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Resumen

Este artículo presenta una formulación en elementos fi nitos basada en un 
principio variacional parametrizado para resolver problemas planos de inte-
racción fl uido-estructura, utilizando los desplazamientos como variable de 
estado para formular el sólido y el fl uido. La formulación no presenta mo-
dos espúreos de circulación, los cuales son comunes a las formulaciones en 
desplazamientos. Asimismo el parámetro de penalización no es aleatorio ya 
que se determina de acuerdo con un criterio energético. Por último la formu-
lación no es sensible a la defi nición de la dirección normal en el contorno de 
la interfase sólido-fl uido.

Abstract

This article presents a fi nite element formulation based on a parameterized varia-
tional principle for solving plane problems of fl uid-structure interaction using the 
displacements as state variable for both solid and fl uid media. The circular spuri-
ous modes, typical of displacement formulations are avoided. The penalty param-
eter is not random because it is selected according to energy criterion. Finally the 
formulation is not sensible to the defi nition of the normal direction in the fl uid-
structure interface.
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Introducción

Varias formulaciones se han desarrollado con el objeto 
de simular un fl uido acústico en problemas de interac-
ción fl uido estructura, diferenciándose básicamente 
por la naturaleza de las variables de campo que em-
plean para la discretización en elementos fi nitos. Entre 
otras, tenemos la formulación en desplazamiento 
(Hamdi et al., 1978; Belytschko et al., 1976 y 1980), la 
formulación en desplazamiento (velocidad) potencial y 
presión (Morand et al., 1979; Everstine, 1981; Olson et 
al., 1985; Felippa et al., 1990a) y la de desplazamiento, 
presión y momento de vorticidad (Bathe et al., 1995; 
Wang et al., 1997).

La formulación en desplazamientos es preferida 
por muchos investigadores, ya que los elementos 
acústicos pueden acoplarse directamente con elemen-
tos estructurales. La desventaja de esta formulación es 
que presenta modos rotacionales espúreos a frecuen-
cias diferentes de cero (Hamdi et al., 1978; Olson et al., 
1985). El método de penalidad en las rotaciones (Ham-
di et al., 1978), arroja buenos resultados para elemen-
tos cuadriláteros de 8 nodos. Los resultados obtenidos 
con el elemento de bajo orden dependen del valor de 
penalidad utilizado. Olson (1985) y posteriormente 
Bathe (1995) concluyen que el elemento en desplaza-
mientos de Hamdi (1978) no puede resolver varios 
problemas típicos de interacción fl uido-estructura, de-
bido entre otras, a las restricciones de irrotacionalidad 
e incompresibilidad.

Otros elementos en desplazamientos se basan en 
polinomios de Raviart-Thomas que no presentan mo-
dos espúreos de rotación (Bermúdez et al., 1994). La 
utilización de desplazamientos normales en la mitad 
de los lados no son atractivos para programas genera-
les de elementos fi nitos. Además la continuidad en los 
desplazamientos de la interfase se impone en forma 
integral, condensándose los grados de libertad en la 
mitad del lado.

Otros autores utilizan una matriz de masa proyecta-
da en combinación con integración reducida en un pun-
to para la matriz de rigidez (Wang et al., 1997). Después 
se presentó un elemento (Kim et al., 1997) que combina 
la penalización a las rotaciones (Hamdi et al., 1978) con 
la matriz de masa proyectada e integración reducida 
(Chen et al., 1990). De nuevo, el factor de penalización a 
las rotaciones queda indeterminado, debiendo seleccio-
narlo el usuario.

Los elementos en desplazamiento, presión y mo-
mento de vorticidad (Bathe et al., 1995; Wang et al., 
1997) son de difícil implementación en programas con-
vencionales de elementos fi nitos, salvo que puedan 

condensarse los campos de presión y vorticidad a nivel 
elemental. Los resultados son satisfactorios para ele-
mentos cuadriláteros de 12 nodos, con 9 grados de li-
bertad en desplazamientos, 3 grados de libertad en 
presiones y 3 grados de libertad en momento de vorti-
cidad. Los elementos de bajo orden presentan modos 
checker board. Una limitación añadida es que se obtienen 
modos singulares no físicos, lo que impide estudiar 
problemas de propagación, ya que deben eliminarse 
con anterioridad. Los experimentos numéricos mues-
tran que también es sensible a la defi nición de la direc-
ción normal al contorno.

Ninguna de estas formulaciones en desplazamien-
tos presenta una expresión cerrada para los factores de 
penalización. La extensión de las mismas a dominios 
3D, en algunos casos, no es trivial.

