Ingenieria Investigacion y Tecnologia, volumen XVII (nimero 1), enero-marzo 201 6: 23-34
ISSN 1405-7743 FI-UNAM

(articulo arbitrado) Ingenieria

Investigacién y Tecnologia

Use of Artificial Neural Networks for Prediction of the Convective
Heat Transfer Coefficient in Evaporative Mini-Tubes

Uso de redes neuronales para la prediccion del coeficiente de transferencia de calor
por conveccion de la evaporacion en minitubos

Romero-Méndez Ricardo Duran-Garcia Héctor Martin
Universidad Auténoma de San Luis Potosi Universidad Auténoma de San Luis Potosi
Faculty of Engineering E-mail: hduran@uaslp.mx

E-mail: rromerom@uaslp.mx ) )
Pérez-Gutiérrez Francisco Gerardo

Lara—Vazquez Patricia Universidad Auténoma de San Luis Potosi

Universidad Tecnolégica de San Luis Potosi Faculty of Engineering
E-mail: patylarav@gmail.com. E-mail: francisco.perez@uaslp.mx
Oviedo-Tolentino Francisco Pacheco-Vega Arturo
Universidad Auténoma de San Luis Potosi California State University, Los Angeles
Faculty of Engineering Department of Mechanical Engineering
E-mail: francisco.oviedo@uaslp.mx E-mail: apacheco@calstatela.edu

Information on the article: received: August 2014, accepted: August 2015

Abstract

In this work, artificial neural networks (ANNs) are used to characterize the
convective heat transfer rate that occurs during the evaporation of a refrige-
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The results obtained in this investigation reveal the convenience of using
ANNSs as an accurate predictive tool for determination of convective heat
transfer rates inside mini-tube evaporators.
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Resumen

En esta investigacion se utilizan redes neuronales para determinar la tasa de trans-
ferencia de calor convectiva durante la evaporacion de un refrigerante en el interior
de un minitubo. Se desarrollé un sistema experimental, incluye un ciclo de refrige-
racion basado en el ciclo de Rankine inverso, instrumentado con equipo de medicion
y un sistema de adquisicion de datos para obtener informacion del desemperio tér-
mico bajo diferentes condiciones de operacion. Con este banco de pruebas experimen-
tal fue posible obtener una cantidad considerable de datos que permiten caracterizar
el desemperio térmico del proceso de evaporacion en consideracion. Un 75% de las
mediciones se usan para entrenar varias configuraciones de red neuronal y 25% de
los datos se emplean para determinar el error de prediccion de cada configuracion.
Los resultados obtenidos en esta investigacion demuestran la conveniencia de usar
redes neuronales artificiales para la determinacion correcta de la transferencia de

Descriptores:

* redes neuronales artificiales
* sistemas térmicos
* evaporadores compactos
* minitubos
e transferencia de calor
por conveccion

calor evaporadores de minitubos.

Introduction

Recent developments of high performance electronic
equipment have led to a general reduction of spacing
and increase in power. This fact has created a need for
efficient heat dissipation. In response to this demand,
miniature-size compact heat exchangers with capacity
to operate as efficient heat sinks have been recently de-
veloped. The reduction of channel size is now a reality
and mini-tubes with hydraulic diameters from 200 um
to 3 mm are commonly used. The problem, however, is
that the heat transfer and pressure drop in this kind of
systems may be significantly different from what has
been reported in conventional size evaporators, and
there is a lack of reliable information about the thermal
performance of these devices.

Much of the progress of heat transfer has been dri-
ven by the necessity to predict the performance of a
thermal system, which results from applications of fun-
damental laws (mass, momentum, and energy conser-
vation) for basic problems, supplemented with em-
pirical correlations for more complex cases (complexi-
ties stemming from system geometry, flow conditions
and appearance of simultaneous heat transfer mecha-
nisms). Unfortunately, there are critical applications
related to energy efficiency, environmental impact, op-
timal system design and control, where traditional te-
chniques fail to provide an adequate prediction and
more advanced prediction methods are required. While
the thermal sciences must continue to gradually increa-
se knowledge and insight of fundamental phenomena,
there are some new technologies, such as artificial neu-
ral networks (ANNSs) that can be used as application
tools to supplement such understanding. This is parti-
cularly true in the case of complex flow situations occu-

rring in novel applications, such as the cooling of
electronic devices with miniature size evaporators.

