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Resumen

En este trabajo se reporta la aplicación del concepto de perfi les de comporta-
miento en la comparación del desempeño numérico de los métodos Simulated 
Annealing y Very Fast Simulated Annealing en diversos cálculos termodinámi-
cos asociados a la modelación de procesos en ingeniería química. Específi ca-
mente, la robustez y efi ciencia de estos métodos estocásticos han sido compa-
radas empleando problemas de estabilidad de fases y equilibrio de fases en 
sistemas no reactivos, predicción de azeótropos homogéneos y en el ajuste de 
parámetros en modelos termodinámicos. Los resultados obtenidos indican 
que el método Simulated Annealing es más robusto para resolver dichos pro-
blemas, aunque menos efi ciente que el Very Fast Simulated Annealing.

Abstract

In this study, we report the application of performance profi les to compare the nu-
merical behavior of the Simulated Annealing and Very Fast Simulated Annealing 
methods in thermodynamic calculations for process modeling. Specifi cally, the reli-
ability and effi  ciency of these stochastic optimization methods have been compared 
using global optimization problems related to phase stability and equilibrium calcu-
lations in non-reactive systems, the prediction of homogeneous azeotropes and the 
parameter estimation in thermodynamic models. Our results indicate that the Simu-
lated Annealing is more robust to solve these global optimization problems; however, 
this method is less effi  cient than the Very Fast Simulated Annealing.

Keywords

• Global optimization
• thermodynamic calculations
• simulated annealing
• very fast simulated annealing



Perfiles de comportamiento numérico de los métodos estocásticos simulated annealing y very fast simulated annealing en cálculos termodinámicos

Ingeniería Investigación y Tecnología. Vol. XII, Núm. 1, 2011, 51-62, ISSN 1405-7743 FI-UNAM52

Introducción

Los métodos estocásticos de optimización global son 
herramientas numéricas consideradas confi ables y ade-
cuadas para resolver diversos problemas de optimiza-
ción que se caracterizan por ser multivariables y con 
funciones objetivo altamente no lineales y no convexas. 
En forma particular, en el área de la ingeniería química, 
diversos cálculos termodinámicos involucrados en la 
síntesis, diseño, optimización y control de procesos 
presentan tales características y por consecuencia, su 
resolución empleando métodos estocásticos ha tomado 
mayor importancia durante los últimos años (Teh et al., 
2003). 

Bajo este contexto, varios estudios han demostrado 
que los métodos del tipo Simulated Annealing (SA) son 
robustos, fáciles de implementar y de aplicación gene-
ral para la resolución de diversos problemas del área de 
ingeniería química (Henderson et al., 2004). Específi ca-
mente, el método SA es una estrategia de optimización 
global clasifi cada como punto a punto, la cual emplea el 
criterio de Metropolis para diversifi car la búsqueda y 
favorecer la localización del óptimo global de una fun-
ción no convexa. 

En el área de la termodinámica, estos métodos han 
sido empleados en cálculos de estabilidad y equilibrio 
de fases, en la predicción de puntos críticos y en el ajus-
te de parámetros en modelos termodinámicos para la 
representación del equilibrio líquido-líquido o líquido-
vapor, entre otras aplicaciones (Rangaiah, 2001; Freitas 
et al., 2004; Singh et al., 2005; Bonilla et al., 2006; Boni-
lla et al., 2007). 

Hasta el momento, se han desarrollado varios algo-
ritmos para el método SA donde las diferencias princi-
pales radican en las características de la cédula de 
enfriamiento y la estrategia numérica para actualizar o 
modifi car a las variables de optimización. De los méto-
dos propuestos, el algoritmo desarrollado por Corana 
et al. (1987) ha demostrado ser uno de los más robustos 
para diversas aplicaciones en el área de ingeniería quí-
mica. Sin embargo, dicha estrategia generalmente re-
quiere un esfuerzo numérico signifi cativo para sistemas 
multivariables, situación que puede ser una limitante 
para ciertas aplicaciones. 

