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Abstract 

Mixture experiments are experiments performed using ingredients whose 
proportions are restricted. This restriction may result in extremely small ran-
ge in terms of the mixtures, causing difficulties in model fitting arising from 
ill-conditioning. The choice of model form is a very important factor in the 
numerical stability of the information matrix. In this paper, the intercept mo-
del is compared against the slack-variable model for mixture experiments. 
We analyzed if it matter which component is replaced for the constant term 
in the intercept model, in the sense on numerical stability. We also show by 
numerical examples that the Correlation Criterion, presented in Kang et al. 
(2015), does not work for the intercept model. Next, as suggested in the lite-
rature, we use linear transformation to alleviate the numerical instability. In 
addition, we try four transformation methods and choose the best one for 
the intercept model and the slack-variable model. Finally, we compare the 
intercept model with the slack-variable model based mainly on the predic-
tion accuracy and numerical stability.  
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Introduction

A mixture experiment is one in which the response de-
pends only on the relative proportions of the ingre-
dients, or components, present in the mixture, this 
proportions represent the design variables. In such 
experiments, by mixing different components, the 
product is developed. Mixture experiments frequently 
appear in fields such as chemical, pharmaceutical, 
food and plastic industries. There are certain type of 
mixture experiments where the total amount of the 
mixture, or process variables, are involve too as a  de-
sign variables (Piepel and Cornell, 1985; Goldfarb  
et al., 2004). In this paper, we focus on the mixture ex-
periments with the proportions of the components as 
the only input variables. 

If xi denotes the proportion of the ith of q compo-
nents, then xi ≥ 0 for i = 1, 2, ..., q, and

(1)

Commonly the design region (1) is subject to additional 
constraints of the form

ai ≤ xi ≤ bi	 (2)

to one or several components. These additional restric-
tions may result in extremely small range in terms of 
the mixtures. Not only does the experimental design 
region become constrained, but the resulting model 

from a mixture experiment also has to satisfy the cons-
traint. This can cause difficulties in model fitting arising 
from ill-conditioning. That is, the columns of the corres-
ponding model matrix can be almost linearly depen-
dent (Prescott et al., 2002). Some consequences of 
ill-conditioning are that the least squares estimators of 
the parameters have large standard errors and are 
highly correlated, and the estimates are highly depen-
dent on the precise location of the design points.

Data from a mixture experiment are usually mode-
lled using Scheffe´’s polynomial models (Sheffé, 1958). 
The quadratic Scheffe´’s model has the general form:

Scheffe´’s model

where bi and bij  are unknown parameters to be esti-
mated.
Because of the mixture constraint Eq. (1), the quadratic 
form of Scheffe´’s model involves linear terms and 
cross-product terms only, but this could be re-parame-
terized to include square terms (Philip and Norman, 
2009). In fact, there are a number of different ways of 
writing a polynomial model, of any specified order, ob-
tained by re-parameterization using the mixture cons-
traint (Prescott et al., 2002). 

Alternative polynomial model forms include the in-
tercept models, which are obtained by replacing one 
mixture component, for example xq, for a constant term. 
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Resumen

Los diseños de experimentos para mezclas son diseños que se llevan a cabo usando 
ingredientes cuyas proporciones están sujetas a restricciones. Dichas restricciones 
pueden dar como resultado un rango extremadamente pequeño en términos de las 
mezclas, causando dificultades en el ajuste del modelo debido a problemas de coli- 
nealidad. La elección de la forma del modelo es un factor importante en la estabili-
dad numérica de la matriz de información. En este artículo, se compara el modelo 
intercepto contra el modelo de variable de holgura en experimentos para mezclas. 
Se analizó la importancia de cuál componente se remplaza por el término con-
stante en el modelo intercepto, en el sentido de estabilidad numérica. Asimismo, se 
muestra mediante ejemplos numéricos que el Criterio de Correlación, presentado 
por Kang et al. (2015), no funciona para el modelo intercepto. Después, como se 
sugiere en la literatura, se emplearon transformaciones numéricas para mejorar la 
inestabilidad numérica. Adicionalmente, se probaron cuatro métodos de transfor-
mación y se seleccionó el mejor, tanto para el modelo intercepto como para el mo- 
delo de variable de holgura. Finalmente, se comparó el modelo intercepto contra el 
modelo de variable de holgura basado principalmente en la precisión de predicción 
y la estabilidad numérica. 

