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Resumen

La computacion basada en principios fisicos recientemente ha ganado respe-
to en la comunidad cientifica. Esta area emergente, en poco tiempo ha logra-
do desarrollar un amplio rango de técnicas y métodos que han servido para
resolver diversos problemas, considerados como complejos. Por otra parte,
la deteccion automaética de circulos en imagenes se considera una tarea im-
portante, es por esto que se han realizado un gran numero de trabajos tra-
tando de encontrar el detector de circulos éptimo. Este articulo presenta un
nuevo algoritmo para la detecciéon de primitivas circulares contenidas en
imagenes sin la consideracion de la transformada de Hough. El algoritmo
propuesto esta basado en un nuevo enfoque inspirado en principios fisicos
llamado: Electromagnetism-Like Optimization (EMO), el cual es un método
heuristico que emplea algunos principios de la teoria del electromagnetismo
para resolver problemas complejos de optimizacién. En el algoritmo EMO
las soluciones se construyen considerando la atraccién y repulsion electro-
magnética entre las particulas cargadas; dicha carga representa la afinidad
que tiene cada particula con la solucién. El algoritmo de deteccién de circu-
los emplea una codificacion de tres puntos no colineales, dichos puntos re-
presentan los circulos candidatos sobre una imagen que sélo contiene sus
bordes. Empleando una funcién objetivo, el conjunto de circulos candidatos
considerados como particulas cargadas, son operados por medio del algorit-
mo EMO hasta que logren coincidir con los circulos existentes en la imagen
real. Los resultados experimentales en diversas imagenes complejas valida-
ron la eficiencia de la técnica propuesta en cuanto a su exactitud, velocidad
y robustez.
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Abstract

The Physic-inspired computation is becoming popular and has been acknowledged
by the scientific community. This emerging area has developed a wide range of tech-
niques and methods for dealing with complex problems. On the other hand, auto-
matic circle detection in digital images has been considered as an important and
complex task for the computer vision community that has devoted a tremendous
amount of research seeking for an optimal circle detector. This article presents an
algorithm for the automatic detection of circular shapes embedded into complicated
and noisy images with no consideration of the conventional Hough transform tech-
niques. The approach is based on a nature-inspired technique called the Electromag-
netism-Like Optimization (EMO) which is a heuristic method following
electromagnetism principles for solving complex optimization problems. For the
EMO algorithm, solutions are built considering the electromagnetic attraction and
repulsion among charged particles with a charge representing the fitness solution
for each particle. The algorithm uses the encoding of three non-collinear points as
candidate circles over an edge-only image. Guided by the values of the objective
function, the set of encoded candidate circles (charged particles) are evolved using
the EMO algorithm so that they can fit into the actual circles on the edge map of the
image. Experimental results from several tests on synthetic and natural images with
a varying range of complexity are included to validate the efficiency of the proposed
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technique regarding accuracy, speed, and robustness.

Introduccion

La computacion basada en principios fisicos es parte de
la computacion inteligente que se inspira en correlacio-
nes, caracteristicas y efectos que experimentan los siste-
mas fisicos para el desarrollo de nuevos algoritmos. En
anos recientes, varios cientificos han introducido nue-
vos algoritmos inspirados en leyes fisicas, algunos de
ellos son la optimizacién basada en estructuras fisicas
(Fen et al., 2010; Contet et al., 2007; Li et al., 2009), 1a op-
timizacion usando el concepto de fuerza central (Ri-
chard, 2008) y los algoritmos basados en mecanica
quantica (Wang, 2010).

Por otro lado, el problema de detecciéon de primiti-
vas circulares tiene una gran importancia en el analisis
de imdgenes, en particular para aplicaciones industria-
les y médicas, tales como la inspeccién automatica de
productos y componentes manufacturados, vectoriza-
cién de planos, deteccion de células, etcétera (Davies,
1990). De forma general, en procesamiento de image-
nes, el problema de la deteccién de formas circulares
suele llevarse a cabo por medio de la Transformada Cir-
cular de Hough (Muammar et al., 1989). Sin embargo, la
exactitud de los parametros de los circulos detectados
es pobre en presencia de ruido (Atherton et al., 1993).
Ademas, el tiempo de procesamiento requerido por la
Transformada Circular de Hough hace prohibitivo su
uso por algunas aplicaciones, en particular para image-
nes digitales grandes y areas densamente pobladas de

pixeles borde. Para tratar de superar tales problemas, se
han propuesto varios algoritmos basados en la transfor-
mada de Hough (TH), tales como la TH probabilistica
(Fischer et al., 1981; Shaked et al., 1996), la TH aleatoria
(THA) (Xu et al., 1990) y la TH difusa (THD) (Han et al.,
1993). En Lu & Tan (2008) propusieron una aplicacion
basada en la THA llamada THA iterativa (THAI), que
logra mejores resultados en imagenes complejas y am-
bientes ruidosos. El algoritmo aplica iterativamente la
THA a regiones de interés en la imagen, las cuales son
determinadas a partir de la tltima estimacion de los pa-
rametros del circulo/elipse detectados. La deteccion de
formas puede también realizarse usando métodos de
busqueda estocastica, tal como los algoritmos genéticos
(AG), los cuales recientemente se han aplicado a impor-
tantes tareas de deteccidon de formas. Por ejemplo, Roth
y Levine propusieron el uso de AG para extraer primi-
tivas geométricas en imagenes (Roth et al., 1994). Lutton
et al. (1994) realizaron mejoras al método anterior,
mientras que Yao et al. (2004) usaron un AG multipobla-
cion para detectar elipses. En Lu et al. (2008) se usaron
AG para buscar similitudes cuando el patrén a detectar
ha estado sujeto a una transformacién de afinidad des-
conocida. En Ayala-Ramirez et al. (2006) se presenté un
detector de circulos basado en AG, que es capaz de de-
tectar multiples circulos en imagenes reales; sin embar-
go, falla frecuentemente al detectar circulos imperfectos
o en condiciones dificiles. Recientemente, Dasgupta et
al. (2009) propusieron otro excelente trabajo de detec-
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cién automatica de circulos, usando un algoritmo de
alimentaciéon de bacterias como método de optimiza-
cion. Considerando el caso de deteccion elipsoidal, Ro-
sin propuso en (2000 y 1997) un algoritmo de ajuste de
elipses que usa cinco puntos.

