
Ingeniería Investigación y Tecnología, volumen XV (número 2), abril-junio 2014: 187-198

ISSN 1405-7743 FI-UNAM

(artículo arbitrado)

Descriptores:

•	 marcos orientados a objetos
•	 reuso de software
•	 reingeniería de software
•	 patrón MVA
•	 modelo formal
•	 Teoría de Modelos

Información del artículo: recibido: junio 2012, aceptado: mayo 2013

Modelo formal para la reestructura de marcos orientados a objetos
hacia arquitecturas modelo-vista-adaptador

Formal Model for Restructuring of Object-Oriented Frameworks to Architecture
Model-View-Adapter

Santaolaya-Salgado René
Centro Nacional de Investigación y Desarrollo Tecnológico

(CENIDET)
Departamento de Ciencias Computacionales

Cuernavaca, Morelos, México
Correo: rene@cenidet.edu.mx

Fragoso-Díaz Olivia Graciela
Centro Nacional de Investigación y Desarrollo Tecnológico

(CENIDET)
Departamento de Ciencias Computacionales

Cuernavaca, Morelos, México
Correo: ofragoso@cenidet.edu.mx

Zamudio-López Sheydi Anel
Centro Nacional de Investigación y Desarrollo Tecnológico

(CENIDET)
Departamento de Ciencias Computacionales

Cuernavaca, Morelos, México
Correo: snzamudio@cenidet.edu.mx

Resumen

La reestructura de código legado puede realizarse con fines diferentes, entre
los que se encuentran la migración hacia nuevas tecnologías que faciliten el
mantenimiento y la reutilización del código. Los marcos orientados a objetos
(frameworks) cuentan con características que, de cierta manera, limitan el reu-
so de su código. En este trabajo se propone un modelo formal que describe
un proceso de reestructura de código legado de marcos orientados a objetos
(MOO) hacia código conforme a la arquitectura modelo-vista-adaptador (MVA).
Este proceso se lleva a cabo aplicando 11 métodos de reestructura, con el
objetivo de separar el código de la lógica del negocio (el modelo), la cual es
la parte más reusable del marco, del código que implementa la vista y del
código que controla el procesamiento específico de la aplicación. Como re-
sultado, el código legado del marco queda preparado para una migración
posterior hacia servicios web.

Modelo formal para la reestructura de marcos orientados a objetos hacia arquitecturas modelo-vista-adaptador

Ingeniería Investigación y Tecnología, volumen XV (número 2), abril-junio 2014: 187-198 ISSN 1405-7743 FI-UNAM188

Introducción

El concepto de marco orientado a objetos aportó una nue-
va dimensión a la noción de reuso de software, al consi-
derar un diseño genérico, adaptable a situaciones
específicas. Sin embargo, el grado de dependencia de
los componentes que integran el marco ocasiona que
las clases no puedan sacarse de su contexto y que el
marco deba ser reutilizado como un solo componente.

Para elevar el nivel de reuso del código legado de un
marco orientado a objetos, se requiere diseñar un pro-
ceso de reingeniería basado en operaciones de transfor-
mación, que considere la reestructura arquitectónica
del código del marco, de manera que sea posible identi-
ficar y separar los elementos de código que pueden ser
más reutilizables, sin perder la funcionalidad completa
ofrecida por el marco.

En este trabajo se propone un proceso de reestructu-
ra de código de marcos orientados a objetos hacia códi-
go conforme a la arquitectura modelo-vista-adaptador
(MVA), con el objetivo de separar el código de la lógica
del negocio (el modelo), el cual es la parte más reusable
del marco, del código que implementa la vista y del có-
digo que controla el procesamiento específico de la
aplicación.

Este proceso implementa el esquema de solución
que se muestra en la figura 1, donde T1 representa el

conjunto de operaciones de transformación aplicado al
marco orientado a objetos para obtener un marco orien-
tado a objetos con arquitectura MVA.

El esquema de solución se describe formalmente a
través de un modelo construido utilizando elementos
de la Teoría de Modelos.

Marcos orientados a objetos

En el contexto de este trabajo, un marco es un conjunto
semi-completo de clases en colaboración que incorpora
un diseño genérico, el cual puede adaptarse a una va-
riedad de problemas específicos para producir nuevas
aplicaciones hechas a la medida Santaolaya (2003).

Generalmente, el marco consiste en clases abstrac-
tas que definen la estructura y el comportamiento ge-
nérico del marco y forman la base para la aplicación
desarrollada a partir del marco. Sin embargo, también
puede contener clases concretas e interfaces que sean
significativas, porque se utilizan para todas las aplica-
ciones de un dominio desarrolladas a partir del marco
(Froehlich et al., 1998). En el contexto de este trabajo
consideramos como elementos estructurales de los
marcos, a las clases que los conforman, junto con las
relaciones entre ellas. La figura 2 muestra el ejemplo
de un marco orientado a objetos.

La funcionalidad de los marcos puede definirse
como su capacidad para proveer funciones que respon-
den a necesidades expresadas o implícitas cuando el
marco se utiliza en condiciones específicas (ISO/IEC
9126-1).