Descriptores: 

•	 diseño de experimentos para 
mezclas

•	 modelo intercepto
•	 modelo de variable de  

holgura
•	 transformación de variables
•	  número condicional
•	 factor de inflación de  

la varianza
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A related model is the slack-variable model, in which 
one variable (designated the slack variable) is entirely 
eliminated by substitution; that is, by expressing it in 
terms of the remaining k – 1 components using Eq. (1), 
then substituting it into Scheffe´’s model (Piepel and 
Cornell, 1985). The different between the intercept mo-
del and the slack-variable model, is that the slack-varia-
ble model has quadratic model terms, while intercept 
model only present linear and interactions model 
terms, see (Cornell, 2000; Philip and Norman, 2009; An-
dré, 2005). Such re-parameterized models are equiva-
lent in the sense that they lead to the same predicted 
values and basic analysis of variance (Philip and Nor-
man, 2009). These two models are re-parameterizations 
of one another and all lead to the same fitted response 
contours and residuals. The equations may be expres-
sed as follows, with the same symbols being used for 
parameters that are common to the different models:

Intercept mode

(3)

Slack-variable model

(4)

Moreover γi = βi − βq, αi = βi − βq + βiq, αii = −βiq and αij =  
βij − (βiq + βjq).

The pros and cons of the use of intercept models or 
slack-variable models, as opposed to Scheffe´’s model, 
have generated a lot of discussions among research 
workers and practitioners (André, 2005). This issue was 
discussed by Cornell (2000), one of the questions raised 
by him was “does it matter which component is desig-
nated the slack variable?” He attempted to answer this 
question by discussing three numerical examples. In 
André (2005), the same issue was revisited from a diffe-
rent perspective. Emphasis was placed on model equi-
valence through the use of the column spaces of the 
matrices associated with the fitted models. It was shown 
that for the Scheffe´’s complete model and its corres-
ponding slack-variable models, their reduced models, 
or submodels, provide different types of information. 
For some reduced models of a given size, Scheffe´’s mo-
del may provide the best fit, but for other reduced mo-
dels, some slack-variable models may be preferred.  
Prescott et al. (2002) propose an alternative pseudo-

component-type transformation that leads to model 
coefficients that represent predictions at a wider selec-
tion of points within the design space. This delivers 
model coefficients that have a much more meaningful 
interpretation. Prescott and Draper (2002) compare the 
Scheffé model, the Kronecker model and the intercept 
model. Recently, Kang et al. (2015) propose a new crite-
rion named “Correlation criterion”, to choose the best 
Slack-variable model using different components as 
slack variables, this criterion is only based on the de-
sign of the mixture. 

In this paper, we analyzed if it matter which compo-
nent is replaced for the constant term in the intercept 
model, in the sense on numerical stability. We also show 
by numerical examples that the Correlation Criterion, 
presented in Kang et al. (2015), does not work for the in-
tercept model. Next, as suggested in the literature, we 
use linear transformation to alleviate the numerical ins-
tability. In addition, we try four transformation methods 
and choose the best one for the intercept model and the 
slack-variable model.  Finally, we compare the intercept 
model with the slack-variable model based mainly on 
the prediction accuracy and numerical stability. 

Method

Diagnostic measures

Below we briefly explain some diagnostic measures 
that help to detect or identify collinearity (Cornell, 
2003; Montgomery and Voth, 1994; Prescott et al., 2002).