En este articulo se presenta un nuevo algoritmo
para la deteccion circulos en imagenes basado en la téc-
nica inspirada en principios fisicos Electromagnetism-
Like Optimization EMO (fker et al., 2003). El algoritmo
EMO es un método estocastico poblacional basado en la
teoria del electromagnetismo, cuyas propiedades de
convergencia ya han sido probadas en (Tker et al., 2004),
(Rocha et al., 2009). La forma en que las particulas se
calculan dentro del algoritmo corresponde al grupo de
algoritmos de enjambre de particulas (PSO por sus si-
glas en inglés) (Ying et al., 2010) y al grupo de algorit-
mos basados en colonias de hormigas (ACO por sus
siglas en inglés) (Blum, 2005).

El primer paso del algoritmo EMO es producir un
grupo de soluciones aleatorias a partir de un dominio,
en el cual se encuentren las soluciones posibles, supo-
niendo que cada solucidn es una particula cargada. La
carga de cada particula se determina por la funcién de
afinidad (funcién a optimizar), modificando la posiciéon
de cada particula de acuerdo a su carga, dentro de un
campo de atraccidén o repulsiéon existente dentro de la
poblacion de particulas.

Desde el punto de vista de que EMO es un algorit-
mo que opera con multiples soluciones a la vez, su ac-
cionar puede relacionarse con los algoritmos genéticos,
siendo su mecanismo de atraccidén-repulsidon parecido
al de mutacién y crossover utilizado en los algoritmos
genéticos (Rocha et al., 2009). Al igual que otros algo-
ritmos heuristicos como Temple Simulado (SA por sus
siglas en inglés), EMO tiene la capacidad de minimi-
zar globalmente una funcién objetivo determinada, ya
que ambos, mediante mecanismos diferentes (inspira-
dos en principios fisicos) permiten evitar minimos lo-
cales. Sin embargo, debido a que el algoritmo EMO a
diferencia de SA explora una funcién objetivo en mul-
tiples puntos a la vez, es posible obtener en diferentes
casos mejores soluciones en un menor tiempo (Vasan
et al., 2009).

El algoritmo EMO calcula la fuerza resultante de
desplazamiento de la poblacién por medio de la ley de
Coulomb y el principio de superposicion. Esta fuerza
resultante se deduce por medio de las cargas y la dis-
tancia existente entre cada una de ellas. En este sentido,
una carga con un valor elevado producira una mayor
atraccion o repulsion. La fuerza resultante tiende a ser
pequefia cuando la distancia entre las particulas es
grande. En la dltima iteracion del algoritmo los movi-

mientos de las particulas seran lentos siguiendo el caso
del SA (Naderi et al., 2010; Rocha et al., 2009). Por otra
parte, el algoritmo EMO puede mejorar la soluciéon 6p-
tima en cada iteracion, por medio de la bisqueda local,
aumentando la posibilidad de salir de determinados
minimos locales.

De forma general, el algoritmo EMO se puede con-
siderar como un algoritmo rapido y robusto que repre-
senta una alternativa real para resolver problemas de
optimizaciéon complejos, no-lineales, no-diferenciables
y no-convexos (Naderi et al., 2010; Yurtkuran et al.,
2010; Jhen et al., 2009). Las principales ventajas del algo-
ritmo EM radican principalmente en las siguientes ca-
racteristicas: no tiene operaciones de gradiente, se
puede emplear directamente en el sistema decimal (a
diferencia de AG), necesita pocas particulas para con-
verger y se garantiza su convergencia (Tker et al., 2004;
Rocha et al., 2009).

En este articulo se presenta un nuevo algoritmo
para la deteccién circulos en imagenes basado en EMO.
En este enfoque la deteccion de primitivas circulares se
considera como un problema de optimizacion. Para la
deteccion se usa la codificacion de tres puntos no coli-
neales extraidos del mapa de bordes de la imagen. Es-
tos tres puntos constituyen circulos, los cuales se
consideran soluciones candidatas al problema de detec-
cion. Una vez que se evaltian estos circulos (particulas
cargadas) por una funcién objetivo (que verifica su
existencia en la imagen real), los valores obtenidos sir-
ven de guia para la modificacion de las particulas por
parte del algoritmo EMO. De esta manera, el algoritmo
opera hasta que las soluciones candidatas coincidan
con los circulos existentes en la imagen real. Este enfo-
que genera un detector de circulos, el cual puede iden-
tificar circulos eficientemente en imagenes reales,
inclusive si los objetos circulares se encuentran parcial-
mente ocluidos, traslapados o en ambientes ruidosos.
Los resultados experimentales muestran evidencia del
desempefio en la deteccion de circulos considerando
diferentes tipos de condiciones.

En este articulo se ofrece un panorama general del
algoritmo EMO. Después se formula el enfoque pro-
puesto, considerando la aplicacién del algoritmo EMO
para detectar circulos y presenta los resultados experi-
mentales y pruebas de robustez. Finalmente, se discu-
ten las conclusiones y se establece el trabajo futuro.

Algoritmo: Electromagnetism — Like Optimization
(EMO)

El algoritmo EMO es un algoritmo de optimizacion, el
cual esta inspirado en principios fisicos. El algoritmo se
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basa en una poblacion que permite la optimizacién glo-
bal de funciones multimodales. En comparacién con los
AG, no emplea operadores de mutacién o crossover
para explorar el espacio de busqueda, ya que esta basa-
do en el fendmeno fisico del electromagnetismo.

El algoritmo EMO permite resolver problemas de
optimizacion, definidos de la siguiente forma:

min f(x)
X e [l,u] M

Donde [|,U]={Xe R |1, <%, <uy,d =1,2...n}, n es
la dimensién de la variable x, [I , u] cR" es un subcon-
junto no vacio, y f :[I,u] — R es una funcion de valo-
res reales. Por lo tanto, se conocen las siguientes
caracteristicas del problema:

es la dimensién del problema,
Uy es el limite superior de la dimension,
I es el limite inferior de la dimensidn,
f (x) eslafuncién que sera minimizada.