Marcos orientados a objetos con arquitectura
MVA

El patrón Model-View-Adapter (MVA) es una variante del
patrón Model-View-Controller (MVC), el cual es un pa-

Abstract

The restructuring of legacy code can be done for different purposes, among which is
the migration to new technologies that facilitate the maintenance and code reuse.
The frameworks have features that, in some way, limit the reuse of your code. In this
paper, we propose a formal model that describes a process of restructuring legacy
code object-oriented frameworks (MOO) to code according to the architecture Mod-
el-View-Adapter (MVA). This process is carried out using 11 methods of restructur-
ing, with the aim of separating the code from business logic (the model), which is the
most reusable framework, the code that implements the view and the code that han-
dles specific processing of the application. As a result, the legacy code of the frame-
work is ready for a subsequent migration to Web services.

Keywords:

•	 frameworks
•	 software reuse
•	 software reeingeniering
•	 MVA pattern
•	 formal model
•	 Model theory

Figura 1. Esquema de solución propuesto para reestructurar
marcos orientados a objetos hacia marcos orientados a objetos
con arquitectura MVA

189

Santaolaya-Salgado René, Fragoso-Díaz Olivia Graciela, Zamudio-López Sheydi Anel

Ingeniería Investigación y Tecnología, volumen XV (número 2), abril-junio 2014: 187-198 ISSN 1405-7743 FI-UNAM

trón arquitectónico que separa la lógica del negocio (el
modelo) de la parte de presentación de datos (la vista)
(Hintze, 2009).

En el contexto de este trabajo, un marco de aplica-
ciones orientado a objetos con arquitectura MVA es un
marco reestructurado por medio de un conjunto de
operaciones de transformación para implementar el pa-
trón MVA, sin afectar la funcionalidad original del mar-
co orientado a objetos. En la figura 3 se muestra un
ejemplo de una arquitectura de clases conformada al
patrón MVA.

Descripción del modelo formal

Se utilizó la Teoría de Modelos para describir formal-
mente el esquema de solución propuesto.

Definición del lenguaje de primer orden

Sean P y Q sistemas. Definimos un lenguaje de primer
orden L adecuado a P y Q, tal que su alfabeto cuenta
con los símbolos siguientes:

Variables: a, m, a1,…,an, m1,…,mn, x, y, r, x1,…,xn, y1,…,ym

Relatores: 〈R1 〉1∈J, 〈R2〉2∈J, 〈R3〉3∈J, 〈R4〉4∈J, 〈R5〉5∈J, 〈R6〉6∈J e =,
como relator con rango 2 que denota la relación de
igualdad o equivalencia.

Descriptor: |
Signos lógicos: ¬, ∧, ∨, →, ↔, ∀, ∃
Signos relacionales: , , ≠
Signos binarios: È, ×
Otros signos: ψ, δ, ∅, 
Paréntesis: (), [], { }, < >

En la definición del lenguaje L se han incluido los sig-
nos relacionales , , ≠ que corresponden a las opera-
ciones relacionales de la teoría de conjuntos “pertenece
a”, “contiene como elemento” y “no es igual a”, respectiva-
mente; el signo binario È que corresponde a la opera-
ción binaria “unión” y el signo binario × que corres-
ponde a la operación binaria “producto cartesiano”. Tam-
bién se incluyen otros signos como ψ, δ, ∅,  que co-
rresponden a “configuración”, “funcionalidad”, “conjunto
vacío” y “subsistema de”, respectivamente.

Figura 2. Diagrama de clases de un marco orientado a objetos

Modelo formal para la reestructura de marcos orientados a objetos hacia arquitecturas modelo-vista-adaptador

Ingeniería Investigación y Tecnología, volumen XV (número 2), abril-junio 2014: 187-198 ISSN 1405-7743 FI-UNAM190

Definición de una clase

Sea AT el conjunto de atributos y MT el conjunto de mé-
todos, es posible definirlos de la siguiente manera:

AT = {a| a A(a)} donde A(a) = “a es un atributo
de clase” 					 (1)
				
Se define ahora al conjunto de métodos MT:

MT = {m|m (M(m) ∧ (Mi(m) ∨ Ma(m))) }			
(2)

donde:
M(m) 	 = “m es un método”
Mi(m) 	 = “m es un método implementado”
Ma(m) 	 = “m es un método abstracto”

Una clase es un conjunto de atributos y métodos, que
puede definirse como:

C 						 (3)

El conjunto de clases que conforman un marco se define
como:

			 			 (4)

Definición de relación

Una relación es una conexión entre elementos de con-
juntos. Podríamos definir una relación como:

 			 (5)

Sin embargo, en un marco existen diferentes tipos de
relaciones, por lo que es necesario entonces, definir
cada una de las relaciones existentes en un marco.