Multiple correlation coefficient

We define xj as the jth column of X and Xj as the matrix 
that results when the column xj is deleted from X. Then   
     is the multiple correlation coefficient obtained by re-
gressing xj on Xj. When the first column of X is a cons-
tant column,      is usually calculated, for j= 2, ..., p, as

                                               (5)

Where 1 is a column of unit elements. 
When the column of constants of the X matrix is not 

available, the unadjusted multiple correlation coeffi-
cient can be obtained by 

(6)
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For j = 1, ..., p.

Variance inflation factor

The variance inflation factor (VIF) associated with the es-
timated regression coefficients βj is given by

	 	 (7)

Small values ​​of VIF are an indication of conditioning.
To evaluate the overall collinearity level of a model, it is 
propose the mean variance inflation factor (MVIF) 

(8)

where p is the number of effects in the model, excluding 
the intercept.

Condition number

Allow λmax > λ2 > ... > λp− 1 > λmin  to be the p eigenvalue of 
X’ X, which are p solutions to the determinant equation

|X’X − λI| = 0

which is a polynomial with p roots.
There are many definitions of the condition number 
(CN) of a matrix. The general definition used in applied 
statistics is the square root of the ratio of the maximum 
to the minimum eigenvalues of X’ X denoted by

(9)

Small values ​​of λmin and large values ​​of λmax indicate the 
presence of collinearity. Low values ​​of the CN indicate 
some level of stability or conditioning in the least squa-
res estimate. 

Remedial measures

Linear transformation is suggested in the literature to 
alleviate the numerical instability. Below we briefly ex-
plain tree linear transformation.

L-Pseudocomponents

When ingredients proportions xi are restricted by lower 
bounds Li while retaining an upper bound of 1, (Kuro-
tori, 1966) recommended using L-pseudocomponents 
of the form

                                            (10)

Where L = Σ Li. For the restricted mixture space to exist 
within the simplex, it is necessary that L < 1. Using the 
Eq. (10) in the pseudocomponent space, we have

              (11)

for i = 1, ..., q (Prescott et al., 2002).

U-Pseudocomponents

When the range of each ingredient proportion xi is 
restricted by an upper bound Ui only, Crosier (1984) 
recommended the use of U-pseudocomponents, defi-
ned as

vi = (Ui − xi) / (U − 1)	                                              (12)

where U = ∑Ui. For the U-simplex to be a region  
fully within the original simplex, it is necessary that  
U − 1   ≤Umin (Crosier, 1984). If is requirement holds, 
then the pseudocomponent transformation

           (13)

gives only positive multipliers of vi.

When U − 1 > Umin, the U-simplex extend outside the 
original mixture simplex and better conditioning may 
or may not be achieved with U-pseudocomponents, de-
pending on the particular restrictions and the design 
points.

Modified L-pseudocomponents 

For the modified L-pseudocomponent we have to cal-
culate the average over the N observations,                   , 
where       . Next, we calculate the differences 
                                 Suppose the kth component has the mini- 
mum difference                                                     . Then, instead 
of all the components being transformed to the  
L-pseudocomponents as in (10), we use the average of 
the q − 1 components          to define the modified  
L-pseudocomponents

                                   (14)
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where 

Is a scale constant (Philip and Norman, 2009).

Correlation criterion

Kang et al. (2015) propose a new criterion named “Co-
rrelation criterion”, to choose the best Slack-variable 
model using different components as slack variables. 
Below we present de Correlation criterion. 

Denote F as the design matrix for the mixture expe-
riment of total q components and n experimental set-
tings. Define rij as the correlation between the ith and 
jth columns of F. This correlation is given by

(15)

where F (,i) is the ith column of F,     is the sample mean 
of F (, i), and 1 is a vector of 1’s. To evaluate whether the 
ith column is collinear with any other columns, we can 
use its average squared correlation with all the q − 1 
columns. Denote it as     and it can be calculated by

(16)

The matrix H is H = I − 1/n 11’and I is the n × n identity 
matrix. Thus, we choose the component that has the lar-
gest       as the slack variable (Kang et al., 2015). 