Heat transfer prediction of condensation and eva-
poration processes in refrigeration and air conditioning
units is a complex task when compared to the predic-
tion of single phase heat transfer. Traditional power-
law correlations have proved to be inaccurate for this
kind of processes, even though there is a need of good
predictions in these applications. For instance, using
their correlation for forced convective boiling, Gungor
and Winterton (1986) obtained errors of 21.4% for satu-
rated boiling and 25% for sub-cooled boiling with res-
pect to their own measurements. Years later, it was
shown that when experimental data from other authors
are used, the errors from this and other correlations can
be as large as 50%.The process of phase change in pipes
undergoes a series of flow regimes, which go from sin-
gle phase flow, onset of bubble formation, annular flow
boiling, film boiling, mist flow and superheated vapor
flow, depending on mass flow rate, degree of superhea-
ting, pressure, tube diameter, orientation and vapor
quality. All these phenomena occur over a short pipe
length. The inability of power-law correlations to catch
up with all these phenomena occurring during two
phase convection lies as the reason for the inaccuracy of
the predictions.

One of the modern technologies that have been suc-
cessful as an analysis tool is the technique of artificial
neural networks (ANNSs). This technique has been
applied for pattern recognition, decision making, con-
trol systems, information processing, symbolic mathe-
matics, computer vision and robotics. The use of ANNs
has been extended to a wide variety of disciplines,
among which are the thermal sciences, because it allows
the study of complex thermal systems that otherwise
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would be impossible to characterize with conventional
analysis techniques, since they offer an alternative ap-
proach for experimental data compression. ANNs have
been used for the prediction of heat transfer coefficients
(Jambunathan et al., 1996), the calculation of Nusselt
numbers (Thibault and Grandjean, 1991), the predic-
tion of heat transfer in heat exchangers (Diaz et al., 1999;
Pacheco-Vega et al., 2001a, 2001b), the estimation of
heat transfer in the transition region of a circular tube
(Ghajar et al., 2004), to study the thermal performance
of cooling towers (Islamoglu, 2005), to analyze phase
change in finned tubes (Ermis et al., 2007), to compute
friction and heat transfer in helically-finned tubes (Zda-
niuk et al., 2007), to model evaporative air coolers (Ho-
soz et al., 2008), finned-tube condensers (Zhao and
Zhang, 2010), finned-tube evaporators (Zhao et al.,
2010), and indirect evaporative cooling (Kiran and Raj-
put, 2011). One of the main advantages of ANNSs is that
they do not require a detailed knowledge of the physi-
cal phenomena describing the system under analysis.

The objective of this work is to use ANNSs to charac-
terize the convective heat transfer rate occurring during
the evaporation of a refrigerant flowing inside tubes of
very small diameter. For this purpose, an experimental
setup of a mini-tube evaporator with a constant heat
flux condition is first built and instrumented. Next, the
experimental apparatus is used to acquire the measure-
ments necessary to map the thermal performance of the
evaporative process inside a bundle of mini-tubes as
functions of flow and thermal operating conditions and
geometrical parameters. Finally, using the experimen-
tal data, several neural network configurations are trai-
ned and the most accurate was selected to predict the
thermal behavior of the mini-tube evaporator. The re-
sults reveal that ANNSs are accurate predictive tool for
the analysis of complex systems such as mini-tube eva-
porators.

Artificial neural networks

The theory under which ANNs work is based on the
structure and functionality of biological neural systems,
where the neuron is the fundamental element. The biolo-
gical neuron, schematically shown in Figure 1, is formed
by the body of the cell, an axon and a series of dendrites.
The axon transports the incoming signal from a neuron
to other neurons, whereas the dendrites provide enough
surface area to facilitate connectivity with other neurons.
ANN s have nodes (or artificial neurons), as shown in Fi-
gure 2, whose function is to make mapping operations
between inputs and outputs. This mapping is usually
done by means of a sigmoidal function, although other