{ }m nR a , ,a ,m , ,m C AT MT= … … ⊆ ∪1 1 donde

C Ci
n

i= ∪ =�

Figura 3. Ejemplo de una arquitectura de clases conformada al patrón MVA

{ }, ,R x y x y= ∈ ×C C

191

Santaolaya-Salgado René, Fragoso-Díaz Olivia Graciela, Zamudio-López Sheydi Anel

Ingeniería Investigación y Tecnología, volumen XV (número 2), abril-junio 2014: 187-198 ISSN 1405-7743 FI-UNAM

Definición de las relaciones de asociación

Sea 𝛼 la fórmula que define las relaciones de asociación
existentes en un marco, tal que:

 donde R1(x, y) = “x está conectado
 con y”	 	 			 (6)

Definición de las relaciones de dependencia

Sea γ la fórmula que define las relaciones de dependen-
cia existentes en un marco, tal que:

 donde R2(x, y) = “x depende de y”	 (7)

Definición de las relaciones de herencia

Sea β la fórmula que define las relaciones de herencia
existentes en un marco, tal que:

 donde R3(x, y) = “x hereda de y” 	 (8)

Definición de las relaciones de agregación

Sea ο la fórmula que define las relaciones de agregación
existentes en un marco, tal que:

 donde R4(x, y) = “x es parte de y” (9)

Definición de las relaciones de composición

Sea ρ la fórmula que define las relaciones de composi-
ción existentes en un marco, tal que:

 donde R5(x, y) = “x existe
 si y sólo si existe y” 			 (10)

Definición de las relaciones de implementación

Sea η la fórmula que define las relaciones de implemen-
tación, existentes en un marco, tal que:

 donde R6(x, y) =
 “x implementa y” 			 (11)

Modelo del marco orientado a objetos

Sea P un sistema relacional, tal que

P = A, R1, R2, R3, R4, R5, R6 donde A =	 (12)

La configuración (ψP) representa las combinaciones es-
pecíficas de clases y relaciones existentes en el marco
orientado a objetos y se define como:

 			 (13)

donde:

 		 (14)

 			 (15)

 			 (16)

 			 (17)

 			 (18)

 			 (19)

La funcionalidad (δP) está soportada por la configura-
ción de las clases y relaciones existentes en el marco
orientado a objetos y se define como

ψ P → δ P 			 (20)

Si tenemos ciertas clases y ciertas relaciones en el marco
orientado a objetos, entonces estas combinaciones espe-
cíficas de clases y relaciones soportarán la funcionali-
dad ofrecida por el marco orientado a objetos.

Modelo del marco orientado a objetos con arqui-
tectura MVA

Formalmente un marco orientado a objetos con arqui-
tectura MVA puede describirse como el sistema relacio-
nal Q, definido como

Q = B, ς, ϑ, R1, R2, R3, R4, R5, R6 donde B = 		
	 (21)

En la estructura del patrón arquitectónico MVA existe
una conexión entre las partes del adaptador y de la vista,
y también entre el adaptador y el modelo, como se mues-
tra en la figura 3. En el contexto de este trabajo, estas
conexiones se implementan como relaciones de compo-
sición y se consideran individuos destacados del siste-
ma Q, que se describen formalmente como:

 		 	 (22)
 		

(23)

Las partes arquitectónicas del marco orientado a obje-
tos con arquitectura MVA (el modelo, la vista y el adap-
tador) pueden describirse formalmente como los
subsistemas M, V y A, respectivamente, de manera que:

()1 ,x y R x yα = ∃ ∃

()2 ,x y R x yγ = ∃ ∃

()3 ,x y R x yβ = ∃ ∃

()4 ,x y R x y= ∃ ∃ο

()5 ,x y R x yρ = ∃ ∃

n
i iC=∪ 1

{ }P A H D Ag Co Iψ = ∪ ∪ ∪ ∪ ∪

{ } { }, | , | x y x y x y x y P xy sat= ∈ = ∨ ≠ = ∈   α A A A

{ } { }, | , | H x y x y x y P xy sat= ∈ ≠ = ∈   β A A

{ } { }, | , | D x y x y x y P xy sat= ∈ ≠ = ∈   γ A A

{ } { }, | , | Ag x y x y x y P xy sat= ∈ ≠ = ∈   ο A A

{ } { }, | , | Co x y x y x y P xy sat= ∈ ≠ = ∈   ρ A A

{ } { }, | , | I x y x y x y P xy sat= ∈ ≠ = ∈   η A A

m
i iC=∪ 1

()x A y V R x,yς = ∃ ∈ ∃ ∈ 5

()x A z M R x,zϑ = ∃ ∈ ∃ ∈ 5

()6 ,x y R x yη = ∃ ∃

Modelo formal para la reestructura de marcos orientados a objetos hacia arquitecturas modelo-vista-adaptador

Ingeniería Investigación y Tecnología, volumen XV (número 2), abril-junio 2014: 187-198 ISSN 1405-7743 FI-UNAM192

M 		 tal que M es un subsistema de
Q: M = Q		 (24)

 tal que V es un subsistema de
Q: V = Q 				 (25)

A tal que A es un subsistema
de Q: A = Q 	 			 (26)

Como en el marco orientado a objetos, la configuración
(ψ Q) representa las combinaciones específicas de cla-
ses y relaciones existentes en el marco MVA y se define
como:

 		 	 (27)

donde:

 			 (28)

 			 (29)

 			 (30)

 			 (31)

 			 (32)

 			 (33)

La funcionalidad (δQ) se define como

 		 		 (34)

Descripción formal del esquema de solución

Sean P y Q sistemas relacionales, definidos en las dos
secciones anteriores, respectivamente. Tenemos un es-
quema T1 de solución si

T1(P) → Q tal que 		 	 (35)

En el cual, T1 representa un conjunto de operaciones de
reestructura.