Con el objetivo de solventar tal problemática, otros 
algoritmos más efi cientes han sido propuestos (Sharma 
y Kaikkonen, 1999; Ali et al., 2002). Entre estos métodos 
se puede mencionar al Very Fast Simulated Annealing 
(VFSA), el cual ha sido utilizado con éxito en la resolu-
ción de problemas de optimización multivariables. Sin 
embargo, la aplicación y evaluación de este método en 
cálculos termodinámicos ha sido limitada (Bonilla et al., 

2006) y, como consecuencia, no se han establecido sus 
capacidades y ventajas relativas con respecto a otras es-
trategias de optimización.

Con base a lo anterior, en este trabajo se reporta un 
comparativo del comportamiento numérico de dos al-
goritmos del método Simulated Annealing en diversos 
cálculos termodinámicos asociados a la modelación de 
procesos en ingeniería química. 

Específi camente, se ha realizado un comparativo 
entre el método propuesto por Corana et al. (1987) y el 
método VFSA de Sharma y Kaikkonen (1999). La com-
paración de estos métodos se ha realizado empleando 
el concepto de perfi les numéricos propuesto por Dolan 
y More (2002) con el objeto de establecer las diferencias 
relativas entre ellos en términos de robustez (capacidad 
de localizar al óptimo global) y efi ciencia (esfuerzo nu-
mérico requerido durante la secuencia de optimiza-
ción). Es importante indicar que este trabajo introduce 
la aplicación del VFSA para cálculos termodinámicos 
en el contexto de ingeniería química. 

Descripción de los métodos estocásticos 
del tipo Simulated Annealing

a) Estructura general del método SA

El Simulated Annealing (SA) es una generalización de 
los métodos Monte Carlo para localizar estadísticamen-
te al óptimo global de una función multivariable (Kirk-
patrick et al., 1983; Goff e et al., 1994). Este algoritmo 
realiza una búsqueda estocástica dentro de la región 
permitida para las variables de optimización. En pro-
blemas de minimización, las perturbaciones que oca-
sionan incrementos en el valor de la función objetivo 
son aceptadas con una probabilidad controlada em-
pleando el criterio de Metrópolis (Metropolis et al., 
1953). Estas perturbaciones permiten que el algoritmo 
escape de mínimos locales y se realizan en varias oca-
siones hasta satisfacer el criterio de convergencia im-
puesto para el método. 

Generalmente, el SA puede localizar el óptimo glo-
bal de la función objetivo ó una aproximación a éste, en 
tiempos de cómputo razonables. Como se había indica-
do, diversos algoritmos han sido desarrollados para el 
método SA, los cuales difi eren principalmente en los 
mecanismos para perturbar a las variables de optimiza-
ción y en el procedimiento para modifi car los paráme-
tros del SA dentro de la secuencia de cálculo. A 
continuación se describen brevemente los algoritmos 
utilizados en el presente estudio.
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b) Simulated Annealing de Corana et al. (1987)

El algoritmo propuesto por Corana et al. (1987) es el 
método más utilizado en cálculos termodinámicos 
(Zhu y Xu, 1999; Henderson et al., 2001; Rangaiah, 2001; 
Henderson et al., 2004; Sánchez-Mares y Bonilla et al., 
2006; Bonilla et al., 2007a; Bonilla-Petriciolet et al., 
2007b). En este algoritmo, un punto de prueba es gene-
rado en forma aleatoria partiendo de un valor inicial y 
empleando una longitud de paso VM para el conjunto 
de n variables del problema de optimización. Es conve-
niente mencionar que el tamaño de paso VM representa 
la magnitud de la perturbación de cada una de dichas 
variables y su valor generalmente se relaciona con los 
límites de búsqueda. 

En el SA, la función objetivo es evaluada en el punto 
de prueba y su valor es comparado con el punto inicial 
donde el criterio de Metrópolis es utilizado para acep-
tar o rechazar el punto de prueba, con una probabili-
dad de aceptación defi nida por 