functions (e.g.: hyperbolic tangent or Gaussian) have
also been successfully applied. These artificial neurons
are connected to others through linkages of the type
axon-synapsis-dendrite, each associated with a weight.
As in the case of a biological synapsis, this weight deter-
mines the nature and intensity of the influence of a node
on another. A weight of large value (either positive or
negative) corresponds to a large excitation, while a small
weight corresponds to a negligible one. There exist diffe-
rent neural network configurations, the fully-connected
being the most common in the analysis of engineering
problems. This type of ANN, also called multilayered
perceptron or feed-forward network, is shown schemati-
cally in Figure 3. It has a series of layers, each formed by
a set of nodes; the first layer is called input layer; the last
one is the output layer, and the inner layers are known as
hidden layers. The network configuration shown in the
figure is referred to as fully-connected since each node of
a layer is connected to all the nodes of adjacent layers.
To build an artificial neural network model, a trai-
ning process must be carried out first. This process is
accomplished by adjusting the synaptic weights and
biases when the different values of input and output
variables are supplied to the network. The technique
for training the ANN is that of back propagation, des-
cribed by Rumelhart ef al. (1986). After the network
configuration has been chosen, the first step of the algo-
rithm is to randomly assign initial synaptic weights and
biases. The second step, known as feed-forward step,
starts by feeding the data onto the first layer (input la-
yer). The information resulting from the input-output
sigmoidal mapping at each node of the inner layers is
then transferred forward until it reaches the nodes of
the last layer (output layer), where the outputs from the
network are compared with the experimental data, and
their differences are used later to adjust the correspon-
ding weights. This step is known as back-propagation.
In it, the error generated from the feed-forward phase is
quantified in each layer and each node by means of a

Dendrites

Figure 1. Schematic of a biological neuron
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delta rule and propagated backwards to change the sy-
naptic weights and biases. A feed-forward step fo-
llowed by a back-propagation one comprises a cycle.
The training process ends when the error in the last cy-
cle decreases below an established threshold value.

Experimental setup and procedure

Experimental set up

An experimental apparatus based on the inverse Ranki-
ne cycle, which includes a test section for evaporation
of a refrigerant inside a set of mini-tubes, was built and
instrumented. The test bench is shown schematically in
Figure 4. It has two fluid circuits: one for the refrigerant
R-134a and one for cooling water. The refrigerant cir-

cuit incorporates a refrigerant pump (RP), a pre evaporator
(PE), an evaporator test section (TS), an expansion valve
(EV), a double pipe condenser (DC) and sub-cooler (SC) -in
which the refrigerant flows inside the annular section
while chilled water flows inside the circular pipe- an
accumulator tank (AT), a flow meter (FM), a dryer filter
(DF) and several peepholes (PH). This circuit starts in the
container (CO) and refrigerant flows toward the pump.
This is a 1/13 HP rotary positive-displacement type
pump with external gears, magnetic coupling, and pro-
vides volumetric flow rates from 4 to 458 I/h. The pump
circulates the refrigerant through a Coriolis-type flow
meter, which measures mass flow rates from 0 to 65
kg/h, densities from 0.1 to 2.9 g/cm’, and temperatures
from -50°C to 180°C. After the flow meter the refrige-
rant flows to a pre-evaporator, leaving it at the specific
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vapor quality required at the entrance of the evaporator
test section.

This experimental setup has an electrical resistance
through which the power is supplied to the system
that is controlled by means of a variable autotransfor-
mer. Both the pre-evaporator and the test section have
similar designs (see description below). Once the refri-
gerant is pre-heated, it is circulated through the evapo-
rator test section, where it evaporates and the required
measurements for the present study are collected. Af-
ter passing an expansion valve, a condenser and a sub-
cooler are used to treat the refrigerant that leaves the
test section before it returns to the accumulator tank.
The condenser and the sub-cooler are concentric-tube
heat exchangers, shown schematically in Figure 5, in
whose annular sections chilled water is circulated. The
chiller (CH) has a temperature range from -10 to 40°C,
and a volumetric flow rate up to 4.2 I/min. A bypass
circuit is also included in order to adjust the average
flow rate. The pressure in the test section is measured
by means of a pressure transducer, which has a range
from 0 to 1 MPa. The pressure is regulated varying the
temperature and flow rate of water in the condenser.

The input and output temperatures are measured with
J-type insulated thermocouples.