Con estas condiciones, el algoritmo EMO emplea dos
procesos basicos para la optimizacién, primero explora
el espacio de busqueda de forma aleatoria. El segundo
proceso consiste en la explotacion local de los puntos
elegidos, para este proposito el algoritmo EMO usa los
principios de la teoria del electromagnetismo. Utilizan-
do ambos procesos se garantiza que el algoritmo con-
verge en los minimos de la funcién que son altamente
atrayente, y se aleja de los valores maximos.

Partiendo de estos dos procesos fundamentales, el
algoritmo EMO tiene cuatro fases para lograr la optimi-
zacion global (Tker et al., 2003). Cada etapa se describe a
continuacion.

Inicializacion: m particulas se toman aleatoriamente
considerando el limite superior (1) y el limite inferior (I).

Busqueda local: se busca un minimo en la vecindad
de un punto x*, donde pe (1,...,m).

Calculo del vector de fuerza total: las cargas y fuer-
zas se calculan para cada particula.

Movimiento: cada particula se desplaza de acuerdo
con el vector de fuerza total calculada.

Inicializacion

Se produce de manera aleatoria un grupo G de m solu-
ciones n-dimensionales, el cual se considera como la
poblacion de soluciones iniciales. Cada solucién se con-
sidera como una particula cargada y se supone que to-

das las particulas estan distribuidas uniformemente
entre el limite superior (1) y el limite inferior (/). La me-
jor particula (mejor solucion) se encuentra mediante la
evaluacion de la funcion objetivo, la cual depende de
cada problema de optimizacién. Este procedimiento
termina cuando todas las m particulas estan evaluadas,
eligiendo la particula que en relacién a la funcién obje-
tivo tiene un mejor resultado. Esta fase corresponde al
proceso de explorar las regiones atrayentes en un espa-
cio factible.

Bisqueda local

En esta etapa se intenta mejorar la solucion ya encontra-
da. Sin embargo, para algunos problemas puede resul-
tar innecesaria. Considerando esto, es posible formular
una clasificacién de los algoritmos EMO: EMO sin bus-
queda local, EMO con btisqueda local aplicada s6lo ala
mejor particula actual, y EMO con btusqueda local apli-
cada a todas las particulas, siendo este tltimo el caso de
estudio de este articulo.

Considerando un determinado niimero de iteracio-
nes, llamado LSITER y un parametro de vecindad de
busqueda J, el procedimiento para encontrar el valor
optimo local se lleva a cabo de la siguiente manera: el
punto X" se asigna a una variable temporal y para
almacenar la informacion inicial. A continuacién, para
una coordenada dada d de una particula, se selecciona
un numero aleatorio (4,) y se combina con & obte-
niendo la longitud de paso de busqueda. El punto y
entonces se desplaza en la direccién que la longitud de
paso indique, el signo que esta direccién tenga, tam-
bién se calcula de manera aleatoria (4,). Si el valor
obtenido tras evaluar Yy en la funcién a optimizar es
mejor después de haber realizado LSITER iteracio-
nes, el punto X" se reemplaza por Y, terminando asi
la buisqueda en la vecindad p, de otra forma X" conser-
va su valor. Por altimo, el mejor punto actual se actua-
liza en la particula. El seudocddigo de este algoritmo
se describe en la figura 1.

De forma general, la busqueda local aplicada a to-
das las particulas, puede reducir el riesgo de caer en
un minimo local, pero la desventaja es que tiende a
aumentar el tiempo de computo. Mantener la busque-
da local centrada en la mejor particula actual resulta
mas conveniente, ya que asi es posible mantener la
eficiencia y precisiéon computacional. En la busqueda
local la longitud de paso representa un importante
factor que depende de los limites de cada dimensién
y determina el desempefio del método de btusqueda
local.
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1:  contador «1 12:

2: longitud « &(max{u, —1,}) 13:  endif

3 forP=1tomdo 14:

4 ford=1ltondo 15 X"y
5 A4« U(01) 16:

6:  while contador < LSITER do 17:  endif

7. y«xP 18:

8 A, «U(01) 19:  end while
9: if 4, <0.5 then 20:  end for
10y, < y4+4,(longitud) 21:  end for
11:  else 22:

Calculo del vector de fuerza total

El calculo del vector de fuerza total se basa en el princi-
pio de superposicion (figura 2) de la teoria del electromag-
netismo, el cual establece que: “la fuerza ejercida en
una particula por medio de otra particula es inversa-
mente proporcional a la distancia entre los puntos y di-
rectamente proporcional al producto de sus cargas”
(Cowan, 1968). Cada particula se desplaza de acuerdo
con la ley de Coulomb (figura 3), la cual emplea la fuer-
za producida entre las particulas que depende del valor
de carga que posee cada una de ellas. Dicha carga se
determina por su valor de desempefio de la funcién
objetivo y se calcula de la siguiente manera:

p\_ mejor
S IS S e I

2 (1) (™))

h=1

@

Donde n denota la dimension y m representa el tamafio
de la poblacion de particulas del algoritmo EMO. Un
problema de optimizacion que se defina con un niime-
ro de dimensiones elevado, generalmente requiere una
mayor poblacién. En la ecuacién (2) la particula con el
mejor valor en la funcién objetivo X™* se llama “la
mejor particula”, y tiene una mayor carga. La fuerza de
atraccion que ejerce la mejor particula sobre otra parti-

X" argmin{f (x"), vp}

Y4 < Y4 —4 (longitud)

if f(y)< f(x") then

contador < LSITER -1

contador « contador +1

Figura 1. Seudocddigo del método de
bisqueda local

cula dada es inversamente proporcional a la distancia
existente entre ellas. Por lo tanto, esta particula atrae
otras particulas que tengan peores resultados de afini-
dad, y repele a las que tienen mejores valores de afini-
dad.

q,

9.
Figura 2. Principio de superposicién

La fuerza resultante que existe entre las particulas de-
termina la modificacién del valor de las particulas en el
proceso de optimizacion. La fuerza de cada particula se
calcula por la ley de Coulomb y el principio de super-
posicion, por medio de la ecuacion (3):

(x“-xp)&h2 si f(x") < f(xP)
o " ]

- P (3)
P —x) s f ()2 f(xP)

2
-]