Results and discussion

Four examples to evaluate de correlation criterion in 
the intercept model

In this section, we compute the correlation criterion in 
four examples chosen from the literature.  

Example 1 

We consider the example used by Cornell and Gorman 
(2009) involving three components and seven design 
points in the reduced region constrained by the inequa-
lities

0.15 ≤ x1 ≤ 0.5,  0.2 ≤ x2 ≤ 0.7,  0.15 ≤ x3 ≤ 0.65  

Foremost, we compute the correlation criterion. The 
calculations are presented below

According to the correlation criterion x2 should be re-
placed by a constant term. In Table 1 and Table 2 we 
present the VIF associated with the estimated regres-
sion coefficients, MVIF and CN for the three intercept 
models and the three slack-variable models respecti-
vely. We use the expression IMxi to represent the inter-
cept model replacing xi for a constant term and SVxi to 
represent the slack-variable model using xi as a slack 
variable. It can be seen in Table 1 that replacing the 
component with the largest correlation by a constant 
term, the most stable intercept model is not achieved. 
On the other hand, it can be seen in Table 2 that choo-
sing the component with the largest correlation crite-
rion as slack variable, the most stable slack-variable 
model is achieved.  

Table 1. VIFs, MVIF and CN for IMxi Example 1 with original 
scale

Variable IMx1 IMx2 IMx3

x1 18.46 15.47
x2 37.44 12.33
x3 27.25 10.71

x1 * x2 7.79 7.79 7.79
x1 * x3 17.99 17.99 17.99
x2 * x3 3.00 3.00 3.00
MVIF 18.69 11.59 11.31

CN 12.5 11.7 11.0

Table 2. VIFs, MVIF and CN for SVxi Example 1 with original 
scale

Variable SVx1 SVx2 SVx3
x1 63.35 103.33
x2 303.99 106.36
x3 376.16 55.35

x1 * x2 19.68
x1 * x3 18.09
x2 * x3 30.47

34.99 56.72
136.67 55.58
164.66 41.30

MVIF 202.40 42.62 68.34
CN 19.0 12.3 15.0

1
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Example 2

Cornell (2000) considered a three-component, mixture 
experiment example involving the tint strength of hou-
se paint blends. A simplex-centroid design was chosen 
with the simplex centroid replicated three times. In this 
example, if we proceed to compute the correlation crite-
rion, we going to see that the value of ri is the same for 
the three components (see Tables 3 and 4). Thus, in this 
case the correlation criterion does not help to decide 
which component should be replaced for the constant 
term or should be selected as slack-variable.

Table 3. VIFs, MVIF and CN for IMxi Example 2 with 	
original scale

Variable IMx1 IMx2 IMx3

x1 - 1.07 17.06

x2 1.02 17.03

x3 1.01 1.05

x1 * x2 1.17 1.17 1.17

x1 * x3 50.18 50.21 50.22

x2 * x3 51.19 51.23 51.23

MVIF 20.91 20.95 27.34

CN 24.3 24.3 22.4

Table 4. VIFs, MVIF and CN for SVxi Example 2 with 	
original scale

Variable SVx1 SVx2 SVx3

x1 17.39 17.39

x2 17.39

x3 17.39 17.39 17.39

x1 * x2

x1 * x3 3.63 3.63

x2 * x3 3.63

14.88 14.88

14.88

14.88 14.88 14.88

MVIF 13.63 13.63 13.63

CN 36.8 36.8 36.8

Example 3 

Cornell and Gorman (2003) present a numerical exam-
ple with three component, ethanol (x1), water (x2) and 
propylene glycol (x3). Experiment consist in seven-
point design. Constraints on the component propor-
tions were: 0.15 ≤ x1 ≤ 0.50, 0.20 ≤ x2 ≤ 0.70, 0.15 ≤ x3  
≤ 0.65. As can be seen in Table 5, again the correlation 
criterion dose not determine the most stable intercept 
model.