Pre-evaporator and evaporator test section design

Figure 6 shows the test section formed by a collinear
array of 20 adjacent copper tubes, each having a 3.175
mm outer diameter, 1.75 mm inner diameter and
1.5 m length. The array of tubes is sandwiched bet-
ween two 90 cm long, 7 cm wide and 4.8 mm thick
copper plates. Six J-type thermocouples were inserted
along the collinear array in the gaps formed between
tubes and the copper plates. In order to reduce the
contact thermal resistance, the space between the cop-
per tubes and the plates was filled with conducting
silicon paste. Each copper plate is covered with a
stainless steel lamina that has 11 cuts, as shown sche-
matically in Figure 7, to form a path for the circula-
tion of an electric current that will generate heat by
Joule effect (and will apply it to the system), which is
regulated by adjusting the voltage applied with a
0-120 V CA variable autotransformer. A thin gypsum
layer is placed as a plank between the copper and
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Figure 6. Schematic of the test section

_

ﬁ Figure 7. Stainless steel lamina cuts

stainless steel plates to avoid electric currents through
the copper plates and tubes. In order to reduce heat
losses to the exterior, the outer side of the stainless
steel plates is covered with two layers of asbestos tis-
sue and a fiberglass layer.

The information obtained from the experimental
runs was collected with a data acquisition system that
includes a National Instruments SC-2345 portable mo-
dular system, a data acquisition card NI DAQCard-
6036E for PCMIA, thermocouple modules NI SCC-TC,
and a current module NSC-C120. The program Measu-
rement and Automation Explorer is used to obtain data
and process them in a PC.

Data collection and processing

The refrigerant mass flow rate, the system pressure, the
applied heat flux generated from the electrical resistan-
ce and the incoming refrigerant vapor quality entering
the test section were varied during the experiments.
The refrigerant mass flow rate was varied by adjusting
the operating conditions of the refrigerant pump and
the bypass. The system pressure was varied by injection
of refrigerant into the system. As indicated above, the
magnitude of heat flux applied was varied by adjusting
the variable autotransformer position. The vapor quali-
ty of the refrigerant entering the test section was con-
trolled by the amount of heat provided in the pre-
evaporator.

The following parameters were measured during
the experimental runs:

T, =test section tube surface temperature
T, =average refrigerant temperature during evapora-
tion

T, =pre-evaporator refrigerant input temperature
P =system pressure

tih  =refrigerant mass flow rate

V  =applied voltage

I =applied current

The temperatures T, and T, are obtained from direct
measurements with J-type thermocouples. With these
measurements it is possible to calculate the experi-
mental inner flow side convective heat transfer coeffi-
cient, U, as

"

u=ur=—T2 (1)
AT -T)

where q” is the applied heat flux (applied electric power
per unit surface area), which is a function of the voltage
and current applied and controlled by the variable au-
totransformer, A, is the copper plates surface area, and
A, is the external surface area of the tubes.

The vapor quality at the entrance of the test section
was selected to be 20%; this was achieved by regula-
ting the heat provided to the pre-evaporator, which is
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controlled by the variable autotransformer position.
The vapor quality at the exit of the test section was
selected to be 80%; this was also achieved by regula-
ting the heat provided to the evaporator.

The amount of heat needed to achieve a vapor qua-
lity of 20% as entrance condition to the evaporator, ex-
pressed as the product of voltage by current circulated
through the pre evaporator, is determined by

VI, =ri(h,—h,) @)
where 1, is the enthalpy of refrigerant that is 20% vapor
at the pressure of the test section, and can be determined

by h;=hy+x,hg; h, is the saturated liquid enthalpy of the
refrigerant at the evaporator pressure, /i, is the latent

Table 1. Artificial neural network configurations analyzed

heat of evaporation of the refrigerant at the evaporator
pressure and x, is the quality, in this case x,=0.2.

The amount of heat needed to achieve a vapor qua-
lity of 80% as exit condition of the evaporator, expres-
sed as the product of voltage by current circulated
through the evaporator, is determined by

V212=q"AV=ﬁz(h3—h2) (3)

where h, is the enthalpy of refrigerant that is 80% vapor
at the pressure of the test section, and can be determined
by hy=h.+x; h;; his the saturated liquid enthalpy of the
refrigerant at the evaporator pressure, I, is the latent
heat of evaporation of the refrigerant at the evaporator
pressure and x;. is the quality, in this case x; =0.8.