                                                                             (1)

donde fnew y fold son los valores de la función objetivo en 
el punto de prueba y punto inicial; TSA es una variable 
del SA que representa, hipotéticamente, al proceso de 
enfriamiento del sistema (es decir, función objetivo). En 
problemas de minimización, si el punto de prueba me-
jora el valor de la función objetivo, la probabilidad de 
aceptación asociada al criterio de Metropolis es igual a 
la unidad. Al inició de la secuencia de optimización se 
sugieren valores altos para TSA con la fi nalidad de per-
mitir una búsqueda exhaustiva, es decir, bajo estas con-
diciones cualquier punto del espacio de solución tiene 
una amplia probabilidad de ser aceptado a pesar de no 
mejorar el valor de la función objetivo. Si el punto de 
prueba es aceptado, se continúa con la búsqueda a par-
tir de este valor. En caso de rechazo, otro punto es selec-
cionado. Cada elemento del vector VM es ajustado en 
forma periódica considerando la cantidad de funciones 
evaluadas que son aceptadas. El parámetro TSA es mo-
difi cado después de realizar un conjunto de NT*NS*n  
perturbaciones siendo NT el número de iteraciones an-
tes de la reducción de la temperatura del método SA, 
NS es el número de ciclos para el ajuste de VM y n es el 
número de variables de optimización del problema 
bajo análisis, respectivamente. La actualización del pa-
rámetro TSA se realiza a través de la siguiente expresión

                                                                                              (2)

donde j es la contador de iteraciones, NT y RT es el fac-
tor para reducir a TSA y cuyo valor es menor a la unidad, 
respectivamente. Después de reducir el valor del pará-
metro temperatura, el nuevo punto de partida para la 
perturbación de las variables corresponde al mejor va-
lor localizado hasta el momento durante la secuencia 
de optimización. Por otra parte, si TSA decrece, las per-
turbaciones que ocasionen incrementos en la función 
objetivo, para el caso de problemas de minimización, 
tiene menor probabilidad de ser aceptada. 

Esto ocasiona que los componentes del vector VM se 
reduzcan y el SA se enfoca en la región más prometedo-
ra para la optimización. Una descripción completa de 
este algoritmo es proporcionada por Corana et al. (1987) 
mientras que la fi gura 1 muestra su diagrama de fl ujo. 

Figura 1. Diagrama de flujo del método de optimización 
Simulated Annealing propuesto por Corana et al. (1987)
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Los parámetros más signifi cativos del SA que afectan 
su robustez y efi ciencia son el valor inicial para el pará-
metro temperatura  y los valores de las variables NT 
y RT. En este trabajo, estos parámetros se defi nieron 
considerando los resultados obtenidos en cálculos de 
estabilidad de fases (Bonilla et al., 2006) y están dados 
por:  = 10.0, NT = 5*n y RT = 0.85 donde n es la canti-
dad de variables de optimización. Finalmente, la subru-
tina desarrollada por Goff e et al. (1994) fue utilizada en 
el presente estudio.

c) Very Fast Simulated Annealing de Sharma 
y Kaikkonen (1999)

El algoritmo VFSA fue propuesto por Szu y Hartley 
(1987) como una herramienta alternativa para el área de 
optimización global. Sen y Stoff a (1995) han sugeri-
do que el algoritmo VFSA es más efi ciente que otros 
métodos de optimización global y ha sido aplicado exi-
tosamente en problemas multivariables (Sharma y 
Kaikkonen, 1999). Sin embargo, el VFSA no ha sido es-
tudiado plenamente en el área de la termodinámica. 
Así, este trabajo introduce nuevas aplicaciones para 
este algoritmo en dicha área.

En el método VFSA, la secuencia para reducir a TSA 
es exponencial y más efi ciente que la utilizada para el 
método SA convencional. Cada variable de la función 
objetivo es perturbada conforme a una distribución de 
probabilidad del tipo de Cauchy (Sen y Stoff a, 1995). La 
aplicación de la distribución de Cauchy implica pertur-
baciones ocasionales con un tamaño de paso prolonga-
do que, en teoría, permiten escapar de óptimos locales. 
De esta manera, la secuencia para reducir a la variable 
TSA puede ser menos rigurosa (Szu y Hartley, 1987). El 
factor de perturbación Δxi para la variable i es calculado 
con la siguiente expresión 

                                                (3)

donde ui es un número aleatorio entre 0 y 1,  es el 
parámetro temperatura que puede ser igual o diferente 
para cada variable del problema y Δxi  varía dentro del 
intervalo (-1, 1). Cada variable de optimización es per-
turbada a partir de su valor anterior empleando Δxi , de 
acuerdo a la siguiente expresión

