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Abstract

Mixture experiments are experiments performed using ingredients whose
proportions are restricted. This restriction may result in extremely small ran-

: ; T L Keywords:
ge in terms of the mixtures, causing difficulties in model fitting arising from
ill-conditioning. The choice of model form is a very important factor in the * mixture experiments
numerical stability of the information matrix. In this paper, the intercept mo- * intercept model
del is compared against the slack-variable model for mixture experiments. e slack-variable model
We analyzed if it matter which component is replaced for the constant term e variable transformation
in the intercept model, in the sense on numerical stability. We also show by e condition number
numerical examples that the Correlation Criterion, presented in Kang et al. e variance inflation factor

(2015), does not work for the intercept model. Next, as suggested in the lite-
rature, we use linear transformation to alleviate the numerical instability. In
addition, we try four transformation methods and choose the best one for
the intercept model and the slack-variable model. Finally, we compare the
intercept model with the slack-variable model based mainly on the predic-
tion accuracy and numerical stability.
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Resumen

Los disefios de experimentos para mezclas son disefios que se llevan a cabo usando
ingredientes cuyas proporciones estdn sujetas a restricciones. Dichas restricciones

~ > Descriptores:
pueden dar como resultado un rango extremadamente pequefio en términos de las
mezclas, causando dificultades en el ajuste del modelo debido a problemas de coli- * disefio de experimentos para
nealidad. La eleccién de la forma del modelo es un factor importante en la estabili- mezclas
dad numeérica de la matriz de informacién. En este articulo, se compara el modelo * modelo intercepto
intercepto contra el modelo de variable de holgura en experimentos para mezclas. * modelo de variable de
Se analizo la importancia de cudl componente se remplaza por el término con- holgura
stante en el modelo intercepto, en el sentido de estabilidad numérica. Asimismo, se e transformacién de variables
muestra mediante ejemplos numéricos que el Criterio de Correlacion, presentado * ndmero condicional
por Kang et al. (2015), no funciona para el modelo intercepto. Después, como se * factor de inflacién de
sugiere en la literatura, se emplearon transformaciones numéricas para mejorar la la varianza

inestabilidad numérica. Adicionalmente, se probaron cuatro métodos de transfor-
macion y se selecciond el mejor, tanto para el modelo intercepto como para el mo-
delo de variable de holgura. Finalmente, se comparo el modelo intercepto contra el
modelo de variable de holgura basado principalmente en la precision de prediccion
y la estabilidad numérica.

Introduction from a mixture experiment also has to satisfy the cons-

traint. This can cause difficulties in model fitting arising

A mixture experiment is one in which the response de-
pends only on the relative proportions of the ingre-
dients, or components, present in the mixture, this
proportions represent the design variables. In such
experiments, by mixing different components, the
product is developed. Mixture experiments frequently
appear in fields such as chemical, pharmaceutical,
food and plastic industries. There are certain type of
mixture experiments where the total amount of the
mixture, or process variables, are involve too as a de-
sign variables (Piepel and Cornell, 1985; Goldfarb
et al., 2004). In this paper, we focus on the mixture ex-
periments with the proportions of the components as
the only input variables.

If x; denotes the proportion of the ith of q compo-
nents, thenxi>0fori=1, 2, ..., g, and

ixi =1 1)

i=1

Commonly the design region (1) is subject to additional
constraints of the form

a,<x,<b, (2)
to one or several components. These additional restric-
tions may result in extremely small range in terms of

the mixtures. Not only does the experimental design
region become constrained, but the resulting model

from ill-conditioning. That is, the columns of the corres-
ponding model matrix can be almost linearly depen-
dent (Prescott ef al., 2002). Some consequences of
ill-conditioning are that the least squares estimators of
the parameters have large standard errors and are
highly correlated, and the estimates are highly depen-
dent on the precise location of the design points.