Descripción del proceso de reestructura

Para integrar el conjunto de operaciones T1, se diseñó
un proceso de reestructura para transformar la arqui-
tectura original del marco orientado a objetos hacia una
arquitectura MVA. El proceso consta de 11 métodos (R1,
…, R11) que realizan 2 actividades principales y cada

una se describe por su intención, precondiciones, pro-
cedimiento, suposiciones, poscondiciones e interacción
de los métodos:

A1. Analizar el código del MOO original y etiquetar
los enunciados, funciones y clases de acuerdo a las
partes del patrón MVA a las que pertenecen

Intención: identificar a qué parte del patrón MVA co-
rresponde cada uno de los enunciados de código,
las funciones y las clases del MOO.

Precondiciones: tener acceso al código del conjunto de
clases del MOO original y haber realizado la clasifi-
cación de los enunciados del lenguaje en que está
escrito el MOO.

Procedimiento:

Paso A1.1 Analizar los enunciados, las funciones y las
clases del MOO en estudio, con la finalidad de:

1. 	Identificar cada enunciado de código del MOO.
2. Etiquetar los elementos de código de acuerdo a la

parte del patrón a la que pertenecen.
3. 	Generar información sobre las clases y las funcio-

nes del MOO en estudio, que apoyarán las siguien-
tes actividades del proceso de reestructura.

Suposiciones: a partir de identificar y etiquetar los ele-
mentos de código, es posible llevar a cabo la rees-
tructura del MOO en estudio.

Poscondiciones: los elementos del código del MOO en
estudio quedan etiquetados de acuerdo a la parte
del patrón MVA a la que pertenecen. Se obtiene in-
formación de tipos de clases, funciones abstractas,
funciones concretas y tipos de variables.

Interacción de los métodos de reestructura: los pasos de
esta actividad se llevan a cabo aplicando el método
de reestructura R1 y no interacciona con otros
métodos.

A2. Reestructurar el código legado

Intención: separar y reubicar los elementos de código
del marco orientado a objetos original, de acuerdo a
la parte del patrón que les corresponde.

Precondiciones: los enunciados de código, las funcio-
nes y las clases del marco orientado a objetos origi-

1 2 3 4 5 6, , , , , ,R R R R R R= M

1 2 3 4 5 6, , , , , ,V R R R R R R= V

1 2 3 4 5 6, , , , , , , ,R R R R R R= ς ϑD

ψQ H D A C Ig O= ∪ ∪ ∪ ∪ ∪{ }A

{ } { }, | , | A x y x y x y x y Q xy sat= ∈ = ∨ ≠ = ∈   α B B

{ } { }, | , | H x y x y x y Q xy sat= ∈ ≠ = ∈   β B B

{ } { }, | , | D x y x y x y Q xy sat= ∈ ≠ = ∈   γ B B

{ } { }, | , | Ag x y x y x y Q xy sat= ∈ ≠ = ∈   ο B B

{ } { }, | , | Co x y x y x y Q xy sat= ∈ ≠ = ∈   ρ B B

{ } { }, | , | I x y x y x y Q xy sat= ∈ ≠ = ∈   η B B

Q Qψ → δ

() (δ δ)P Q P Qψ ≠ψ ∧ =

193

Santaolaya-Salgado René, Fragoso-Díaz Olivia Graciela, Zamudio-López Sheydi Anel

Ingeniería Investigación y Tecnología, volumen XV (número 2), abril-junio 2014: 187-198 ISSN 1405-7743 FI-UNAM

nal deben estar etiquetados de acuerdo a la parte del
patrón MVA a la que pertenecen. Las tablas “Tipos
de clases”, “Funciones abstractas” y “Funciones
concretas” deben estar creadas.

Pasos a seguir en el desarrollo de esta actividad:

Paso A2.1 Crear las tablas “Clases Modelo”, “Clases
Vista”, “Clases Adaptador”, “Funciones abstractas
MVA”, y “Funciones concretas MVA”.

Paso A2.2 Obtener la jerarquía de clases del marco
orientado a objetos original, con la finalidad de con-
servarla en la parte del modelo.