En el presente trabajo mostraremos cómo la formu-
lación de la energía de un fl uido acústico puede ajustar-
se exactamente a la formulación de un Principio 
Variacional Parametrizado (PVP) (Felippa et al., 1990b) 
y que las recetas aplicables a los mismos en elasticidad 
lineal pueden aplicarse en este caso. Desarrollaremos 
un elemento triangular plano de 3 nodos y veremos que 
el mismo puede considerarse un elemento de alto ren-
dimiento (high performance) (Felippa et al., 1990b). El ele-
mento presenta un coefi ciente de estabilización que 
emana en forma natural del PVP, asegurando la con-
vergencia a las ecuaciones diferenciales que gobiernan 
el problema. Se desarrolla una forma cerrada para el 
coefi ciente de estabilización (factor de penalización) 
que depende del tamaño del elemento. Se desarrollan 
varios ejemplos para verifi car la calidad del elemento, 
la efectividad del coefi ciente de estabilización y la sen-
sibilidad de los resultados a la defi nición de las norma-
les al contorno.

Ecuaciones básicas

Se considera que el fl uido es no viscoso, isentrópico y 
las vibraciones son de tan baja amplitud que no modi-
fi can apreciablemente la densidad del mismo. La ener-
gía elástica acumulada en el volumen del fl uido 
acústico es

(1)

Donde β es el módulo de compresibilidad, u  es el cam-
po de desplazamientos, ρ es la densidad del fl uido, ps es 
la presión impuesta en el contorno y n  es el vector nor-
mal a la superfi cie donde se impone la presión.

( )1
2 s

V V S

E u u dV u u dV p u n dSβ ρ= ⋅∇ ⋅∇ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅∫ ∫ ∫
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Se busca la estacionalidad de la energía respecto a 
una variación arbitraria del campo de desplazamientos, 
obteniendo

(2)

Dado que el fl uido es no viscoso, sólo la componente 
normal esta impuesta y debe ser igual al desplazamien-
to del sólido.

s
n

f unu =⋅  en S    (3)

Algunas formulaciones son especialmente sensibles a la 
imposición en forma discreta de esta condición de con-
torno.

Formulación del elemento basado en el PVP

El elemento posee tres nodos con dos grados de liber-
tad por nodo, esto es, los desplazamientos ui y vi, para 
cada nodo i, paralelos al sistema de coordenadas glo-
bal. Se supone un campo básico de desplazamientos 
lineal

    (4)

La deformación o cambio de volumen es constante

   (5)

La propuesta es obtener la deformación de alto orden a 
partir de un campo de desplazamientos que se active 
cuando el campo intente rotar. Se prueba con el si-
guiente campo de desplazamientos

     (6)

Para g(x,y) se propone

g(x,y) = y2x + yx2    (7)

Deseamos, en principio, que nuestro campo sea irrota-
cional, luego

      (8)

Los coefi cientes ηε ,  son los encargados de mantener la 
irrotacionalidad del fl uido, ya que tomarán valores di-
ferentes de cero en cuanto el fl uido intente rotar.

La ecuación (8) no produce sufi cientes condiciones 
para evaluar los coefi cientes ηε , , por tanto se propone 
la siguiente condición integral

      (9)

Se puede satisfacer esta condición si se pide

     (10)

con lo que se obtiene

(11)
donde

(12)

Las constantes ηε ,  pueden obtenerse de (11) como

 
(13)

donde

(14)

Abreviando

E=F1IC

Las funciones g(x,y) se eligen de forma que aseguren 
que la matriz F sea invertible para todas las geometrías.
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Finalmente, se obtiene una expresión matricial para 
E en función de los desplazamientos nodales 

(16)
Abreviando,

E=Qv     (17)

donde A es el área del triangulo y vT= [u1 v1 u2 v2 u3 v3].
Se intenta así obtener una deformación de alto orden 

por cambio de volumen que agrega energía al fl uido en 
respuesta a un campo de desplazamientos rotacional. 

Esta primera aproximación a la deformación de alto 
orden la expresamos

    (18)

Partiendo de esta aproximación debemos buscar una 
expresión para la deformación de alto orden que satis-
faga las condiciones del Principio Variacional Parame-
trizado (Felippa et al., 1995):

La deformación de alto orden debe quedar en fun-
ción de los desplazamientos nodales en el contorno del 
elemento, es decir

eh=AQv     (19)

El campo de deformaciones de alto orden debe cance-
larse ante un campo de desplazamientos nodales con-
sistente con un desplazamiento rígido o un campo de 
deformación constante, vrc, luego

AQvrc = 0   (20)

La matriz AQ es arbitraria, pero debe cumplir la condi-
ción de no generar deformaciones medias, es decir:

  (21)

Satisfaciendo dichas condiciones, la deformación de 
alto orden se expresa como

  (22)

donde la matriz A es de la forma

(23)

Se obtienen así las matrices A y Q necesarias para 
defi nir la matriz de rigidez elemental como

Ke = Kb + αKh    (24)

donde Kh  es la matriz de rigidez de alto orden, defi nida 
como

(25)

El valor de α es arbitrario, mientras que produzca ma-
trices elementales defi nidas positivas, y puede variar de 
elemento a elemento sin comprometer la convergencia.