Data from a mixture experiment are usually mode-
lled using Scheffe”’s polynomial models (Sheffé, 1958).
The quadratic Scheffe”’s model has the general form:

Scheffe”’s model

q 9-1 4
E(y)= Zﬁixi +Z Z ﬁijxixj

i=1 j=itl

where S and ; are unknown parameters to be esti-
mated.
Because of the mixture constraint Eq. (1), the quadratic
form of Scheffe”’s model involves linear terms and
cross-product terms only, but this could be re-parame-
terized to include square terms (Philip and Norman,
2009). In fact, there are a number of different ways of
writing a polynomial model, of any specified order, ob-
tained by re-parameterization using the mixture cons-
traint (Prescott et al., 2002).

Alternative polynomial model forms include the in-
tercept models, which are obtained by replacing one
mixture component, for example x,, for a constant term.
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A related model is the slack-variable model, in which
one variable (designated the slack variable) is entirely
eliminated by substitution; that is, by expressing it in
terms of the remaining k — 1 components using Eq. (1),
then substituting it into Scheffe”’s model (Piepel and
Cornell, 1985). The different between the intercept mo-
del and the slack-variable model, is that the slack-varia-
ble model has quadratic model terms, while intercept
model only present linear and interactions model
terms, see (Cornell, 2000; Philip and Norman, 2009; An-
dré, 2005). Such re-parameterized models are equiva-
lent in the sense that they lead to the same predicted
values and basic analysis of variance (Philip and Nor-
man, 2009). These two models are re-parameterizations
of one another and all lead to the same fitted response
contours and residuals. The equations may be expres-
sed as follows, with the same symbols being used for
parameters that are common to the different models:

Intercept mode
-1 U |

E(y)=B+D 7x+ ), Y BxX ®)
i=1 i=1 j=i+1

Slack-variable model

q-1 q-1 -1
2
E(y)=p, +zaixi +zaiixi +Zzai]’xixj ®)
i=1 i=1 i<j
Moreover y; =B, - B, ;= ;= B,+ By &; = P, and ; =

.Bi;' - (.qu + ﬁjq)‘

The pros and cons of the use of intercept models or
slack-variable models, as opposed to Scheffe”’s model,
have generated a lot of discussions among research
workers and practitioners (André, 2005). This issue was
discussed by Cornell (2000), one of the questions raised
by him was “does it matter which component is desig-
nated the slack variable?” He attempted to answer this
question by discussing three numerical examples. In
André (2005), the same issue was revisited from a diffe-
rent perspective. Emphasis was placed on model equi-
valence through the use of the column spaces of the
matrices associated with the fitted models. It was shown
that for the Scheffe”’s complete model and its corres-
ponding slack-variable models, their reduced models,
or submodels, provide different types of information.
For some reduced models of a given size, Scheffe”’s mo-
del may provide the best fit, but for other reduced mo-
dels, some slack-variable models may be preferred.
Prescott et al. (2002) propose an alternative pseudo-

component-type transformation that leads to model
coefficients that represent predictions at a wider selec-
tion of points within the design space. This delivers
model coefficients that have a much more meaningful
interpretation. Prescott and Draper (2002) compare the
Scheffé model, the Kronecker model and the intercept
model. Recently, Kang et al. (2015) propose a new crite-
rion named “Correlation criterion”, to choose the best
Slack-variable model using different components as
slack variables, this criterion is only based on the de-
sign of the mixture.

In this paper, we analyzed if it matter which compo-
nent is replaced for the constant term in the intercept
model, in the sense on numerical stability. We also show
by numerical examples that the Correlation Criterion,
presented in Kang et al. (2015), does not work for the in-
tercept model. Next, as suggested in the literature, we
use linear transformation to alleviate the numerical ins-
tability. In addition, we try four transformation methods
and choose the best one for the intercept model and the
slack-variable model. Finally, we compare the intercept
model with the slack-variable model based mainly on
the prediction accuracy and numerical stability.

Method

Diagnostic measures

Below we briefly explain some diagnostic measures
that help to detect or identify collinearity (Cornell,
2003; Montgomery and Voth, 1994; Prescott et al., 2002).

Multiple correlation coefficient

We define x; as the j,, column of X and X; as the matrix
that results when the column x; is deleted from X. Then
R]? is the multiple correlation coefficient obtained by re-
gressing x; on X When the first column of X is a cons-
tant column, Rjz is usually calculated, for j=2, ..., p, as

, , 1~ , ’
R x X (X X)X x —x 11y, /n

/ x x.—x 11'x./n
] ] ] ]

®)

Where 1 is a column of unit elements.