Paso A2.3 Siguiendo el orden de la jerarquía de clases
del marco orientado a objetos original, crear las cla-
ses del nuevo marco orientado a objetos con arqui-
tectura MVA. Este paso implica:

1.	 Crear las clases del modelo, la vista y el adaptador
que se requieren (Paso A2.3.a, figura 4).

Paso A2.4 Si la clase en estudio es especializada en algu-
na parte del patrón MVA, reubicar a los miembros
de la clase en la parte del patrón a la que pertenecen.
Este paso implica:

1. Reubicar los constructores de la clase (Paso A2.4.a,
figura 4).

2. Reubicar las funciones de la clase (Paso A2.4.b, figu-
ra 4).

3. Reubicar los atributos de la clase (Paso A2.4.c, figu-
ra 4).

4. Redefinir las llamadas a las funciones ya reubica-
das que se encuentren en el código (Paso A2.4.d,
figura 4).

Paso A2.5 Si la clase en estudio es No-especializada,
fragmentar la clase para reubicar a sus elementos de
código en la parte del patrón a la que pertenecen.
Este paso implica:

1.	 Crear los constructores de las clases MVA (Paso
A2.5.a, figura 4).

2. 	 Crear nuevas funciones para reubicar los enuncia-
dos de código que pertenezcan a la vista y/o al
adaptador (Paso A2.5.b, figura 4).

3. Reubicar los atributos a los que acceden las funcio-
nes reubicadas (Paso A2.5.c, figura 4).

4. Redefinir las llamadas a las nuevas funciones (Paso
A2.5.d, figura 4).

Suposiciones: la parte del modelo mantiene la arquitec-
tura del marco original y no tiene ningún elemento
de la vista. La vista contiene solamente los elemen-
tos de código que pertenezcan a esta parte del pa-
trón. El adaptador gestiona las interacciones entre el
modelo y la vista.

Inicio

Crear la tabla "Tipos de
estatutos"

Método R1 Método R6

Método R7

Método R8 Método R2

Método R9

Método R3

Método R5

Método R11

Método R10

Método R3

Método R4

Método R5

Método R11

Paso A1.1 Paso A2.1

Paso A2.3.a

Paso A2.4.b

Paso A2.4.c

Retorno del flujo
de control

Figura 4. Proceso de reestructuración para obtener el marco orientado a objetos con arquitectura MVA

Modelo formal para la reestructura de marcos orientados a objetos hacia arquitecturas modelo-vista-adaptador

Ingeniería Investigación y Tecnología, volumen XV (número 2), abril-junio 2014: 187-198 ISSN 1405-7743 FI-UNAM194

Poscondiciones: se obtiene un marco orientado a obje-
tos con arquitectura MVA.

Interacción de los métodos de reestructura: después de
analizar y etiquetar el código fuente del marco
orientado a objetos original, se inicia la reestructura-
ción de la arquitectura del marco, aplicando el mé-
todo R6. Este método coordina el proceso de
reestructuración llamando a los métodos R7, R8, R9
y R10.

La figura 4 muestra gráficamente este proceso, el cual
termina cuando todas las clases del marco orientado a
objetos original han sido reubicadas en la arquitectura
MVA.

Resultados

Para realizar las pruebas al proceso de reestructuración
para obtener un marco orientado a objetos con arquitec-

tura MVA, se construyó un marco orientado a objetos
del dominio de la geometría. De la arquitectura original
de este marco, se seleccionó el caso práctico cuadrado-
rectángulo cuya arquitectura se muestra en la figura 5.

El marco orientado a objetos cuadrado-rectángulo
está formado por 7 clases (la clase cliente no es parte del
marco orientado a objetos), que están relacionadas en-
tre sí a través de relaciones de herencia. De acuerdo al
modelo formal presentado en la sección de modelo del
marco orientado a objetos, la descripción formal del
marco orientado a objetos cuadrado-rectángulo se defi-
ne como:

H = H, R3ñ donde:
H = {aFigura, aFiguraGeometrica, aPoligonos,
 aCuadrilatero, aParalelogramos, cCuadrado,
 cRectangulo} ñ}

La configuración (ψH) se describe formalmente como:

Figura 5. Arquitectura de clases del marco orientado a objetos cuadrado-rectángulo

195

Santaolaya-Salgado René, Fragoso-Díaz Olivia Graciela, Zamudio-López Sheydi Anel

Ingeniería Investigación y Tecnología, volumen XV (número 2), abril-junio 2014: 187-198 ISSN 1405-7743 FI-UNAM

(ψ H) = {aFiguraGeometrica, aFigura, aPoligonos,
 aFiguraGeometrica, aCuadrilateros, aPoligonos,
 aParalelogramos, aCuadrilateros, cCuadrado,
 aParalelogramos, cRectangulo, aParalelogramosñ}

La funcionalidad del marco orientado a objetos cuadra-
do-rectángulo se describe formalmente como: ψH → δH.

Después de aplicar el conjunto de operaciones que inte-
gran el proceso de reestructura que se describe en la
sección 5, al marco orientado a objetos cuadrado-rec-
tángulo, se obtiene el marco orientado a objetos con ar-
quitectura MVA (MVA cuadrado-rectángulo), como se
muestra en la figura 6.