Inner layers Configuration R o Maximum error (%)
1 3-3-1 1.0001 7.15E-4 4.04
1 3-5-1 1.0000 6.48E-4 3.73
1 3-7-1 1.0001 7.00E-4 5.52
1 3-9-1 1.0060 2.36E-3 8.70
1 3-11-1 1.0000 6.00E-3 3.58
1 3-13-1 1.0000 6.89E-4 3.67
2 3-1-1-1 1.0001 6.98E-4 4.51
2 3-3-1-1 1.0000 7.00E-4 3.70
2 3-5-1-1 1.0000 6.83E-4 3.73
2 3-5-3-1 1.0000 2.90E-3 3.80
2 3-5-5-1 0.9970 6.70E-4 3.80
2 3-6-4-1 1.0000 6.25E-4 3.70
3 3-1-1-1-1 1.0001 7.32E-4 415
3 3-3-1-1-1 1.0000 6.60E-4 3.75
3 3-5-1-1-1 1.0001 7.14E-4 4.01
3 3-5-3-1-1 1.0000 6.83E-4 3.97
3 3-5-5-1-1 1.0000 6.58E-4 3.97
3 3-5-5-3-1 1.0000 7.01E-4 3.98
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Results and discussion

Three parameters were chosen as relevant input data
for the characterization of the refrigerant evaporation
in the mini-pipe heat exchanger described before. The-
se are: saturation temperature during the evaporation
process (T,,), refrigerant mass flow rate (11), and applied
heat flux (g”). The output obtained from this informa-
tion is the experimental convective heat transfer coeffi-

10000 12000 function of the training cycle for the
neural network configuration 3-13-1

cient (U¢). This combination of parameters is relevant in
many cases where the surface temperature adapts to
guarantee a given heat flux under a convective heat
transfer coefficient condition. The Fortran-77 code used
for training the artificial neural network model, and for
its subsequent predictions, is a modified version of that
developed by Diaz (2000) and Pacheco-Vega (2002). A
feature of this new version is that it enables the automa-
tic selection of the most appropriate error function
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(from a pre-defined set), during the training process,
for the problem at hand.

A number of 177 measurements of T,,, i1 and q” were
obtained to calculate U;, and 18 different artificial neu-
ral network configurations were analyzed and compa-
red to determine the one that provided best predictions
of the thermal behavior for the evaporation process.
Table 1 shows all the network configurations tested.
The number of inner layers, which determine the ANN
structure, was set as 1, 2 or 3, with a different number of
nodes per layer. For each one of the 18 configurations,
the mean value of the ratio between the experimental
and predicted transfer coefficients, R, the maximum
error and the standard deviation, o, were calculated
during the training process until the maximum number
of training cycles was reached. The calculations for R
and o were carried out with the following equations

ReLyw U 4)

N<~="yr

iﬁ[”ﬁ —R] 1 5)

where U’ is the refrigerant side convective heat trans-
fer coefficient determined from the experimental data
and U’ is the convective heat transfer coefficient predic-
ted by the artificial neural network. From the 177 expe-
rimental data collected, 133 were used to train each
neural network configuration, whereas the remaining
44 datasets were reserved for testing purposes; i.e., for
comparison between the experiments and the ANN
predictions. Table 1 illustrates the final values of R and
o for each configuration. It is to be noted that, following
the investigation of Pacheco-Vega et al. (2001a, 2001b),
the final neural network model was built with 100% of
the available experimental data, since it allows for the
optimum model within the parameter range.