Donde f(x") <f(x) representalaatracciony f(x")2 f(x")
representa la repulsion (figura 3). La fuerza resultante
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de cada particula es proporcional al producto de las
cargas e inversamente proporcional a la distancia entre
las particulas. Para que el proceso sea numéricamente
consistente, la ecuacién (3) debe ser normalizada como
se muestra a continuacion:

FP

FP=—0\ Vp 4)
|F*|

Movimiento

De acuerdo con la fuerza resultante cada particula se
desplaza como indica la siguiente ecuacion:

XP+A-FP-(u,=x}) si FP>0
xP = ,Vp #mejor (5)
xP+A-FP-(x§-1,) si F*<0

En la ecuacion (5), 4 es un paso de busqueda aleatorio,
el cual es uniformemente distribuido entre cero y uno,
por otro lado uy y |, representan los limites superior e
inferior de la dimension d, respectivamente. Si la fuer-
za es positiva, la particula se desplaza hacia el limite
superior, en caso contrario se desplaza hacia el limite
inferior, en ambos casos utilizando una longitud de
paso aleatoria. La mejor de las particulas no se mueve,
debido a que es la que tiene una atraccién absoluta y
repele o atrae a los demads elementos de la poblacién.

/l\— d —
. + Y
ll\\-_/J ‘?!I ?I;[ \_/J
4 L
—d—
£ 7
-« - [ =
Fy s ~ £y
4, L

Figura 3. La ley de Coulomb

El proceso termina cuando se alcanza un nimero maxi-
mo de iteraciones, o cuando un valor f(x"?") es optimo
en algun sentido. Estas tres fases de EMO (busqueda
local, calculo del vector de fuerza total, y movimiento),
representan el proceso de explotacion para encontrar el
valor éptimo.

Deteccidn de circulos usando EMO

En este articulo los circulos se representan por la ecua-
cion de segundo grado que se muestra en la ecuacion
(6), la cual considera tres puntos (Fischer et al., 1981),
que se toman del mapa de bordes de la imagen. Para
obtener los contornos de los objetos en la imagen, es

necesario aplicar un método de deteccidon de bordes.
Para el empleo del enfoque propuesto en este articulo,
esta tarea se lleva a cabo por medio del algoritmo de
Canny. Las coordenadas de cada punto del borde se al-
macenan en un vector E = {el,ez yee .,eNp} donde Np es
la cantidad total de pixeles de borde que existe en la
imagen. Donde a cada punto e, del vector de bordes le
corresponden las coordenadas (X,,Y,) . Estos puntos,
al tomarse en triadas, definirdn un circulo tinico.

Para construir cada circulo candidato (una particula
cargada, segun el enfoque de EMO), los indices v,, v, y
v, de tres puntos borde no colineales deben combinar-
se, suponiendo que la circunferencia del circulo pasa
por los puntos correspondientes a estos indices e, ; e, ;
e,, . De esta manera, un conjunto de soluciones candi-
datas se genera de manera aleatoria para formar la po-
blaciéon inicial de particulas. Estas soluciones seran
operadas por medio del algoritmo EMO, hasta que se
alcanza un minimo aceptable, correspondiendo la me-
jor particula al circulo real contenido en la imagen.

Como el proceso de desplazamiento modifica las
particulas, la funcién objetivo va mejorando en cada ge-
neracién por medio de la discriminacién de los circulos
con un mayor valor de error y eligiendo aquellos con
un menor error. El siguiente analisis, explica los pasos
requeridos para llevar a cabo la tarea de detecciéon de
circulos considerando el enfoque propuesto.

Representacion de las particulas

Cada particula C agrupa tres puntos de borde. En esta
representacion, los puntos de borde se almacenan de
acuerdo con el indice relativo a su posicion en el arreglo
de bordes E. A su vez, una particula se codifica como
un circulo que pasa a través de los puntos €;,€; y e, de
forma que cada particula sea representada de la si-
guiente manera (C ={e;,e;,e,}). Cada circulo es repre-
sentado por tres pardmetros: X,, Y, v, siendo (X,, Y,)
las coordenadas del centro del circulo y r su radio. La
ecuacidn del circulo que pasa a través de los tres puntos
de borde puede calcularse como sigue:

(X—X0)2+(y—y0)2=l’2 (6)

Considerando:

A=[x§+yf—(xf+y?) 2-(y,——yi)}
X+ Ye —0F+Y7) 2:(Y - V)

L [200-%) Keyi-0c )
L2 —x) Ry -0 +yD)
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« = det(A)
’ 4((Xj_Xi)(yk_yi)_(xk_xi)(yj_yi))
8)
y, = det(B)
’ 4((Xj _Xi)(yk_yi)_(xk_xi)(yj_yi))
mientras que el radio, se calcula usando:
r=\/(xo_xn)2+(yo_yb)2 )

Donde det(.) indica el determinante, y be {i, j, k}. La
figura 4 muestra los parametros definidos en las ecua-

ciones 7 a 9.
- .I |
[} —
] € e,
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[ | .
| — -
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Figura 4. Circulo candidato (particula cargada) construido a
partir de la combinacién de los puntos €, €; y &

Por lo tanto, es posible representar los parametros [ X, ,

Y, ], que definen a cada circulo como una transforma-
cion T de los indices i, j y k del vector de bordes, esta
relacion puede expresarse de la siguiente manera:

(%o Yo, F]1=T (i, . K) (10)

Mediante la exploracion de los indices agrupados en
una particula, es posible barrer el espacio de busque-
da, donde se encuentran los circulos a detectar por
medio del algoritmo de EMO. Este enfoque reduce el
espacio de busqueda eliminando las soluciones que no
son probables.

Funcién objetivo

La existencia de una posible circunferencia en una ima-
gen puede verificarse como la manera en que una for-
ma virtual circular concuerda con los puntos borde de
un circulo real en la imagen. La funcion objetivo valida-
ra la relacion existente entre el circulo candidato C
(particula) y el contenido presente en la imagen (circulo
real). Para realizar tal prueba se considera un vector de
puntos S={s,,S,,...,, }, donde N, es el nimero de

puntos de prueba sobre los cuales se verificara la exis-
tencia de un punto borde.