De acuerdo con el modelo formal presentado en la
sección modelo del marco orientado a objetos con ar-
quitectura MVA, el marco MVA cuadrado-rectángulo
se describe formalmente como:

l= I, ς, ϑ, R3ñ donde:

I = {aFiguraV, cCuadradoV, cRectanguloV, aFiguraC,
 cCuadradoC, cRectanguloC, aFiguraM,
 aFiguraGeometricaM, aPoligonosM, aCuadrilaterosM,
 aParalelogramosM, cCuadradoM, cRectanguloMñ}

ς = R5 (aFiguraC, aFiguraV)
ϑ = R5 (aFiguraC, aFiguraM)

La configuración (ψI) se describe formalmente como:

ψI = {aPoligonosM, aFiguraGeometricaM, cRectanguloV,
 aFiguraV, cCuadradoC, aFiguraC, cRectanguloC,
 aFiguraC, aFiguraGeometricaM, aFiguraM,
 cCuadradoV, aFiguraV, aCuadrilaterosM,
 aPoligonosM, aParalelogramosM, aCuadrilaterosM,
 cCuadradoM, aParalelogramosM, cRectanguloM,
 aParalelogramosMñ}

Una de las características que se debe cumplir para que
un proceso de reestructura se considere exitoso, es que

Figura 6. Arquitectura de clases MVA del caso práctico cuadrado-rectángulo

Modelo formal para la reestructura de marcos orientados a objetos hacia arquitecturas modelo-vista-adaptador

Ingeniería Investigación y Tecnología, volumen XV (número 2), abril-junio 2014: 187-198 ISSN 1405-7743 FI-UNAM196

no se pierda la funcionalidad original ofrecida por el
marco orientado a objetos. En la descripción formal del
esquema de solución, que se presenta en la sección de
descripción formal del esquema de solución, esta carac-
terística se establece en la restricción:

 		 	 (37)

Dos conjuntos son iguales sí y sólo sí tienen los mismos
elementos (Hintze, 2009). Al analizar los conjuntos ΨH
y Ψl observamos que se cumple (ψH ≠ Ψl ) debido a que
la estructura arquitectónica de los marcos es diferente.

La expresión (δH ≠ Ψ l) establece que la funcionali-
dad de ambos marcos debe ser equivalente. Para verifi-
car que esta condición se cumple se construyó una
aplicación cliente con solicitudes de servicio similares
para cada uno de los marcos. En las figura 7 se muestra
el código de estas aplicaciones.

a)

b)

Figura 7. Clases Cliente a) para el caso práctico Cuadrado-
Rectángulo original y b) para el caso práctico MVA Cuadrado-
Rectángulo

Los resultados obtenidos al ejecutar las aplicaciones
cliente se presentan en las figuras 8 y 9.

Figura 8. Resultados de la ejecución de la aplicación Cliente
para el caso práctico Cuadrado-Rectángulo original

Figura 9. Resultados de la ejecución de la aplicación Cliente
para el caso práctico MVA Cuadrado-Rectángulo

El resultado de la ejecución de las aplicaciones Cliente
permite observar que existe una equivalencia funcional
entre ambos marcos. La restricción (δH ≠ δ l), se cumple
para los casos prácticos presentados.

Trabajos relacionados

La migración de software legado hacia nuevas platafor-
mas tecnológicas es una de las propuestas de solución
más utilizadas para aumentar el nivel de reuso y el
mantenimiento de este tipo de código.

Sin embargo, los trabajos que se relacionan más cer-
canamente con el trabajo que se presenta en este docu-
mento son aquéllos que implementan un proceso de
reingeniería basado en la reestructuración arquitectóni-
ca del código legado hacia una arquitectura de capas
(MVC o MVA), como una de las fases o etapas del pro-
ceso de migración. Estos trabajos consideran la separa-
ción del código de la lógica del negocio (el modelo,
donde es posible encontrar más funcionalidades que
pueden ser reutilizables) del código de la lógica de pre-
sentación (la vista).

En el trabajo que se describe en (Matos y Heckel,
2009), los autores presentan una metodología que se en-
foca en el análisis del código fuente para migrar siste-
mas legados hacia arquitecturas orientadas a servicios.
La metodología propuesta transforma la arquitectura
del software legado hacia una arquitectura de tres ca-
pas que separa la lógica de la aplicación, los datos y la
interfaz de usuario; y posteriormente, realiza una des-
composición funcional que permite obtener componen-
tes candidatos a servicios web.

El trabajo que se describe en las secciones anterio-
res, también se enfoca en el análisis del código fuente
para realizar la transformación arquitectónica de un
marco orientado a objetos hacia una arquitectura de
tres capas, aunque difiere del trabajo que se describe en
(Matos y Heckel, 2009) en el modelo arquitectónico ob-
tenido, la metodología y las técnicas empleadas para
realizar el proceso de reestructuración.