The number of cycles during training was defined
in terms of the minimum value of the maximum error
and standard deviation. An example of the behavior
observed for this error is shown in Figure 8 for the case
of the neural network 3-13-1. From the observations of
this and other cases not shown in the paper, where the
same behavior occurs in all other configurations, it was
concluded that after 10,000 cycles the reduction of the
maximum error was negligible, and this number of tra-
ining cycles was taken as the standard throughout this
investigation. Importantly, depending on the problem

1

N

at hand the training process may be computationally
expensive but, as pointed out by Pacheco-Vega et al.
(2001b), once the ANN has been trained, its subsequent
use for predictions is immediate. For the problem at
hand, in all cases analyzed the training process took
less than 5 minutes of CPU-time per ANN model,
which is an excellent processing time as compared to
that necessary for the optimization process to find the
typical correlation constants. From the table it can be
seen that although the results for the 18 configurations
are close, the 3-11-1 was the best in terms of the maxi-
mum error, while the 3-6-4-1 proved to be the best in
terms of . Both configurations are close to the “best”
configuration according to the ad-hoc criterion of He-
cht (1987), which indicates that the configuration 3-7-1,
shown schematically in Figure 9, should be the best.
When searching for a more robust model, as mentioned
before, there are other configurations that are very com-
petitive. Configuration 3-5-3-1, with R=1.0000, 0=2.90E-4
and maximum error of 3.80, or configuration 3-3-1-1-1,
with R=1.0000, 0=6.60E-4 and maximum error of 3.75,
are very good options.

Figure 10 shows the convective heat transfer coeffi-
cient obtained experimentally, LI, versus the prediction
from the neural network 3-3-1-1-1, U?, for each one of
the 177 experimental data. It can be seen from the figure
that the experimental and predicted values are very clo-
se to the ideal straight line that describes the perfect
prediction. It is important to mention that the error in
the prediction is less than 3.75%, much less than the
errors encountered in predictions obtained with corre-
lations that use conventional predictive capabilities. It
is evident that neural networks are an excellent tool for
prediction of the thermal performance of the evapora-
tion of a refrigerant within a concentric pipe heat ex-
changer. This fact is further exemplified by using the
Liu and Winterton (1991) correlation, which is one of
the most accepted for prediction of heat transfer during
evaporation of a refrigerant inside flat tubes. Using this

Uy

(o)
Tmt
] O o)
q %
| J L J |

input layer  hidden layer output layer

Figure 9. A 3-7-1 neural network configuration analyzed
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correlation with their own data, the mean error repor-
ted between the correlation and the data is 30%. In con-
trast, the maximum error in the prediction of heat
transfer in the present evaporator obtained by the opti-
mal neural network configuration was 3.58% (the mean
quadratic error was 0.6%) when compared to our expe-
rimental data. Artificial neural networks are a good op-
tion for prediction of heat transfer in evaporators with
errors of the same order of magnitude as the experi-
mental uncertainty.

Conclusions

The study of the physics involved in convective evapo-
ration has increased its complexity since the appearan-
ce of enhanced surfaces for evaporators and new
environmentally-friendly refrigerants. This enhanced
complexity has made it more difficult to develop accu-
rate correlations for the prediction of the thermal per-
formance of evaporators. Reports in the literature
clearly show that predictions based on models that con-

32

35

heat transfer coefficient (Uvs (?) for the
ANN configuration 3-3-1-1-1

40 45

sider forced convection and flooded evaporation as se-
parate phenomena are severely degraded and new
alternatives like artificial neural networks (ANNs) are
necessary.

We have developed neural network models of a mi-
ni-tube evaporator that may be able to accurately pre-
dict the thermal performance under several operating
conditions. Results obtained using the ANN technique,
as developed in this investigation, are very promising.
The prediction of heat transfer obtained in this work
has a maximum error of 2.46% and a mean quadratic
error of 0.51%, which is by far lower than the 30% obtai-
ned by other authors (Liu and Winterton, 1991), that
use conventional correlation techniques. The technique
of artificial neural networks is therefore an excellent op-
tion for reliable and precise characterization of thermal
systems where evaporation processes occur, such as in
refrigeration and air conditioning units, and when ap-
propriately trained, the predictions obtained from neu-
ral network models are of the order of the experimental
uncertainty.
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Nomenclature
ANNs Artificial neural networks PH
2 ”
A, Copper plates surface area, m q
A, External tube surface area, m* R
AT Accumulator tank RP
CA Alternating current sC
CH Chiller Tf
CO Container TW
DC Double pipe condenser TS
DF Dryer filter T
EV Expansion valve at
M Flow meter u
h Enthalpy, kJ/kg u:
hy, Latent heat of vaporization, KJ/Kg ur
I Electrical current, A \%
m Mass flow rate, kg/s X
P Pressure, N/m? o
PE Pre evaporator
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