Table 5. VIFs, MVIF and CN for IMxi Example 3 with 	
original scale

Variable SVx1 SVx2 SVx3

x1 18.46 15.47

x2 37.44 12.33

x3 27.25 10.71

x1 * x2 7.79 7.79 7.79

x1 * x3 17.99 17.99 17.99

x2 * x3 3.00 3.00 3.00

MVIF 18.69 11.59 11.31

CN 153.6 134.8 119.3

Table 6. VIFs, MVIF and CN for SVxi Example 3 with 	
original scale

Variable SVx1 SVx2 SVx3

x1 63.35 103.33

x2 303.99 106.36

x3 376.16 55.35

x1 * x2 19.68

x1 * x3 18.09

x2 * x3 30.47

34.99 56.72

136.67 55.58

164.66 41.30

MVIF 202.39 42.61 68.33

CN 357.0 148.1 222.5
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Example 4 

Cornell (2002) present an example named The Formu-
lation of a Tropical Beverage. A tropical beverage was 
formulated by combining juices of watermelon (x1), 
orange (x2), pineapple (x3), and grapefruit (x4). In this 
example, the component with the largest ri is x1, howe-
ver, as can be seen in Table 7 and 8, the most stable in-
tercept model is achieved replacing component x2, and 
the most stable slack-variable model is achieved using 
any of the three x2, x3 and x4 components.    

Table 7. VIFs, MVIF and CN for IMxi Example 4 with original 
scale

Variable IMx1 IMx2 IMx3 IMx4

x1 4.01 4.01 4.01
x2 2.38 2.27 2.27
x3 2.38 2.27 2.27
x4 2.38 2.27 2.27

x1 * x2 1.40 1.40 1.40 1.40
x1 * x3 1.40 1.40 1.40 1.40
x1 * x4 1.40 1.40 1.40 1.40
x2 * x3 1.44 1.44 1.44 1.44
x2 * x4 1.44 1.44 1.44 1.44
x3 * x4 1.44 1.44 1.44 1.44
MVIF 1.74 1.90 1.90 1.90

CN 30.9 29.0 29.2 29.2

To summarize this section, we can point out that the 
intercept model can be used, in order to alleviate the 
collinearity problem. As could be seen in the examples 
shown in this section, the choice of which component is 
replaced for the constant term is crucial in the sense on 
numerical stability. However, the choice of which com-
ponent should be replaced for a constant term, cannot 
be performed according with the correlation criterion. 
We recommend practitioners directly construct each 
possible intercept model matrix and choose the best 
one according to maxVIF, MVIF and CN criterion.  

Table 8. VIFs, MVIF and CN for SVxi Example 4 with original 
scale

Variable SVx1 SVx2 SVx3 SVx4

x1 51.64 51.64 51.64

x2 40.93 28.50 28.50

x3 40.93 28.50 28.50

x4 40.93 28.50 28.50

x1 * x2 3.38 3.38

x1 * x3 3.38 3.38

x1 * x4 3.38 3.38

x2 * x3 6.47 3.78

x2 * x4 6.47 3.78

x3 * x4 6.47

38.26 38.26 38.26

27.74 21.77 21.77

27.74 21.77 21.77

27.74 21.77 21.77

MVIF 25.05 22.33 22.33 22.33

CN 98.0 69.7 69.7 69.7

Linear transformations

To analyze mixture experiments, it is suggested to per-
form some linear transformation on the components’ 
proportions to reduce the ill-conditioning problem. 
However, different transformation methods work the 
best for different mixture models. For the slack-variable 
model, Kang et al. (2015) recommend scale the design of 
the proportion into [–1, 1], which is the typical scale 
used in classical design and analysis of experiments. 
For other mixture models L–, U– and modified-pseudo-
component transformations are recommended for the 
literature. Thus, we try all four transformation methods 
and choose the best one for the intercept model and the 
slack-variable model. 