Debemos entender que en este contexto defi nimos 
como convergencia la capacidad del elemento de copiar 
un estado de presión constante ( constante=⋅∇ u ). 

Por último, la matriz básica se obtiene como:

(26)

donde Bb es la matriz que calcula el campo de deforma-
ción constante a partir de los desplazamientos nodales. 

Factor de estabilización de energía

Proponemos como criterio para calcular el factor de es-
tabilización de energía la relación entre la energía pro-
ducida por un campo de desplazamientos irrotacional 
asociado con Kb y la energía producida por un campo 
de desplazamientos rotacional asociado con Kh. Un 
campo irrotacional pertenece al espacio nulo de Kh   y un 
campo rotacional al espacio nulo de Kb.

Ante un campo de desplazamientos rotacional, la 
matriz de rigidez de alto orden deberá aportar energía 
sufi ciente, al menos del mismo orden que la matriz de 
rigidez básica ante un campo irrotacional de la misma 
longitud de onda espacial.

Proponemos una malla de control de dimensiones 
l × l, como se muestra en la fi gura 1.
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Se supone que el número mínimo de elementos ne-
cesarios para capturar una semionda es tres, es decir

(27)

El campo de desplazamientos irrotacional propuesto es

(28)

El campo de desplazamientos rotacional propuesto es

(29)

Ambos campos tienen su origen en el centro de la malla 
de control.

Estimando los autovalores producidos por ambos 
campos mediante el cociente de Rayleigh (Bathe, 1982):

(30)

Igualando ambas expresiones y despejando α:

(31)

Nótese que el coefi ciente propuesto depende de consi-
deraciones geométricas y no del material.

La variación de α en función del tamaño del elemen-
to h se ajusta a la ecuación

(32)

Para la formulación de Hamdi (1978), este elemento 
produce un factor α constante que no depende del ta-
maño del elemento. Por ello, la matriz Kh de la presente 
formulación no es la misma que se obtiene con dicho 
elemento.

Para una malla no estructurada se toma como di-
mensión característica h de un triángulo cualquiera el 
diámetro de un círculo inscrito en el mismo.

La obtención de una forma cerrada explícita de este 
factor de estabilización, en función de las dimensiones 
del elemento constituye una de las principales ventajas 
con que cuenta la formulación basada en el PVP sobre 
las demás formulaciones.

Problemas de verificación

Primero debemos destacar que el elemento desarrolla-
do no resuelve el problema del comportamiento límite 

incompresible. Por eso abordaremos como problema de 
verifi cación la interacción fl uido-estructura en el pro-
blema del pistón rígido inclinado vibrando en el inte-
rior de una cavidad cerrada de paredes rígidas, tal y 
como se aprecia en la fi gura 2.

En las paredes rígidas se impone que el desplazamiento 
normal a las mismas es nulo. En el pistón inclinado se 
impone, mediante multiplicadores de Lagrange (Feli-
ppa et al., 1995), que el desplazamiento del elemento 
estructural y del fl uido normal a la superfi cie de contac-
to es el mismo (condición de impenetrabilidad).

Se analizan la convergencia al refi nar la malla, el 
efecto de una malla no uniforme y el efecto del error en 
la defi nición de las normales al contorno de interacción 
fl uido-estructura.

Análisis de convergencia y mallas no uniformes

El análisis con malla no uniforme tiene como objetivo 
valorar la efi ciencia en la formulación desarrollada 
para evaluar el factor de estabilización de energía. Los 
problemas resueltos con formulaciones similares 
(Hamdi et al., 1978; Bathe et al., 1995; Wang et al., 1997) 
presentan mallas estructuradas y uniformes, y aunque 
una de ellas (Bathe et al., 1995) prueba la satisfacción 
del test de la parcela (Taylor et al., 1986), no se mencio-
na la relación entre el tamaño del elemento y el valor 
de penalización (en este caso, al momento de vortici-
dad) seleccionado.

En nuestra formulación, el factor de estabilización 
de energía es dependiente del tamaño del elemento y 
afecta a la matriz de alto orden elemento a elemento, 
con lo que, una malla distorsionada no afecta la conver-
gencia, tal como se aprecia más adelante.

La fi gura 3 muestra las mallas utilizadas para verifi -
car la convergencia, los efectos de mallas no uniformes 
y la variación en la dirección de la normal al contorno.