El conjunto de prueba S es generado por el algorit-
mo de circulo de punto central (Midpoint Circle Algori-
thm, MCA) (Bresenham, 1987). El MCA calcula consi-
derando un radio 7 y las coordenadas del centro los N
puntos requeridos para representar el circulo, produ-
ciendo el vector de prueba S. El algoritmo emplea la
ecuacion del circulo x* +y° = 7 s6lo en el primer octante.
Dibuja una curva iniciando en el punto (r, 0) y contintia
arriba y hacia la izquierda usando sumas y restas de
enteros. Vea detalles completos en (Van, 1984). Aunque
el algoritmo se considera el mas rapido y que provee
una precision de subpixel, es importante asegurar que
los puntos que caigan fuera del plano de la imagen no
sean considerados ni incluidosen S.

La funcién de costo o funcién objetivo J (C), repre-
senta la correspondencia (o error) resultante de los
pixeles S del circulo candidato y los pixeles realmente
existentes en la imagen de bordes, resultando:

ZError(xv,yV) (1)
J(C)=1-+=
Ns

donde Error(x,,y,) es una funciéon que comprueba la
existencia del pixel (X,,Y,) esto es:

1 siel pixel en la posicion (x_,y, ) existe

Error (x,,y,)= { 12)

0 cualquier otro caso

La funcién objetivo en la ecuacién (11) acumula el na-
mero de puntos que de acuerdo con Error(x;,y,) exis-
ten en la imagen de bordes. Los pixeles S bajo prueba,
constituyen el perimetro del circulo que corresponde a
C . Por tanto, el algoritmo busca minimizar J(C),
dado que un valor pequeno implica una mejor res-
puesta (o correspondencia) de la “circularidad”. El
proceso de optimizacion puede entonces detenerse
después de un nimero maximo de generaciones o
cuando los individuos presenten un error minimo de-
finido como umbral.

Implementacion del algoritmo EMO

La implementacién del algoritmo propuesto se puede
resumir en los siguientes pasos:

Paso 1
Se aplica el filtro de Canny para encontrar los bordes y
almacenarlos en el vector E = {el,ez,...,eNp}. El conta-
dor de iteraciones se inicializaen n=0.
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Paso 2
Se generan m particulas iniciales (cadaunacon ¢, €; y
e, elementos, donde €, €; y ¢ € E). Las particulas
que presentan radios demasiado pequefios o grandes,
se eliminan (los puntos colineales se descartan). Se eva-
Itia la funcién objetivo J (Cp )para determinar la mejor
particula C™* donde C™* « argmin {J (Cp),‘v’p} .

Paso 3

Se asigna la particula C” y se almacena temporalmente
en Y. Se selecciona un nimero aleatorio y se combina
con O para obtener la longitud de paso para una coor-
denada dada i, j o k. Por lo tanto, la particula C” se
desplaza a lo largo de esa direccion. Si se minimiza
J (Cp ), la particula C” se reemplaza por su nuevo va-
lor, de lo contrario, se mantendra el valor almacenado
temporalmente.

Paso 4
La carga entre las particulas se calcula usando la expre-
sion (2), y su vector de fuerza se calcula con la ecuacion
(3). La particula C™* con un mejor valor en la funcién
objetivo, mantiene una carga grande y, por lo tanto,
una mayor fuerza de atraccién o repulsion.

Paso 5
Las particulas se desplazan de acuerdo con la magnitud
de su fuerza. La nueva posicién de la particula se calcu-
la por la expresién (4). C™, no se desplaza porque
tiene la fuerza mas grande y ésta atrae las otras particu-
las hacia ella.

Paso 6
El indice n se incrementa. Si n=MAXITER o si el valor
de J(C) es menor que un valor de umbral predefinido,
entonces el algoritmo se detiene y el flujo continua en el
paso 7. De lo contrario, se regresa al paso 3.

Paso 7
Se selecciona la mejor particula C™*" de la tltima itera-
cion.

Paso 8
En el mapa original de bordes, el algoritmo marca lo
puntos correspondientes a C™" . En caso de la detec-
cion de multiples circulos, se regresa al paso 2.

Paso 9
Finalmente, la mejor particula C7¥ de cada circulo se
usa para dibujar (sobre la imagen original) los circulos
detectados. Considerando Nc¢ como el nimero de circu-
los encontrados.

La figura 5 muestra una representacion de la ley de
Coulomb en el problema de deteccién de circulos. El
circulo original que sera detectado se representa por la
linea so6lida mientras que la linea discontinua represen-
ta los circulos que mantienen la mayor fuerza de atrac-
cidn, es decir, que tienen el menor valor de error. Los
circulos que se repelen debido a un mayor valor de
error, estan representados por la linea punteada.

Circulo Criginal.

_—— Circulo Atraido,

Circula Repelido

Figura 5. Analogia de los circulos con la ley de Coulomb

Resultados experimentales

Para evaluar el desempefio del detector de circulos pro-
puesto en este articulo, se implementaron las siguientes
pruebas:

e Deteccion de circulos

e Discriminacién de formas

e Deteccién de multiples circulos

e Aproximacién circular

e Aproximacién de circulos imperfectos, ocluidos y
deteccién de arcos.

Precision y tiempo computacional

Todas las pruebas se desarrollaron sobre imagenes na-
turales y sintéticas consideradas como complejas en
cada andlisis. Cada prueba se llevo a cabo con un con-
junto de m=10 particulas, un maximo de iteracién para
la busqueda local de LSITER =2, la longitud de paso
para la bisqueda local es 6 = 3, y un valor maximo de
iteraciones n=20. Finalmente, el espacio de busqueda
(pixeles de borde) tiene las siguientes implicaciones en
los bordes u =1, | = Np para cada variable €;, €; y €, .
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Deteccién de circulos
Deteccion de circulos en imagenes sintéticas

Para las pruebas se usaron imagenes sintéticas de 256
x 256 pixeles. Cada imagen fue generada dibujando
solo un circulo imperfecto (elipse), localizado aleato-
riamente. Las imagenes se contaminaron afiadiendo
ruido para incrementar la complejidad del proceso de
deteccion. Los parametros a detectar son la posicion
del centro del circulo (x, y) y su radio (r).