                                               (4)

donde  y  son los límites del espacio de búsque-
da para la variable i. Para cada valor de TSA, todas las 

variables son perturbadas en varias ocasiones y la nue-
va confi guración es aceptada o rechazada utilizando el 
criterio de Metrópolis, ver Ec. (1). El número de pertur-
baciones para cada variable (NP), en cada nivel de TSA, 
es constante y generalmente depende de la dimensión 
del problema. Después de realizar el número deseado 
de perturbaciones a un nivel de TSA específi co, este pa-
rámetro es reducido empleando la siguiente expresión

                                                                                                            (5)

donde k es el contador de iteraciones, ci es una constan-
te que puede ser distinta para cada variable,  es el 
valor inicial para el parámetro temperatura que tam-
bién puede variar para cada incógnita del sistema y cs 
es un parámetro que es utilizado para controlar la re-
ducción de TSA. En este trabajo se ha establecido que 
ci = 1 y se ha utilizado la misma temperatura TSA para 
todas las variables. En forma equivalente que en el al-
goritmo anterior, después de la reducción de la variable 
TSA, el punto de inicio para la perturbación de las varia-
bles de decisión corresponde al punto con el mejor va-
lor de la función objetivo localizado durante la secuencia 
de optimización. 

Para este algoritmo, las variables clave son el valor 
inicial del parámetro temperatura , el número de 
perturbaciones para cada variable NP y el valor para el 
parámetro de la cedula de enfriamiento cs. Nuevamen-
te, los parámetros del VFSA se establecieron consideran-
do los resultados reportados por Bonilla et al. (2006), es 
decir:  = 10000, NP = 5*n y cs = 0.45, respectivamente. 
El algoritmo VFSA se ha implementado en una subruti-
na codifi cada en lenguaje FORTRAN, la cual ha sido 
utilizada en los cálculos realizados en este estudio. La 
fi gura 2 muestra el diagrama de fl ujo para dicho algo-
ritmo.

d) Formulación del problema de optimización 
y casos de estudio

Diversos problemas termodinámicos fueron considera-
dos para comparar el comportamiento numérico de los 
métodos SA y VFSA. Estos problemas han sido aplica-
dos en otros trabajos para estudiar métodos determinis-
tas y estocásticos de optimización global (Harding et al., 
1997; Esposito y Floudas, 1998; Maier et al., 1998; Hua et 
al., 1998; Gau et al., 2000; Harding y Floudas, 2000; Do-
mínguez et al., 2002; Gau y Stadtherr, 2002; Teh y Ran-
gaiah, 2002). Los casos de estudio considerados son 
multivariables, con modelos no lineales y cuya función 
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objetivo generalmente presenta varios óptimos locales. 
Estos casos corresponden a cálculos involucrados en la 
determinación de la estabilidad y equilibrio de fases en 
sistemas no reactivos, la predicción de azeótropos ho-
mogéneos y el ajuste de parámetros en modelos termo-
dinámicos. 

Una descripción detallada del fundamento de estos 
problemas termodinámicos, sus funciones objetivo y 
variables de decisión se encuentra disponible en el es-
tudio reportado por Bonilla et al. (2007). La totalidad de 
estos casos de estudio puede formularse como el si-
guiente problema de optimización sin restricciones: mi-
nimizar fobj(x)  sujeto a x ∈Ω donde fobj:R

n→ R y Ω es un 
grupo compacto que contiene al óptimo global x* de  fobj  
Las tablas 1-5 muestran las características de los dife-
rentes problemas termodinámicos considerados para la 
comparación de los métodos estocásticos. Es conve-

niente indicar que estos casos de estudio tienen un va-
lor teórico y práctico para la implementación y evalua-
ción de nuevos métodos de optimización global. En 
forma particular, los autores consideran que las carac-
terísticas de este conjunto de problemas termodinámi-
cos son adecuadas para evaluar y comparar los méto-
dos de optimización global analizados en este estudio. 