When the column of constants of the X matrix is not
available, the unadjusted multiple correlation coeffi-
cient can be obtained by

, , 1 ~rr
e 5 X060 X)X

] 4
x]. xj

(6)

Ingenieria Investigacion y Tecnologia, volumen XVII (ntimero 3), julio-septiembre 201 6: 383-393 ISSN 1405-7743 FI-UNAM 385



Comparing the Intercept Mixture Model with the Slack-Variable Mixture Model

Forj=1,..p.

Variance inflation factor

The variance inflation factor (VIF) associated with the es-
timated regression coefficients f; is given by

VIF(ﬁj) =(1-R)7, j=1,...p, )

Small values of VIF are an indication of conditioning.
To evaluate the overall collinearity level of a model, it is
propose the mean variance inflation factor (MVIF)

MVIF = ;i VIF(f,) ©)

j=1

where p is the number of effects in the model, excluding
the intercept.

Condition number

Allow A, > A,> .. > A, > A, to be the p eigenvalue of

X’ X, which are p solutions to the determinant equation
IX’X-AIl=0

which is a polynomial with p roots.

There are many definitions of the condition number
(CN) of a matrix. The general definition used in applied
statistics is the square root of the ratio of the maximum
to the minimum eigenvalues of X” X denoted by

CN(X'X)= :11— 9

min

Small values of A,,;, and large values of A" indicate the
presence of collinearity. Low values of the CN indicate
some level of stability or conditioning in the least squa-

res estimate.

Remedial measures

Linear transformation is suggested in the literature to
alleviate the numerical instability. Below we briefly ex-
plain tree linear transformation.

L-Pseudocomponents

When ingredients proportions x; are restricted by lower
bounds L; while retaining an upper bound of 1, (Kuro-
tori, 1966) recommended using L-pseudocomponents
of the form

w, =55 (10)

Where L =X L,. For the restricted mixture space to exist
within the simplex, it is necessary that L < 1. Using the
Eq. (10) in the pseudocomponent space, we have

9
X, =w,(1-L)+ LY w =w,(1-L+L)+Y wl, (11)
i=1

j#i

fori=1, ..., g (Prescott et al., 2002).

U-Pseudocomponents

When the range of each ingredient proportion x; is
restricted by an upper bound U, only, Crosier (1984)
recommended the use of U-pseudocomponents, defi-
ned as

v;=(U-x)/(U-1) (12)

where U = XU, For the U-simplex to be a region
fully within the original simplex, it is necessary that
u-1 <u,, (Crosier, 1984). If is requirement holds,
then the pseudocomponent transformation

9
x, =0, (U-1)+U, Y v, =o,(1-U+U,)+ Y o U, (13)
i=1

j#i
gives only positive multipliers of v,.

When U - 1> U,,, the U-simplex extend outside the
original mixture simplex and better conditioning may
or may not be achieved with U-pseudocomponents, de-
pending on the particular restrictions and the design
points.

Modified L-pseudocomponents

For the modified L-pseudocomponent we have to cal-
culate the average over the N observations, ¥ -Y ¥ x /N,

where Y 7 x=1. Next, we calculate the differences
x,-L,i=12,..,q. Suppose the k" component has the mini-
mum difference 4, = (x, - L,)<d, = (x, - L,), i # k. Then, instead
of all the components being transformed to the
L-pseudocomponents as in (10), we use the average of
the g — 1 components x,i=k to define the modified

L-pseudocomponents

PO B S S B Y (14)
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where

q g |
ZE,:l and d, =1-| L, + Z x, |=x,—L
i=1 i=1, %k

Is a scale constant (Philip and Norman, 2009).

Correlation criterion

Kang et al. (2015) propose a new criterion named “Co-
rrelation criterion”, to choose the best Slack-variable
model using different components as slack variables.
Below we present de Correlation criterion.