La tabla 1 presenta los resultados de las primeras 
cuatro frecuencias de vibración y su comparativa con la 
solución obtenida mediante la formulación u-Ø (Olson 

Pistón sin masa
E=1.0x1011 Pa

h3
2

=λ

,0I
xU sen π

λ
⎡ ⎤⎛ ⋅ ⎞= ⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

* cos , * cosR

y yx xU sen sen
π ππ π

λ λ λ λ
⎡ ⎤⎛ ⋅ ⎞ ⎛ ⋅ ⎞⎛ ⋅ ⎞ ⎛ ⋅ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
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U K U U M U

α
⋅ ⋅ ⋅ ⋅

= ∗
⋅ ⋅ ⋅ ⋅

2

12.9
h

α =

Figura 2.  Problema de un pistón inclinado (las acotaciones están 
en metros)
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et al., 1995). Cabe anotar que para la malla no uniforme 
se ha impuesto una malla más gruesa en la interfase 
sólido-fl uido, lo que supone una condición más desfa-
vorable para la convergencia.

Para el tercer y cuarto modos, las frecuencias están 
muy cercanas y es posible que el solucionador pueda 
darnos los dos autovalores básicos o una combinación 
lineal de los mismos. En la fi gura 4 vemos los modos 
que se obtienen para la malla uniforme de 339 elemen-
tos. Las presiones mostradas se obtienen calculando la 
presión en el centro del elemento y obteniendo un pro-
medio en los nodos de todos los elementos que contri-
buyen al mismo.

En la fi gura 5 vemos los autovectores obtenidos 
para el cuarto modo con las cuatro mallas. Vemos que 
para la malla no uniforme se obtiene la combinación li-
neal de ambos modos a la frecuencia correcta.

Efecto de la variación de la normal al contorno

La selección de la dirección normal adecuada a la ma-
lla es un problema ya discutido por Bathe (1995) y pos-
teriormente por Wang (1997), se observa que dicha 
formulación es sensible a esta variación a menos que 
se corrija numéricamente la dirección. Nosotros verifi -
camos el efecto de la variación en la dirección normal 
sobre nuestra formulación, sin realizar ningún tipo de 
corrección. Suponemos una variación aleatoria ± 5° en 
la dirección del vector normal al contorno, en los 
nodos ubicados en la interfase entre estructura y fl ui-
do. El efecto sobre los resultados en frecuencia pueden 
observarse en la tabla 2. La degradación del modo 4 
para las distintas mallas puede verse en la fi gura 6. 
Puede notarse la insensibilidad del elemento a este 
tipo de perturbación.

Malla Primer modo
f = 0.29 Hz

Segundo modo
f =  0.88 Hz

Tercer modo
f = 1.45 Hz

Cuarto modo
f = 1.48 Hz

21 elementos 0.29 0.86 1.36 1.41
82 elementos 0.29 0.87 1.44 1.48
339 elementos 0.29 0.88 1.45 1.48
582 elem. (dist) 0.29 0.90 1.46 1.48

Malla 1. 19 nodos – 21 elementos Malla 2. 57 nodos – 82 elementos

Malla 3. 200 nodos – 339 elementos Malla 4. 335 nodos – 582 elementos Figura 3. Mallas utilizadas

T abla 1. Frecuencias de resonancia del 
pistón inclinado utilizando la formulación 
PVP

Figura 4. Tercer y cuarto modo obtenidos 
con la malla de 339 elementos.

Figura 5. Cuarto modo de presión y 
frecuencia de resonancia para cuatro 
densidades de malla en el problema del 
pistón inclinado

 Modo 3 Modo 4

Frecuencia: 1.45 Hz Frecuencia: 1.48 Hz

 Malla de 19 nodos – 21 elementos Malla de 57 nodos – 82 elementos

Malla de 200 nodos – 339 elementos Malla de 335 nodos – 582 elementos

Frecuencia:  1.41 Hz

Frecuencia:  1.48 Hz

Frecuencia: 1.48 Hz

Frecuencia: 1.48 Hz
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Conclusiones

Hemos desarrollado un elemento acústico triangular 
plano basado en desplazamientos. La matriz de alto or-
den se genera de tal forma que se desarrolla energía de 
cambio de volumen ante la aparición de un campo rota-
cional. Debido a que utilizamos un PVP de un solo pa-
rámetro podemos utilizar éste para estabilizar la 
formulación y evitar la aparición de modos rotacionales 
espúreos. El parámetro se obtiene en forma explícita y 
resulta una función sencilla del tamaño del elemento, 
independizando al usuario de su elección. El elemento 
desarrollado es estable y converge a la solución correc-
ta. Por otro lado se muestra poco sensible a la defi nición 
de la normal en el contorno. La generalización a ele-
mentos tridimensionales es directa como se mostrará 
en un próximo trabajo.
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Variación de ± 5° en la dirección normal 
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