El algoritmo se configur6 para realizar 20 iteracio-
nes en cada imagen de prueba. En todos los casos, el
algoritmo fue capaz de detectar los parametros del cir-
culo a pesar de la presencia del ruido. La deteccién es
robusta y es posible manejar imagenes a mayor escala,
manteniendo un tiempo de coémputo razonablemente
bajo (tipicamente bajo 10 ms). La figura 6 muestra el
resultado de la deteccién de circulos para una imagen
sintética.

Deteccion de circulos en imédgenes naturales

Este experimento pone a prueba la deteccién de circu-
los sobre imagenes reales. Se usaron veinticinco image-
nes de 640 x 480 pixeles en esta prueba. Todas las
imagenes se capturaron usando una cdmara digital a
color de 8-bits. Las imagenes fueron procesadas usan-
do un algoritmo de deteccién de bordes antes de aplicar

el detector de circulos EMO. La figura 7 muestra dos
casos tomados de las 25 imagenes probadas.

Las imagenes reales dificilmente contienen circulos
perfectos. Sin embargo, el algoritmo de deteccién pro-
puesto aproxima circularmente al cuasi-circulo encon-
trado en la imagen, esto es, el circulo candidato que
corresponde al de menor error obtenido en la funcién
objetivo J(C) es el que correspondera al circulo de la
imagen real. El tiempo de deteccién para la imagen mos-
trada en la figura 7a fue 13.540807 segundos mientras
que para la figura 7b fue 27.020633 segundos. Los resul-
tados obtenidos fueron analizados estadisticamente eje-
cutandose 20 veces sobre las mismas imagenes, gene-
rando los mismos valores para los parametros X, , Y, y 7.
De esta manera, el algoritmo EMO propuesto fue capaz
de converger a la soluciéon minima referida por la fun-
cién objetivo J (C), utilizando s6lo 20 iteraciones.

Prueba de discriminacion de formas

En esta seccion se discute la habilidad del algoritmo
para detectar circulos en presencia de otras figuras que
fungen como distractores. Cinco imagenes sintéticas de
540 x 300 pixeles se consideraron en este experimento.
Ademas, se agregé ruido a todas las imagenes y se uso6
un méaximo de 20 iteraciones para la detecciéon. Dos
ejemplos de la deteccién de circulos en este tipo de ima-
genes se muestran en la figura 8. El mismo experimento
fue repetido sobre imagenes reales (figura 9).

Figura 6. Detecci6n de circulos en
imdgenes sintéticas: a) imagen de circulo
original con ruido, b) circulo detectado

Figura 7. Detecci6n de circulos aplicada
a dos imagenes reales: a) el circulo
detectado se muestra cerca de la periferia
del ring y b) el circulo detectado se
muestra en la circunferencia de la pelota
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Deteccion de miiltiples circulos

El algoritmo propuesto es también capaz de detectar
varios circulos presentes en imagenes. Primero, se defi-
ne un namero posible de formas circulares. El algorit-
mo entonces trabaja en la imagen de bordes original,

Figura 8. Detecci6n de circulos

en imagenes con otras primitivas
geométricas; la imagenes a) y b) son las
originales, mientras que b) y d) muestran
sus respectivos circulos detectados

Figura 9. Diferentes formas incrustadas
dentro de imagenes de la vida real: a)
imagen de prueba, b) el correspondiente
mapa de bordes, ¢) el circulo detectado
y d) el circulo detectado sobre la imagen
original

hasta que se detecta el primer circulo. Este primer cir-
culo representa la particula (o circulo candidato) con el
minimo valor obtenido en la funcién objetivo J(C)
durante la busqueda. Entonces se elimina esta forma
circular, mientras que el detector de circulos EMO ope-
ra sobre la imagen de bordes con el circulo eliminado.
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Este procedimiento se repite hasta alcanzar el maximo
numero de formas circulares. Finalmente, se lleva a
cabo una validacion de todos los circulos detectados
por medio de un analisis de la continuidad de la circun-
ferencia, como se propone en Roth et al. (1994). Este
procedimiento se vuelve necesario en caso de que se re-
quieran mas formas circulares en el futuro, superando

e
Fad ™
/ \
f \
E L
-
i W

r'r \I.
[ )
| /

s y.
e _',,-/\ -
o -H\"x.

/ X
,.I
~ 4

el namero de circulos detectados en la imagen. En tal
caso, el sistema puede mostrar una declaracion falsa
“no se detectan nuevos circulos en la imagen”. Por otro
lado, el algoritmo también identifica cualquier otra for-
ma circular en la imagen por medio de la seleccion de
las mejores formas, realizando esto hasta que se alcanza
un nimero maximo de formas circulares.

Figura 10. Deteccion de mdltiples circulos
en imégenes reales: a) y ) muestran las
imagenes de bordes que son obtenidas
aplicando el algoritmo de Canny;

b) y d) presentan las imagenes originales
con los circulos encontrados superpuestos

Figura 11. Aproximacion circular:

a) imagen original, b) su aproximaci6n
circular considerando 3 circulos,

¢) imagen original y d) su aproximacién
circular considerando 4 circulos
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La figura 10a muestra el mapa de bordes después de
aplicar el algoritmo de Canny, y la figura 10b presenta
la imagen actual incluyendo varios circulos detectados,
los cuales se sobrepusieron. Lo mismo se hizo para
otros casos mostrados en las figuras 10c y 10d. El algo-
ritmo EMO toma la imagen con el circulo eliminado
proveniente de un paso anterior como la nueva imagen
de entrada. La ultima imagen no incluye ningun circu-
lo, porque todos ya han sido detectados y eliminados.
Asi, el algoritmo se enfoca en la deteccion de otros cir-
culos potenciales. Se considerdé un maximo de 20 itera-
ciones.

Aproximacion circular

Ya que en este enfoque la deteccién es considerada
como un problema de optimizacién, es posible hacer la
aproximacion de una forma desconocida por medio de
una concatenacién de circulos. Esto se puede lograr

usando la caracteristica de deteccién de maltiples circu-
los que posee el algoritmo EMO (esto se explicd en la
seccion anterior), de acuerdo con los valores de la fun-
cién objetivo J (C) encontrados.

La figura 11 muestra algunos ejemplos de la aproxi-
macion circular. En la figura 11a se muestra una forma
que se ha construido por medio de la superposicion de
varios circulos. La figura 11b muestra su aproximacion
circular de acuerdo con el detector EMO usando 3 cir-
culos; finalmente, la figura 11c presenta un elipse que
se ha obtenido por medio de la concatenacion de cuatro
circulos mostrados en la figura 11d.