En (Hunold et al., 2008), los autores presentan un
conjunto de herramientas de ingeniería que dan sopor-
te a un proceso incremental de transformación arqui-
tectónica. Este proceso separa el software legado original
en varios componentes independientes y reemplaza-

()()H l H lψ ≠ ψ ∧ δ = δ

public class Cliente
{ public static void main(String[] args)

{ aFigura c=new cCuadrado(5);
aFigura r=new cRectangulo(3, 9);
System.out.println("CUADRADO");
c.area();
System.out.println("RECTANGULO");
r.area();

}
}

 a)

 b)

public class Cliente
{ public static void main(String[] args)

{ aFiguraC oC=new cCuadradoC(5);
aFiguraC oR=new cRectanguloC(3, 9);
System.out.println("CUADRADO");
oC.area();
System.out.println("RECTANGULO");
oR.area();

}
}

public class Cliente
{ public static void main(String[] args)

{ aFigura c=new cCuadrado(5);
aFigura r=new cRectangulo(3, 9);
System.out.println("CUADRADO");
c.area();
System.out.println("RECTANGULO");
r.area();

}
}

 a)

 b)

public class Cliente
{ public static void main(String[] args)

{ aFiguraC oC=new cCuadradoC(5);
aFiguraC oR=new cRectanguloC(3, 9);
System.out.println("CUADRADO");
oC.area();
System.out.println("RECTANGULO");
oR.area();

}
}

CUADRADO
El area del cuadrado es: 25.0
RECTANGULO
El area del rectangulo es: 27.0

CUADRADO
El area del cuadrado es: 25.0
RECTANGULO
El area del rectangulo es: 27.0

197

Santaolaya-Salgado René, Fragoso-Díaz Olivia Graciela, Zamudio-López Sheydi Anel

Ingeniería Investigación y Tecnología, volumen XV (número 2), abril-junio 2014: 187-198 ISSN 1405-7743 FI-UNAM

bles, que facilitan la migración del código legado hacia
nuevas plataformas.

El proceso de transformación arquitectónica que se
describe en Hunold et al. (2008) coincide con el proceso de
reestructuración que se describe en este trabajo, al consi-
derar el análisis y la categorización del código fuente lega-
do como la base del proceso de transformación. Las
diferencias entre ambos trabajos se encuentran en el mo-
delo arquitectónico obtenido, la metodología y las técni-
cas empleadas para llevar a cabo la reestructuración.

En Pahl y Barret (2004), los autores describen un
conjunto de requerimientos básicos para el diseño y la
implementación de un proceso de reingeniería de siste-
mas legados distribuidos y/o basados en el Web, hacia
arquitecturas orientadas a servicios. Entre estos reque-
rimientos, los autores plantean la reestructuración ar-
quitectónica del sistema legado hacia una arquitectura
de 3 capas (implementada de acuerdo al patrón MVC),
como una de las fases que se deben considerar en el di-
seño del proceso de reingeniería. Este planteamiento
concuerda con el enfoque del proceso de reestructura-
ción que se describe en este documento.

Finalmente, en el trabajo que se presenta en Ping et
al. (2004) los autores describen un marco de reingenie-
ría, cuyo objetivo es transformar la arquitectura de apli-
caciones Web legadas hacia una arquitectura basada en
el patrón MVC.

Concretamente, el proceso de reingeniería propues-
to por los autores consiste en la implementación de 3
fases o etapas, en las cuales se analiza el código de la
aplicación Web legada para separar los elementos que
pertenecen al modelo (accesos y consultas a la base de
datos), a la vista (elementos de código escrito en HTML
y páginas JSP) y el control (archivos HTML, páginas
JSP generadas y objetos Java Beans). La similitud con el
trabajo que se describe en este documento se observa en
la realización del análisis del código legado como una
actividad básica del proceso de reingeniería; así como
en la obtención de una nueva arquitectura organizada
en los componentes del patrón MVC.

Conclusiones

En la literatura especializada se han presentado traba-
jos que demuestran que la transformación arquitectóni-
ca del código legado hacia una arquitectura de capas
permite separar la lógica de presentación, de la lógica
del negocio y puede considerarse como una estrategia
que facilita la transición del código legado hacia nuevas
plataformas tecnológicas.

El proceso de reestructuración que se describió en
este documento presenta las siguientes ventajas:

•	 Permite desacoplar los elementos del marco orienta-
do a objetos sin perder la funcionalidad original.

•	 Al finalizar el proceso de reestructuración se obtie-
ne un marco orientado a objetos con arquitectura
MVA completamente funcional.

•	 El código del marco queda ordenado y preparado
para migrarlo hacia nuevas plataformas tecnológi-
cas o facilitar su mantenimiento.

Un punto importante que se debe considerar al aplicar
el proceso de reestructuración propuesto es que exis-
ten enunciados del código fuente del marco orientado
a objetos que no son fáciles de clasificar, de acuerdo
con la parte arquitectónica del patrón MVA a la que
corresponden. Tal es el caso de los enunciados de de-
cisión, los enunciados repetitivos, los enunciados de
asignación, que pueden utilizarse en las diferentes
partes arquitectónicas del patrón MVA y cuya clasifi-
cación requiere un análisis más profundo que la sim-
ple identificación.

Debido a que el procedimiento de identificación y
clasificación de enunciados es la base del análisis y
reestructura del código, esta fase del proceso requiere
la participación de un experto en el dominio y en el len-
guaje.