Denote F as the design matrix for the mixture expe-
riment of total 4 components and #n experimental set-
tings. Define r; as the correlation between the ith and
jth columns of F. This correlation is given by

(F(i)-E1'(F(j)=F)

e T (15)
[(F(i)~ 1) (F(i)~ E1)(F(j)~E 1)'(F( )~ E D]

where F (,i) is the ith column of F, F is the sample mean
of F (, i), and 1 is a vector of 1’s. To evaluate whether the
ith column is collinear with any other columns, we can
use its average squared correlation with all the g — 1
columns. Denote it as riz and it can be calculated by

o _ 2" _ FGj) HF(=j)diag(F( ) HF( =)} ' F( =) HE(, j) (16)
fog-1 (9-DF(j) HE(j)

The matrix H is H=1-1/n 11’and I is the n x n identity
matrix. Thus, we choose the component that has the lar-
gest T’iz as the slack variable (Kang et al., 2015).

Results and discussion

Four examples to evaluate de correlation criterion in
the intercept model

In this section, we compute the correlation criterion in
four examples chosen from the literature.

Example 1

We consider the example used by Cornell and Gorman
(2009) involving three components and seven design
points in the reduced region constrained by the inequa-
lities

0.15<x,<0.5, 0.2<x,<0.7, 0.15<x,<0.65

Foremost, we compute the correlation criterion. The
calculations are presented below

(~0.4444)" +(-0.2766)*

r= =0.1369
2
| 2 L 2
= (£04444) ;( 07379)° _ 1 3700

_ _ (-0.2766)* +(-0.7379)°

3 =0.3105
2

According to the correlation criterion x, should be re-
placed by a constant term. In Table 1 and Table 2 we
present the VIF associated with the estimated regres-
sion coefficients, MVIF and CN for the three intercept
models and the three slack-variable models respecti-
vely. We use the expression IM,, to represent the inter-
cept model replacing x; for a constant term and SV, to
represent the slack-variable model using x; as a slack
variable. It can be seen in Table 1 that replacing the
component with the largest correlation by a constant
term, the most stable intercept model is not achieved.
On the other hand, it can be seen in Table 2 that choo-
sing the component with the largest correlation crite-
rion as slack variable, the most stable slack-variable
model is achieved.

Table 1. VIFs, MVIF and CN for IM,; Example 1 with original
scale

Variable IM, M, IM,
X, 18.46 15.47
X, 37.44 12.33

X, 27.25 10.71
Xt 7.79 7.79 7.79
X% Xy 17.99 17.99 17.99
AT 3.00 3.00 3.00
MVIF 18.69 11.59 11.31
CN 12.5 11.7 11.0

Table 2. VIFs, MVIF and CN for SV, Example 1 with original
scale

Variable SVx, SVx, SVx3
X 63.35 103.33
X, 303.99 106.36
X5 376.16 55.35

X% x, 19.68
X% x, 18.09
X% X, 30.47
: 34.99 56.72
X 136.67 55.58
x3 164.66 41.30
MVIF 202.40 42.62 68.34
CN 19.0 12.3 15.0
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Example 2

Cornell (2000) considered a three-component, mixture
experiment example involving the tint strength of hou-
se paint blends. A simplex-centroid design was chosen
with the simplex centroid replicated three times. In this
example, if we proceed to compute the correlation crite-
rion, we going to see that the value of r; is the same for
the three components (see Tables 3 and 4). Thus, in this
case the correlation criterion does not help to decide
which component should be replaced for the constant
term or should be selected as slack-variable.

 (£0.5000)° +(-0.5000)" _

0.25
! 2
2 2
", (05 +(-05)" _ e
2
| 2 | 2
L (F057+(=05)° o

3 2

Table 3. VIFs, MVIF and CN for IM,; Example 2 with
original scale

Variable IMx, IMx, IMx,
X - 1.07 17.06
x, 1.02 17.03

X, 1.01 1.05
X, ¥ %, 1.17 1.17 1.17
X, 50.18 50.21 50.22
X, %, 51.19 51.23 51.23
MVIF 20.91 20.95 27.34
CN 243 243 224

Table 4. VIFs, MVIF and CN for SV, Example 2 with
original scale

Variable SVx, SVx, SVx,
X 17.39 17.39
X, 17.39
X, 17.39 17.39 17.39

X, % x,
X, %X 3.63 3.63
X, % X, 3.63
X7 14.88 14.88
x; 14.88
x3 14.88 14.88 14.88
MVIF 13.63 13.63 13.63
CN 36.8 36.8 36.8