Es posible también aproximar formas por medio
de maultiples circulos en imagenes reales. La figura 12
muestra un ejemplo de esta capacidad, en el cual una
de las tres figuras se aproximaron por dos circulos,
ya que por la naturaleza de la misma imagen resulta
impreciso para el algoritmo EMO emplear un solo
circulo.

Figura 12. Aproximacién circular en
imagenes de la vida real: a) bordes de
la imagen obtenidos por el algoritmo de
Canny, b) circulos detectados, uno de
los objetos se aproximé empleando dos
circulos

Figura 13. Aproximacién circular de
formas ocluidas, circulos imperfectos y
deteccion de arcos: a) imagen original
con dos arcos, b) aproximacion circular
de la imagen a), ¢) imagen natural de la
luna ocluida y d) forma circular detectada
de la figura c)
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Aproximacion de circulos imperfectos, ocluidos y
deteccién de arcos

La deteccion de circulos puede usarse también para
aproximar formas circulares que provienen de segmen-
tos de arcos, segmentos circulares ocluidos o circulos
imperfectos, los cuales son desafios comunes dentro del
campo de la visiéon por computadora. El algoritmo
EMO puede encontrar el circulo que corresponde a un
arco de acuerdo con los valores de la funcion objetivo
J(C). La figura 13 muestra algunos ejemplos de esta fun-
cionalidad.

Precision y tiempo computacional

Esta seccion ofrece evidencia de la precision que tiene el
algoritmo para la deteccion de circulos. El experimento
consiste en diez imagenes de 256 x 256 pixeles contami-
nadas con ruido, las cuales contienen un solo circulo
centrado en la posicion x =128, y =128, y un radio r = 64.
Se consideran dos tipos de ruido: el ruido Sal y Pimien-
ta (ruido impulsivo) y el ruido Gaussiano.

El algoritmo EMO se hace iterar 20 veces por cada
imagen y la particula que muestra el mejor desempefio
seguun J(C) se considera como el circulo que mejor
coincide con el que tiene la imagen. Este proceso se re-
pite 35 veces por imagen para obtener consistencia en la
prueba. Para evaluar la exactitud se emplea la suma del
error (Es), que mide la diferencia entre el circulo verda-
dero (circulo actual) y el detectado (Cheng et al., 2009).
La suma del error se define a continuacion:

ESZ|Xd _Xv|+|yd _Xv|+|rd _rv|’

Donde x,,y,,r, son las coordenadas del centro y el va-
lor del radio del circulo real en la imagen. Por otra parte
X4» Y4, Ty corresponden a los valores de centro y radio
de los circulos detectados.

El primer experimento considera imagenes conta-
minadas dopadas con ruido Sal y Pimienta. Los para-
metros del algoritmo EMO son: maximo de iteraciones
MAXITER=35; para la busqueda local, §=4 e
LSITER =4. El ruido afiadido se produce usando Mat-
Lab®©, considerando niveles de ruido entre 1% y 10%.
Los resultados de Es y el tiempo de computo transcu-
rrido se reportan en la tabla 1. La figura 14 muestra
tres diferentes imagenes como ejemplos, incluyendo
los 35 circulos detectados durante la prueba, que estan
sobrepuestos en cada imagen original. De la figura 14
resulta evidente que entre mayor sea la cantidad de
ruido agregado, mayor sera la dispersion en las for-
mas detectadas.

El segundo experimento considera imagenes conta-
minadas con ruido Gaussiano. En el ruido Gaussiano se
requiere un valor de umbral para convertir a pixeles bi-
narios, creando asi una imagen que presenta una canti-
dad de ruido mayor a la que se afiade por contaminaciéon
Sal y Pimienta. La cantidad de ruido Gaussiano afiadi-
do, se encuentra entre 1% y 10%. Los valores resultan-
tes de Es y el tiempo computacional consumido se
reportan en la tabla 2. La figura 15 muestra tres diferen-
tes imagenes como ejemplo, incluyendo los 35 circulos
sobrepuestos. De nuevo es evidente que la dispersion
de los circulos encontrados incrementa proporcional-
mente a la cantidad de ruido anadido.

(13)

Resultados Tabla 1. Resultados de precisién y

Tiompo tiempo consumido en la deteccién

Computarc)ional de circulos en imagenes que fueron

Propiedades de la imagen Suma del Error (Es) (Segundos) contaminadas con ruido Sal y Pimienta
Nivel de
Centro ruido
del Saly Desviacion Desviacion
Tamafo circulo Radio Pimienta Total Media Estandar Moda Media Estdndar

256x256 (128,128) 64 0.01 0 0 0 0 125505 0.5426
256x256 (128,128) 64 0.02 0 0 0 0 13.0491 0.7455
256x256 (128,128) 64 0.03 0 0 0 0 13.3401 0.7365
256x256 (128,128) 64 0.04 0 0 0 0 14.3228  0.655
256x256 (128,128) 64 0.05 2 0.0571  0.2355 0 14.2141 0.7982
256x256 (128,128) 64 0.06 0 0 0 0 14.8669 0.9604
256x256 (128,128) 64 0.07 3 0.0857 0.5071 0 15.3725 0.5147
256x256 (128,128) 64 0.08 7 0.2 0.6774 0 145373 0.5147
256x256 (128,128) 64 0.09 6 0.1714 0.5137 0 14.5747 0.8907
256x256 (128,128) 64 0.10 28 0.8 2.1666 0 147288 0.8116
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Figura 14. Detecci6n de circulos en
imagenes con ruido Sal y Pimienta: a)

la imagen presenta un nivel de ruido
afadido de 0.01, b) la imagen contiene
0.05 de ruido anadido, c) la imagen tiene
un nivel de ruido afadido de 0.1, d), e)

y f) son las imagenes que muestran los

35 circulos marcados para cada imagen
de prueba. Todas las imagenes resultan
después de aplicar el algoritmo EMO

Tabla 2. Resultados de precisién y tiempo consumido en la deteccion de circulos en iméagenes que fueron contaminadas con Gaussiano