Sin embargo, los resultados obtenidos al aplicar el
proceso de reestructuración nos permiten concluir que
representa una estrategia útil que facilita la migración
de marcos orientados a objetos hacia nuevas platafor-
mas tecnológicas.

Actualmente, se continúa trabajando en el diseño e
implementación de una herramienta de ingeniería que
automatice el proceso reestructuración.

Referencias

Froehlich G., Hoover H.J., Liu L., Sorenson P. Designing Object-
Oriented Frameworks, Department of Computing Science, Cana-
dá, University of Alberta, Edmonton, noviembre 1998.

Hintze B. Bungee Connect and Model-View-Adapter (MVA): The
Architectural Pattern for Next Generation Interactive Cloud-
Based Web Applications, Bungee Labs, 2009.

Hunold S., Korch M., Krellner B., Rauber T., Reichel T., Rünger G.
Transformation of Legacy Software into Client/Server Appli-
cations through Pattern-based Rearchitecturing, en: Compu-
ter Software and Applications (COMPSAC ‘08), 32nd Annual
IEEE International, 2008.

International Standard ISO/IEC 9126-1. Software Engineering
Product Quality, Part 1, Quality Model.

Matos C. Heckel R. Migrating Legacy Systems to Services-Orien-
ted Architectures. Electronic Comunications of the EASST, volu-
men 16, 2009.

Modelo formal para la reestructura de marcos orientados a objetos hacia arquitecturas modelo-vista-adaptador

Ingeniería Investigación y Tecnología, volumen XV (número 2), abril-junio 2014: 187-198 ISSN 1405-7743 FI-UNAM198

Pahl C., Barrett R. Towards a Re-Engineering Method for Web Ser-
vices Architectures. Journal of Mathematical Modelling in Phy-
sics, Engineering and Cognitive Sciences, volumen 11, diciembre
2004.

Ping Y., Kontogiannis K., Lau T.C. Transforming Legacy Web
Applicattions to the MVC Architecture, en: Proceedings of the
Eleventh Annual International Workshop on Software Tech-
nology and Engineering Practice (STEP’04), IEEE, 2004.

Rosen K. Discrete Mathematics and its Applications, 6a ed., Mc-
GrawHill International, 2007, p.113.

Rumbaugh J., Jacobson I., Booch G. The Unified Modeling Language
Reference Manual, Adisson-Wesley, 1999.

Santaolaya R. Modelo de representación de patrones de código para la
construcción de componentes reusables, tesis (doctorado), Depar-
tamento de Ciencias Computacionales, Centro de Investiga-
ción en Computación, Instituto Politécnico Nacional, 2003.

Este artículo se cita:

Citación estilo Chicago

Santaolaya-Salgado, René, Olivia Graciela Fragoso-Díaz, Sheydi
Anel Zamudio-López. Modelo formal para la reestructura de mar-
cos orientados a objetos hacia arquitecturas modelo-vista-adapta-
dor. Ingeniería Investigación y Tecnología, XV, 02 (2014): 187-198.

Citación estilo ISO 690

Santaolaya-Salgado R., Fragoso-Díaz O.G., Zamudio-López S.A.
Modelo formal para la reestructura de marcos orientados a obje-
tos hacia arquitecturas modelo-vista-adaptador. Ingeniería Inves-
tigación y Tecnología, volumen XV (número 2), abril-junio 2014:
187-198.

Semblanza de los autores

René Santaolaya-Salgado. Es profesor investigador en el área de ingeniería de Software,
del Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET). Obtu-
vo el grado de doctor en ciencias de la computación, por el Centro de Investigación
en Computación del Instituto Politécnico Nacional y es miembro del Sistema Na-
cional de Investigadores. Su área de interés es la ingeniería de Software, específica-
mente en ambientes integrados para el desarrollo de sistemas, programación
visual, reusabilidad del Software y servicios Web.

Olivia Graciela Fragoso-Díaz. Es profesora investigadora en el área de ingeniería de Soft-
ware, del Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET).
Obtuvo el grado de doctor en ciencias de la computación, por el Centro Nacional
de Investigación y Desarrollo Tecnológico. Tiene el grado de maestría en ciencias
computacionales por el Instituto de Ciencia y Tecnología de la Universidad de
Manchester (UMIST-UK). Su área de interés es la ingeniería de Software, específi-
camente, reingeniería, reusabilidad de Software y servicios Web.

Sheydi Anel Zamudio-López. Es profesora del Sistema Nacional de Institutos Tecnológi-
cos, en el Instituto Tecnológico de Nuevo León. Obtuvo el grado de maestría en
ciencias computacionales por el Centro Nacional de Investigación y Desarrollo Tec-
nológico (CENIDET) y actualmente está inscrita en el programa doctoral en cien-
cias de la computación que imparte el CENIDET. Su área de interés es la ingeniería
de Software, específicamente el análisis y diseño de metodologías de reuso de soft-
ware, patrones de diseño y desarrollo de proyectos de Software.