e) Determinación de los perfiles numéricos 
de los métodos estocásticos

La comparación del comportamiento numérico (robus-
tez y efi ciencia) de los métodos SA y VFSA se realizó 
empleando el concepto de perfi les de comportamiento. 
El perfi l de comportamiento para un método de opti-
mización se defi ne como la función de distribución 
acumu lativa para una métrica de comportamiento o 
 desempeño numérico (Dolan y More, 2002). Por ejem-
plo, dicha métrica puede corresponder al tiempo de 
cómputo necesario para alcanzar la convergencia del 
método de optimización, la cantidad de funciones eva-
luadas durante la secuencia de cálculo o la capacidad 
del método para localizar al óptimo global de la fun-
ción objetivo. En este trabajo, las siguientes métricas 
han sido consideradas para la comparación de los dos 
métodos estocásticos: la distancia relativa entre el ópti-
mo localizado por el método de optimización y el óp-
timo global conocido, d, y la cantidad de funciones eva-
luadas durante la secuencia de optimización (NFE). La 
primera métrica fue asociada con la robustez del méto-
do (es decir, la capacidad de la estrategia numérica para 
localizar al óptimo global de la función objetivo) mien-
tras que la segunda corresponde a una medida de la 
efi ciencia de los métodos estocásticos (Montaz et al., 
2005). 

Para la  e valuación de estas métricas, se asume que 
existen ns = 2 métodos de optimización y np = 22 proble-
mas o casos de estudio. Cada uno de los casos de estudio 
fue resuelto en 25 ocasiones con estimaciones iniciales 
aleatorias y diferentes secuencias de números aleatorios, 
considerando una tolerancia de 1.0E-06 en el valor de 
la función objetivo como criterio de convergencia para 
ambos métodos. Para cada problema y método de opti-
mización, las métricas tp,s fueron calculadas empleando 
los resultados de los 25 cálculos y las siguientes expre-
siones 

                                                                      (6)

                                                                                   (7)

Figura 2. Diagrama de flujo del método de optimización 
Very Fast Simulated Annealing propuesto por Sharma 
y Kaikkonen (1999)
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Tabla 1. Casos de estudio considerados en la evaluación del comportamiento numérico de los métodos Simulated Annealing y Very Fast 
Simulated Annealing en cálculos termodinámicos: Predicción de azéotropos homogéneos

Núm.. Caso de estudio Función objetivo Variables de optimización Óptimo global
1 Cálculo del azeótropo 

homogéneo del sistema 
Benceno – Isopropanol a 1 atm. 
Modelo NRTL y Gas Ideal 
(Maier et al., 1998)

donde  es el potencial 
químico del componente 

i en la fase k.

T ∈(10, 100)°C
n = 2

donde x y n es la fracción 
molar y el numero de moles, 

respectivamente.

Fobj = 0
xazeo(0.58770, 0.4123)

y 71.832 °C

2 Cálculo del azeótropo 
homogéneo del sistema 
Acetona – Cloroforrmo - 
Metanol - Benceno a 1 atm. 
Modelos NRTL y Gas Ideal 
(Maier et al., 1998)

T ∈(10, 100)°C
n = 5

Fobj = 0
xazeo (0.356902, 0.165492, 

0.427351, 0.050256)
y 57.045 °C

3 Cálculo del azeótropo 
homogéneo del sistema CO2 - 
Etano a 1730.445 KPa. Ecuación 
de estado SRK con reglas de 
mezclado convencionales. 
(Gow et al., 1997) 

T ∈(220, 260) K
n = 2

Fobj = 0
xazeo(0.652211, 0.347789) 

y 243.15 K

4 Cálculo del azeótropo 
homogéneo del sistema 
Cloroforrmo - Etanol a 
55°C. Modelo de Margules y 
Ecuación Virial (Smith y 
Van Ness, 1987)

P ∈(0, 200) KPa
n = 2

Fobj = 0
xazeo(0.840888, 0.159112) 

y 86.747 KPa

Tabla 2. Casos de estudio considerados en la evaluación del comportamiento numérico de los métodos Simulated Annealing 
y Very Fast Simulated Annealing en cálculos termodinámicos: Modelación de coeficientes de actividad en sistemas electrolíticos

Núm.. Caso de estudio Función objetivo Variables de optimización Óptimo global
5 Correlación de los coefi cientes de 

actividad del electrolito acuoso 
[(CH3)4N

+][SO3
–] 

a 25°C. Modelo NRTL-electrolito 
(Belveze et al., 2004)

donde γ±  es el coefi ciente de 
actividad promedio de la sal en 

la solución.

