 6. Structure of the MLP
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Figure 7. Errors dY of Variation 2 (1 engine and 5000 flights)
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Table 6. Total error e for all model variations and monitored variables

Baseline model Y, Y, Y, Y, Y, Y, Y,

Mean

Variation 1 0.0008 0.0010 0.0038 0.0003  0.0012  0.0024 0.0054
Variation 2 0.0012 0.0026 0.0276 0.0014 0.0054 0.0296 0.0123
Variation 3 0.0008 0.0010 0.0040 0.0004 0.0013  0.0031 0.0052
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Table 7. Diagnosis probability of each fault class (training and validation)

Fault class Training Validation
probability probability

Class 1 0.3632 0.3950
Class 2 0.5247 0.6050
Class 3 0.2447 0.4050
Class 4 0.6288 0.5525
Class 5 0.8244 0.5375
Class 6 0.6682 0.6100
Class 7 0.7126 0.5825
Class 8 0.1150 0.0925
Class 9 0.3209 0.3225
Class 10 0.0924 0.1175
Class 11 0.5197 0.4950
Class 12 0.2168 0.3750
Class 13 0.4526 0.2400
Class 14 0.4650 0.3875
Class 15 0.5365 0.4450
Class 16 0.4871 0.4650
Class 17 0.1071 0.1250
Class 18 0.4288 0.5100
Class 19 0.0165 0.0125

P 0.4066 0.3829

Figure 8. Optimal number of hidden
neurons

Figure 9. Diagnosis probability of each
fault class

sents the diagnosis probability of each fault class for
training and validation sets. Table 7 shows these values
as well. For validation, the higher probabilities are ob-
tained from classes 2, 6 and 7 (60.50 %, 61.00% and

58.25% of recognition respectively) while the lowest
probabilities are produced by classes 8, 10 and 19
(9.25 %, 11.75 % and 1.25 % respectively). The differen-
ces between the probability values of both sets are ex-
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plained by the limited pattern number of the validation
set. The increase of this number can produce more ac-
curate and closer results. The total diagnosis accuracy
for training is 40.66% and 38.29% for validation. P

CONCLUSIONS

The data generation using the software ProDiMES
allowed the simulation of healthy and faulty condi-
tions of an engine fleet in an appropriate environment
facilitating the diagnostic process. This enabled the
test of our diagnostic approach on the data of a new
engine. The stage of baseline model testing permitted
finding the best healthy engine performance approxi-
mation. This stage in an important part of the diagno-
sis process because it directly affects the diagnosis
accuracy. After performing the calculations, the con-
clusion is that the baseline model selected has low le-
vel of errors and the deviations computed with this
model adequately reflect engine health conditions. In
the gas turbine fault recognition stage, the Multi-La-
yer Perceptron was used to classify the fault patterns.

The results showed that this network correctly per-
forms this task; however, the diagnosis accuracy for
both sets (training and validation) seems to be relati-
vely low. Some objective reasons of this could be: the
great number of fault classes and the low fault severi-
ty randomly assigned to them. The other possible ex-
planation is that we did not take into consideration all
peculiarities of the engine simulation in ProDiMES
because we are not authors of this simulator.

Future works can consider working with different
recognition methods such as Radial Basis Network,
Probabilistic Neural Network or Support Vector Machi-
nes in order to ensure that the fault recognition process
was carried out correctly. The major issue is to increase
the diagnosis accuracy.
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NOMENCLATURE
C-MAPSS Commercial Modular Aero-Propulsion Y Vector of monitored gas path variables
System Simulation
EFS Engine Fleet Simulation Yp, Yp Scalar and vector of individual baseline values
GUI Graphical User Interface Y, Y Scalar and vector of general baseline values
HPC High Pressure Compressor 7, Z Scalar and vector of normalized deviations /
neuron input vector
HPT High Pressure Turbine Zy,Z, Training and validation sets
LPC Low Pressure Compressor Y Flow capacity
LPT Low Pressure Turbine AY, AY Scalar and vector of initial deviation values
MLP Multi-Layer Perceptron dY, Y Scalar and vector of model errors
VBV Variable Bleed Valve dYp, dYp Scalar and vector of final deviations
VSV Variable Stator Vane dY P Deviation correction vector
a,da, Layer output vectors n Efficiency
l;l, Ez Vectors of bias values c Standard deviation
C Matrix of model coefficients oy Mean deviation error
d Diagnosis SUBSCRIPTS AND SUPERSCRIPTS
D Fault class 0 Baseline value
€ Total error of model variation * Measured value
fifo Network transfer functions i Index for errors
m Number of monitored variables j Index for flights
P Mean probability of correct diagnosis k Index for model coefficients
w Vector of operating conditions In Fault class indices
W, W, Vector of components U q Number of fault classes

Matrices of weight coefficients
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