Example 5 

In this example, we used the Example 1 data (Cornell 
and Gorman, 2009) and applied the four transforma-
tion, in order to choose the best one according to 
maxVIF, MVIF and CN. Based on Table 9, for this 
example, scaling the components’ proportions into 
[–1, 1] range works the best for the two models. In 
this case, the slack-variable model is the most parsi-
monious model.   

2 2 2
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Example 6 

For the Example 6, we used the Example 4 data (Cor-
nell, 2002) and applied the four transformation, in or-
der to choose the best one according to maxVIF, MVIF 
and CN. Based on Table 10, for this example, the modi-
fied L– Pseudocomponent transformation works the 
best for the intercept model while scaling the compo-
nents’ proportions into [–1, 1] range works the best for 
the slack-variable model. In this case, the intercept mo-
del is the most parsimonious model.   

Numerical stability and prediction accuracy compa-
rison 

The choice of model forms can affect the numerical sta-
bility of the information matrix. In this section, we com-
pare the intercept model with the slack-variable model 
based mainly on the prediction accuracy and numerical 
stability.

Example 7 

In this section, we use the example presents in John 
(1984), the experiment involves an additive x1 and three 
lubricant blends x2, x4 and x4. The component propor-
tions need to satisfy 

0.07 ≤ x1 ≤ 0.18		  0.37 ≤ x3 ≤ 0.70
     0 ≤ x2 ≤ 0.30		       0 ≤ x4 ≤ 0.15

First, we use different transformation methods for the 
two models and choose the best one according to max-
VIF, MVIF and CN in Table 11. According to Table 11 
scaling the components’ proportions into [–1, 1] range 
works the best for both models. In this case, the slack-
variable model is the most parsimonious model. 

In Table 12 we present the analysis of variance 
(ANOVA) for the slack-variable model using Example 7 
date and scaling the components’ proportions into  
[–1, 1] range. As can be seen in Table 12, the interaction 
x2, x4 and the quadratic term x4 have no statistical signi-
ficance effect over the response according with de P-
value at 99% confidence level. Thus, both terms can be 
removed from the model. 

2

Table 9. Comparison of the complete IM model and SV model using 
the Example 1 data, with different transformation

  [–1, 1] Scale L-Pseudocomponent
model maxVIF MVIF CN maxVIF MVIF CN

SV-model 6.3 3.6 7.4 18.3 13.3 36.9

IM-model 7.1 5.4 8.4 4.8 2.7 30.6

  U-Pseudocomponent Modified 
L-Pseudocomonent

model maxVIF MVIF CN maxVIF MVIF CN

SV-model 53.3 31 110.1 10.8 5.2 20.2

IM-model 32.1 24.6 89.1 5 2.9 12.0

Table 10. Comparison of the complete IM model and SV model using the Example 4 data, with different transformation

  [–1, 1] Scale L-Pseudocomponent
model maxVIF MVIF CN maxVIF MVIF CN

SV-model 65.6 23.4 38.5 51 22.3 69.7
IM-model 50.5 14.4 21.0 4 1.9 29.0

  U-Pseudocomponent Modified L-Pseudocomponent
model maxVIF MVIF CN maxVIF MVIF CN

SV-model 465.7 155.8 372,116 15.8 9.8 44.3
IM-model 238.6 65.4 7264.7 9.2 4.9 20.7
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On the other hand, in Table 13 we present the ANOVA 
for the intercept model using Example 7 date and scaling 
the components’ proportions into [–1, 1] range. As can be 
seen in Table 13, the intercept terms x2, x4 and  x3, x4 have 
no statistical significance effect over the response accor-
ding with P-value at 99% confidence level. Thus, again 
we can removed both terms from the model. 

Table 14 shows the comparison of the reduced slack 
variable model and the intercept model.