Parámetros del modelo 
NRTL-electrolito
τcas ∈ (−50, 10)
τsca ∈ (−10, 50)

n = 2

Fobj = 1.14E-02
τcas = −4.2474
τsca =  8.8873

6 Correlación de los coefi cientes de 
actividad del electrolito acuoso 
[(C4H9)4N

+][C2H5SO3
–] a 25°C. 

Modelo NRTL-electrolito
(Belveze et al., 2004)

donde γ±  es el coefi ciente de 
actividad promedio de la sal en 

la solución.

Parámetros del modelo 
NRTL-electrolito
τcas ∈ (−50, 10)
τsca ∈ (−10, 50)

n = 2

Fobj = 6.13E-02
τcas = −3.4530
τsca = 5.8167

7 Correlación de los coefi cientes de 
actividad del electrolito acuoso 
[NH4

+][I–] a 25°C. Modelo NRTL-
electrolito (Belveze et al., 2004)

Fobj = 9.90E-04
τcas = −1.2605
τsca = 0.5612

8 Correlación de los coefi cientes de 
actividad del electrolito acuoso 
[(CH3)4N

+][Br–] a 25°C. Modelo 
NRTL-electrolito 
(Belveze et al., 2004)

Fobj = 6.20E-03
τcas = −4.2846
τsca = 8.9783

9 Correlación de los coefi cientes de 
actividad del electrolito acuoso 
[(CH3)3(C2H4OH)N+][Cl–] a 25°C. 
Modelo NRTL-electrolito 
(Belveze et al., 2004)

Fobj =  7.16E-03
τcas = −4.5457
τsca = 9.3785
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siendo  el valor promedio de la función  o bjetivo cal-
culado por el método de optimización,  es el óptimo 
global de la función objetivo,  es un valor máxi-
mo para la función objetivo encontrado dentro de la 
secuencia de cálculo y  es el valor promedio del 
 número de funciones evaluadas para alcanzar la con-
vergencia del método estocástico. Es importante indicar 
que los valores promedio de  y  se determinaron 
empleando los 25 experimentos numéricos realizados 
para caso de estudio. Conforme a lo establecido por 
Montaz et al. (2005), en la literatura generalmente se uti-
lizan los valores promedio para las métricas de compor-
tamiento con objeto de describir el desempeño de los 
métodos estocásticos. Con base a lo anterior, el presente 
estudio también emplea dicho enfoque.

Por otra parte, para ambas métricas, la tasa de com-
portamiento numérico  se defi ne como 

                                                                                              (8)

donde S corresponde al conjunto de métodos de opti-
mización analizados. Se puede observar que el valor de 

dicha tasa es igual a 1 para el método que presenta el 
mejor comportamiento en un problema específi co, ya 
que para ambas métricas es deseable obtener el valor 
mínimo posible (Dolan y More, 2002; Montaz et al., 
2005). Finalmente, la tasa de probabilidad acumulativa 
ρs(ς) para el método de optimización s y la métrica en 
cuestión se defi ne como

                                                                 (9)

donde ς es un factor que está defi nido en (1, ∞). Dolan 
y More (2002) han establecido que la gráfi ca del perfi l 
de comportamiento, es decir el gráfi co de ρs versus ς, 
compara el desempeño relativo entre los métodos de 
optimización para el grupo de problemas considera-
dos. Hasta el momento, los perfi les de comportamiento 
han sido utilizados por Montaz et al. (2005) en la com-
paración de diferentes métodos estocásticos emplean-
do funciones objetivo clásicas del área de optimización 
global. No obstante, dicho concepto no ha sido emplea-
do en la evaluación de métodos estocásticos en el con-
texto de la ingeniería química. Todos los cálculos fueron 

Tabla 3. Casos de estudio considerados en la evaluación del comportamiento numérico de los métodos Simulated Annealing 
y Very Fast Simulated Annealing en cálculos termodinámicos: Cálculos de equilibrio de fases empleando minimización 
de la energía libre de Gibbs

Num. Caso de estudio Función objetivo Variables de optimización Óptimo global
10 Cálculo fl ash del sistema 

C1 – C2 – C3 – iC4 – C4 – iC5 – C5 – 
C6 – iC15 a 19.84 atm y 314 K

z (0.614, 0.10259, 0.04985, 
0.00898, 0.02116, 0.00722, 
0.01187, 0.01435, 0.16998)

Ecuación de estado SRK con reglas 
de mezclado convencionales. 