Example 3

Cornell and Gorman (2003) present a numerical exam-
ple with three component, ethanol (x,), water (x,) and
propylene glycol (x,). Experiment consist in seven-
point design. Constraints on the component propor-
tions were: 0.15 < x; < 0.50, 0.20 < x, < 0.70, 0.15 < x,
< 0.65. As can be seen in Table 5, again the correlation
criterion dose not determine the most stable intercept
model.

| _(£04444)" +(-0.2766)"

3 =0.1369
2
_ 2 | 2
(O (0737 5
2
2 2
. _(0.2766) +(-0.7379)" _ 110

3 2

Table 5. VIFs, MVIF and CN for IM,; Example 3 with

original scale

Variable SVx, SVx, SVax,
X 18.46 15.47
X, 37.44 12.33

X, 27.25 10.71
X, ¥ x, 7.79 7.79 7.79
X, %X, 17.99 17.99 17.99
X, X, 3.00 3.00 3.00
MVIF 18.69 11.59 11.31
CN 153.6 134.8 119.3

Table 6. VIFs, MVIF and CN for SV, Example 3 with
original scale

Variable SVx, SVx, SVx,
X, 63.35 103.33
X, 303.99 106.36
X, 376.16 55.35

X, *x, 19.68
X, % x, 18.09
X, % x5 30.47
x7 34.99 56.72
x 136.67 55.58
x; 164.66 41.30
MVIF 202.39 42.61 68.33
CN 357.0 148.1 2225
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Example 4

Cornell (2002) present an example named The Formu-
lation of a Tropical Beverage. A tropical beverage was
formulated by combining juices of watermelon (x,),
orange (x,), pineapple (x;), and grapefruit (x,). In this
example, the component with the largest r, is x,, howe-
ver, as can be seen in Table 7 and 8, the most stable in-
tercept model is achieved replacing component x,, and
the most stable slack-variable model is achieved using
any of the three x,, x, and x, components.

(~0.4325)* +(—0.4325)” +(—0.4325)"

= =0.1870
3
—| 2 — ? B :
), = (04325 +(-02192)" + (02192 _ 9,5
3
y, = (04325)" +( 0.2;92) £ (20-2192)" _ 0943

— 2 — 2 - ’
y, = (£04325)° +( 0.2;92> +(02192)" _ 4 0943

Table 7. VIFs, MVIF and CN for IM,; Example 4 with original
scale

Variable IM,, M, M, M,
X 4.01 4.01 4.01
X, 2.38 227 227
X, 2.38 2.27 227
x, 2.38 227 227

X% X, 1.40 1.40 1.40 1.40
X% Xy 1.40 1.40 1.40 1.40
X% x, 1.40 1.40 1.40 1.40
X% Xy 1.44 1.44 1.44 1.44
X% x, 1.44 1.44 1.44 1.44
X% x, 1.44 1.44 1.44 1.44
MVIF 1.74 1.90 1.90 1.90

CN 30.9 29.0 29.2 29.2

To summarize this section, we can point out that the
intercept model can be used, in order to alleviate the
collinearity problem. As could be seen in the examples
shown in this section, the choice of which component is
replaced for the constant term is crucial in the sense on
numerical stability. However, the choice of which com-
ponent should be replaced for a constant term, cannot
be performed according with the correlation criterion.
We recommend practitioners directly construct each
possible intercept model matrix and choose the best
one according to maxVIF, MVIF and CN criterion.

Table 8. VIFs, MVIF and CN for SV, Example 4 with original
scale

Variable SV, SV, SV, SV,
X, 51.64 51.64 51.64
X, 40.93 28.50 28.50
X, 40.93 28.50 28.50
X, 40.93 28.50 28.50

X, ¥, 3.38 3.38
X% 3.38 3.38
X,y 3.38 3.38
x, % x, 6.47 3.78
X, x, 6.47 3.78
X3 * 6.47
X2 38.26 38.26 38.26
2 27.74 21.77 21.77
X 27.74 21.77 21.77
x 27.74 21.77 21.77
MVIF 25.05 22.33 22.33 2233
CN 98.0 69.7 69.7 69.7

Linear transformations

To analyze mixture experiments, it is suggested to per-
form some linear transformation on the components’
proportions to reduce the ill-conditioning problem.
However, different transformation methods work the
best for different mixture models. For the slack-variable
model, Kang et al. (2015) recommend scale the design of
the proportion into [-1, 1], which is the typical scale
used in classical design and analysis of experiments.
For other mixture models L—, U- and modified-pseudo-
component transformations are recommended for the
literature. Thus, we try all four transformation methods
and choose the best one for the intercept model and the
slack-variable model.