R2 and R2     are the coefficient of determinant and the 
adjusted version, and     is          from the ANOVA. 
LOOCV and 13-fold CV are the leave-one-out and 13-
fold cross validation prediction errors. Both reduced 
models have 8 terms including the intercept and the 
same fit quality. Table 14 show that slack-variable mo-
del present the best prediction accuracy and the most 
parsimonious model in terms of numerical stability. 

adj
σ̂ MSE

Table 11. Comparison of the complete IM model and SV model using the Example 7 data, with different transformation

  [–1, 1] Scale L-Pseudocomponent

model maxVIF MVIF CN maxVIF MVIF CN

SV-model 5.0 2.3 7.9 79.3 27.8 240

IM-model 19.7 10.6 15.7 255.3 78.7 487

  U-Pseudocomponent Modified L- Pseudocomponent

model maxVIF MVIF CN maxVIF MVIF CN

SV-model 29.2 15.7 90 17.6 7.3 37.4

IM-model 63.0 20.1 166.3 46.9 16.0 27.5

Table 12. ANOVA for the Slack-variable model into [–1, 1] range. Significant codes 0.01 ”*”
Coefficients Estimate Std. Error T value Pr (> |t|)

Intercept 10.79 0.019 557.9 <2e-16*
x1 2.57 0.015 167.9 1.77e-15*
x2 -0.80 0.026 -29.8 1.73e-09*
x4 0.76 0.018 41.9 1.16e-10*

x1 x2 -0.08 0.021 -3.9 0.0042*
x1 x4 0.20 0.013 14.5 4.88e-07*
x2 x4 0.04 0.025 1.7 0.1265

0.29 0.020 14.6 4.67e-07*
0.12 0.027 4.7 0.0014*

0.03 0.021 1.7 0.1127

Table 13. ANOVA for the Intercept model into [–1, 1] range. Significant codes 0.01 ”*”
Coefficients Estimate Std. Error T value Pr (> |t|)

Intercept 10.79 0.019 557.9 <2e-16*
x1 3.19 0.043 72.8 1.40e-12*
x2 -0.70 0.020 -33.7 6.44e-10*
x4 0.82 0.035 23.5 1.12e-08*

x1 x2 -0.94 0.054 -17.3 1.23e-07*
x1 x3 -0.89 0.061 -14.6 4.67e-07*
x1 x4 -0.23 0.030 -7.7 5.58e-05*
x2 x3 -0.14 0.029 -4.7 0.0014*

x2 x4 -0.09 0.041 -2.3 0.0453
x3 x4 -0.08 0.046 -1.7 0.1127

2
1x
2
2x
2
4x
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Conclusion

In this paper, we analyzed if it matter which compo-
nent is replaced for the constant term, in the intercept 
model, in the sense on numerical stability. By numeri-
cal examples, in section: Four examples to evaluate de 
correlation criterion in the intercept model we showed 
that the intercept model can be used to reduce the ill-
conditioning problem. In addition, evidence was given 
that the choice of which component is replaced for the 
constant term is crucial in the sense on numerical stabi-
lity. Moreover, we computed the correlation criterion 
and we determined that this criterion does not work for 
the intercept model, that is, the choose of which compo-
nent should be replaced for a constant term, cannot be 
performed according with the correlation criterion. We 
recommend practitioners directly construct each possi-
ble intercept model matrix and choose the best one ac-
cording to maxVIF, MVIF and CN criterion.  

In section: linear transformations we tried four 
transformation methods and choose the best one for the 
intercept model and the slack-variable model. Scaling 
the components’ proportions into [–1, 1] range works 
the best for the slack-variable model, the modified L–
Pseudocomponent transformation works the best for 
the intercept model in some cases. 

Finally, in section: numerical stability and predic-
tion accuracy comparison we compare the intercept 
model with the slack-variable model based mainly on 
the prediction accuracy and numerical stability. The 
slack-variable model has the best prediction accuracy 
and is the most parsimonious model in terms of nume-
rical stability. 
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