Resultados
Tiempo computacional
Propiedades de la imagen Suma del error (Es) (Segundos)
Ruido Gaussiano
Centro del Desviacion Desviacion Desviacion
Tamano circulo Radio Media  Estandar Total Media Estandar Moda Media Estandar
256x256 (128,128) 64 0 0.01 0 0 0 0 11.7008 0.6566
256x256 (128,128) 64 0 0.02 0 0 0 0 12.8182 0.9257
256x256 (128,128) 64 0 0.03 0 0 0 0 13.8073 0.6438
256x256 (128,128) 64 0 0.04 6 0.1714 0.5681 0 13.7866 0.8309
256x256 (128,128) 64 0 0.05 10 0.2857 0.825 0 14.0476 1.4691
256x256 (128,128) 64 0 0.06 26 0.7429 0.95 0 14.0622 0.5463
256x256 (128,128) 64 0 0.07 32 0.9143 1.961 0 14.6079 0.4346
256x256 (128,128) 64 0 0.08 158 4.5143 11.688 0 14.1732 0.8198
256x256 (128,128) 64 0 0.09 106 3.0286 6.5462 0 13.9074 0.8165
256x256 (128,128) 64 0 0.1 175 5 8.7447 0 15.1276 0.8606

Un experimento similar a los anteriores fue realizado
sobre diferentes imagenes reales. Sin embargo, la suma
del error (Es) no se usa porque las coordenadas del cen-
tro y el valor del radio de cada circulo son desconoci-
dos. Por lo tanto, la ecuacién 11 se usa para calcular el

error de coincidencia. La tabla 3 muestra los resultados
obtenidos después de aplicar el detector de circulos
EMO, considerando las imagenes reales presentadas en
la figura 16. Los 25 circulos detectados también estan
superpuestos en las imagenes originales.
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Figura 15. Deteccién de circulos en
imagenes con ruido Gaussiano: a) la
imagen presenta un nivel de ruido
anadido de 0.01, b) la imagen contiene
0.05 de ruido anadido, ¢) la imagen tiene
un nivel de ruido afadido de 0.1, d), e)

y f) son las imagenes que muestran los

35 circulos marcados para cada imagen
de prueba. Todas las imagenes resultan
después de aplicar el algoritmo EMO

Tabla 3. Resultados obtenidos después de aplicar en detector de circulos EMO a imégenes reales

Resultados

Propiedades de la imagen

Error de coincidencia (%)

Tiempo computacional (Segundos)

Nombre de laimagen = Tamafio Total Media  Desviacion Estandar Moda Media Desviacién Estandar
Cue Ball 430 x 473 28.1865 0.805 0.0061 0.8035 26.6641 1.4018
Street Lamp 474 x 442 19.0638 0.545 0.0408 0.5326 23.4763 1.7857
Wheel 640 x 480 22.265 0.636 0.0062 0.6336 31.356 1.4351

Conclusiones

En este articulo se presenta un algoritmo para la detec-
cién automatica de formas circulares, sin el uso del meé-
todo tradicional de la transformada de Hough. El
algoritmo estd basado en una técnica inspirada en prin-
cipios fisicos, llamada Electromagnetism-Like Optimiza-
tion (EMO), la cual permite resolver problemas de
complejos de optimizacidn, utilizando para ello princi-
pios del electromagnetismo. Hasta donde se conoce por
parte de los autores, el algoritmo EMO no se ha aplica-
do en ninguna tarea de procesamiento de imagenes.

Figura 16. Imagenes reales usadas en los
experimentos: a) Cue ball, b) Wheel,

c) Street lamp; incluyendo los circulos
detectados superpuestos

Para la deteccién se usa la codificacion de tres puntos
no colineales extraidos del mapa de bordes de la ima-
gen. Estos tres puntos constituyen circulos, los cuales se
consideran soluciones candidatas al problema de detec-
cién. Una vez que estos circulos (particulas cargadas) se
evaltian mediante una funcién objetivo (que verifica su
existencia en la imagen real), los valores obtenidos sir-
ven de guia para la modificaciéon de las particulas por
parte del algoritmo EMO. De esta manera, el algoritmo
opera hasta que las soluciones candidatas coincidan
con los circulos existentes en la imagen real. Este enfo-
que genera un detector de circulos, el cual puede iden-
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tificar circulos eficientemente en imagenes reales,
inclusive si los objetos circulares se encuentran parcial-
mente ocluidos, traslapados o en ambientes ruidosos.
Los resultados experimentales muestran evidencia del
desempefio en la deteccion de circulos considerando
diferentes tipos de condiciones.

Una importante caracteristica de este trabajo es con-
siderar la deteccién de circulos como un problema de
optimizacion. Tal enfoque permite al algoritmo EMO
encontrar los parametros de los circulos de acuerdo con
el desempefio de la particula (circulo candidato) con
respecto a una funcién objetivo J(C), en vez de usar
todas las posibilidades que pueden suscribirse de
acuerdo con la imagen de bordes, como la mayoria de
los métodos lo hacen.

Aunque los métodos para la deteccion de circulos
basados en la transformada de Hough, también usan
tres puntos de borde para realizar un voto a favor de la
forma circular potencial en el espacio de parametros,
ellos requieren grandes cantidades de memoria y tiem-
po computacional para obtener una solucion subpixel.
Esto se debe a que los métodos que emplean la HT, el
espacio de parametros es cuantizado, lo que supone
una pérdida de precision en la determinacion de los pa-
rametros del circulo. Sin embargo, el método EMO pro-
puesto, no emplea ninguna cuantizacion del espacio de
parametros. En este enfoque los circulos detectados se
obtienen directamente por las ecuaciones (6) y (9), de-
tectando efectivamente los circulos con precision
subpixel.

Aunque los resultados experimentales ofrecen evi-
dencia y demuestran que el algoritmo EMO puede
obtener buenas aproximaciones en imagenes compli-
cadas y con grandes cantidades de ruido, el objetivo
de este articulo no es presentar un algoritmo que des-
merite a los detectores de circulos que actualmente
estan disponibles, pero si tiene como propdsito mos-
trar que los sistemas basados en principios fisicos
como el Electromagnetism-Like, e pueden ser una alter-
nativa sumamente atractiva para detectar formas pa-
ramétricas.
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