Example 5

In this example, we used the Example 1 data (Cornell
and Gorman, 2009) and applied the four transforma-
tion, in order to choose the best one according to
maxVIF, MVIF and CN. Based on Table 9, for this
example, scaling the components’ proportions into
[-1, 1] range works the best for the two models. In
this case, the slack-variable model is the most parsi-
monious model.
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Example 6

For the Example 6, we used the Example 4 data (Cor-
nell, 2002) and applied the four transformation, in or-
der to choose the best one according to maxVIF, MVIF
and CN. Based on Table 10, for this example, the modi-
fied L- Pseudocomponent transformation works the
best for the intercept model while scaling the compo-
nents’ proportions into [-1, 1] range works the best for
the slack-variable model. In this case, the intercept mo-
del is the most parsimonious model.

Numerical stability and prediction accuracy compa-
rison

The choice of model forms can affect the numerical sta-
bility of the information matrix. In this section, we com-
pare the intercept model with the slack-variable model
based mainly on the prediction accuracy and numerical
stability.

Table 9. Comparison of the complete IM model and SV model using

the Example 1 data, with different transformation

Example 7

In this section, we use the example presents in John
(1984), the experiment involves an additive x; and three
lubricant blends x,, x, and x,. The component propor-
tions need to satisfy

0.07 <x,<0.18
0<x,<0.30

0.37 <x,<0.70
0<x,<0.15

First, we use different transformation methods for the
two models and choose the best one according to max-
VIF, MVIF and CN in Table 11. According to Table 11
scaling the components” proportions into [-1, 1] range
works the best for both models. In this case, the slack-
variable model is the most parsimonious model.

In Table 12 we present the analysis of variance
(ANOVA) for the slack-variable model using Example 7
date and scaling the components’ proportions into
[-1, 1] range. As can be seen in Table 12, the interaction
x,, x, and the quadratic term x} have no statistical signi-
ficance effect over the response according with de P-
value at 99% confidence level. Thus, both terms can be
removed from the model.

[-1, 1] Scale L-Pseudocomponent
model maxVIF MVIF CN maxVIF  MVIF CN
SV-model 6.3 3.6 7.4 18.3 13.3 36.9
IM-model 7.1 5.4 8.4 4.8 2.7 30.6

Modified

U-Pseudocomponent L-Psetudocomonent
model maxVIF MVIF CN maxVIF  MVIF CN
SV-model 53.3 31 110.1 10.8 5.2 20.2
IM-model 32.1 24.6 89.1 5 2.9 12.0

Table 10. Comparison of the complete IM model and SV model using the Example 4 data, with different transformation

[-1, 1] Scale L-Pseudocomponent

model maxVIF MVIF CN maxVIF MVIF CN
SV-model 65.6 23.4 38.5 51 22.3 69.7
IM-model 50.5 14.4 21.0 4 1.9 29.0

U-Pseudocomponent Modified L-Pseudocomponent

model maxVIF MVIF CN maxVIF MVIF CN
SV-model 465.7 155.8 372,116 15.8 9.8 44.3
IM-model 238.6 65.4 7264.7 9.2 4.9 20.7
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Table 11. Comparison of the complete IM model and SV model using the Example 7 data, with different transformation

[-1, 1] Scale L-Pseudocomponent
model maxVIF MVIF CN maxVIF MVIF CN
SV-model 5.0 2.3 7.9 79.3 27.8 240
IM-model 19.7 10.6 15.7 255.3 78.7 487
U-Pseudocomponent Modified L- Pseudocomponent
model maxVIF MVIF CN maxVIF MVIF CN
SV-model 29.2 15.7 90 17.6 7.3 374
IM-model 63.0 20.1 166.3 46.9 16.0 27.5

Table 12. ANOVA for the Slack-variable model into [-1, 1] range. Significant codes 0.01 "*”

Coefficients Estimate Std. Error T value Pr (> It)
Intercept 10.79 0.019 557.9 <2e-16*
X, 2.57 0.015 167.9 1.77e-15*
X, -0.80 0.026 -29.8 1.73e-09*
Xy 0.76 0.018 419 1.16e-10*
X, X, -0.08 0.021 -39 0.0042*
XX, 0.20 0.013 14.5 4.88e-07*
X, X, 0.04 0.025 1.7 0.1265
x12 0.29 0.020 14.6 4.67e-07*
E% 0.12 0.027 47 0.0014*
x; 0.03 0.021 1.7 0.1127

Table 13. ANOVA for the Intercept model into [-1, 1] range. Significant codes 0.01 "*”

Coefficients Estimate Std. Error T value Pr (> It)
Intercept 10.79 0.019 557.9 <2e-16*
X, 3.19 0.043 72.8 1.40e-12*
X, -0.70 0.020 -33.7 6.44e-10*
X4 0.82 0.035 235 1.12e-08*
XX, -0.94 0.054 -17.3 1.23e-07*
XXy -0.89 0.061 -14.6 4.67e-07*
XX, -0.23 0.030 -7.7 5.58e-05*
X, Xy -0.14 0.029 -4.7 0.0014*
X, X, -0.09 0.041 -2.3 0.0453
X3X, -0.08 0.046 -1.7 0.1127

On the other hand, in Table 13 we present the ANOVA
for the intercept model using Example 7 date and scaling
the components’ proportions into [-1, 1] range. As can be
seen in Table 13, the intercept terms x,, x, and x,, x, have
no statistical significance effect over the response accor-
ding with P-value at 99% confidence level. Thus, again
we can removed both terms from the model.

Table 14 shows the comparison of the reduced slack
variable model and the intercept model.

R*and R} are the coefficient of determinant and the
adjusted version, and & is VMSE from the ANOVA.
LOOCYV and 13-fold CV are the leave-one-out and 13-
fold cross validation prediction errors. Both reduced
models have 8 terms including the intercept and the
same fit quality. Table 14 show that slack-variable mo-
del present the best prediction accuracy and the most
parsimonious model in terms of numerical stability.
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Table 14. Comparison of the reduced intercept model and slack-variable model into [-1, 1] range

Model Size R’ R, c LOOCV 5-fold CV  CN MVIF
SV-model 8 0.9998 0.9997 0.0409 0.0545 0.0452 44 15
IM-model 8 0.9998 0.9997 0.0425 0.0581 0.0455 16.5 8.5
Conclusion Cornell J.LA. Multiple constraints on the component proportions, in:

In this paper, we analyzed if it matter which compo-
nent is replaced for the constant term, in the intercept
model, in the sense on numerical stability. By numeri-
cal examples, in section: Four examples to evaluate de
correlation criterion in the intercept model we showed
that the intercept model can be used to reduce the ill-
conditioning problem. In addition, evidence was given
that the choice of which component is replaced for the
constant term is crucial in the sense on numerical stabi-
lity. Moreover, we computed the correlation criterion
and we determined that this criterion does not work for
the intercept model, that is, the choose of which compo-
nent should be replaced for a constant term, cannot be
performed according with the correlation criterion. We
recommend practitioners directly construct each possi-
ble intercept model matrix and choose the best one ac-
cording to maxVIF, MVIF and CN criterion.

In section: linear transformations we tried four
transformation methods and choose the best one for the
intercept model and the slack-variable model. Scaling
the components’ proportions into [-1, 1] range works
the best for the slack-variable model, the modified L—
Pseudocomponent transformation works the best for
the intercept model in some cases.

Finally, in section: numerical stability and predic-
tion accuracy comparison we compare the intercept
model with the slack-variable model based mainly on
the prediction accuracy and numerical stability. The
slack-variable model has the best prediction accuracy
and is the most parsimonious model in terms of nume-
rical stability.
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