(Rangaiah, 2001)

     i = 1, . . . , c
donde  es el numero de moles 

del componente i en la fase k 
mientras que gk es la energía 
libre de Gibbs de mezclado 

de la fase k.

χi ∈ (0, 1)    i = 1, . . .,c
n = 9

Fobj = −0.76977
xα (0.083652, 0.054879, 

0.061769, 0.017338, 
0.04676, 0.020578, 
0.035595, 0.049032, 

0.630398)
xβ (0.809794, 0.120204, 

0.04545, 0.005895, 
0.011709, 0.002288, 
0.003111, 0.001546, 

0.000003)
11 Cálculo fl ash del sistema 

C2 – C3 – C4 – C5 – C6 a 390 K 
y 5580 KPa

z (0.39842, 0.29313, 0.20006, 
0.07143, 0.03696)

Ecuación de estado SRK con reglas 
de mezclado convencionales. 

(Ammar y Renon, 1987)

     i = 1, . . . , c
donde  es el numero de moles 

del componente i en la fase k 
mientras que gk es la energía 
libre de Gibbs de mezclado 

de la fase k.

χi ∈ (0, 1)    i = 1, . . .,c
n = 5

Fobj = −1.18678
xα (0.388318, 0.292743, 

0.204656, 0.07475, 
0.039534)

xβ (0.404938, 0.29338, 
0.197095, 0.069288, 

0.035299)

12 Cálculo fl ash del sistema
H20 – CO2 – 2-propanol – Etanol a 

350 K y 2250 KPa
z (0.03154, 0.9328, 0.02311, 0.01255)
Ecuación de estado SRK con reglas 

de mezclado convencionales. 
(Harding y Floudas, 2000)

χi ∈ (0, 1)    i = 1, . . .,c
n = 4

Fobj = −0.09314
xα (0.02003, 0.943901, 
0.023384, 0.012684)

xβ (0.996862, 0.001728, 
0.000111, 0.001299)
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realizados en una estación de trabajo HP con procesa-
dor AMD de doble núcleo 2.19 GHz y 1.87 GB de RAM. 
En este equipo, el tiempo de cómputo por cada cálculo 
fue inferior a un segundo para el caso del problema de 
optimización con mayor número de variables. 

Resultados y discusión

El perfi l de comportamiento para la métrica , la cual 
está asociada a la capacidad del método estocástico para 
acercarse al óptimo global en los problemas con-
siderados, se muestra en la fi gura 3. Como se puede ob-
servar, el método SA presenta un mejor comportamiento 
para esta métrica, en contraste con el método VFSA, 

dentro del rango analizado para ς. También, estos resul-
tados indican que en el 63% de los casos de estu dio, el 
método SA proporciona la mejor solución (ς = 1) mien-
tras que el VFSA solamente lo consigue en el 36% de los 
casos. Para el caso de la efi ciencia , es indudable 
que el método VFSA supera al método SA en un rango 
amplio de ς (fi gura 4). Solamente, para un caso de estu-
dio, el método SA presentó un esfuerzo numérico infe-
rior y este comportamiento corresponde al problema 
con mayor número de variables de optimización (n = 20). 

Con el objeto de proporcionar más elementos para 
el comparativo de estos métodos estocásticos, en la ta-
bla 6 se muestran los valores de  y  para las dos 
estrategias de optimización y todos los casos de estudio 

Tabla 4. Casos de estudio considerados en la evaluación del comportamiento numérico de los métodos Simulated Annealing y Very 
Fast Simulated Annealing en cálculos termodinámicos: Modelación de datos de equilibrio líquido-vapor empleando modelos de 
composición local.

Núm. Caso de estudio Función objetivo Variables de optimización Óptimo global

13 Correlación del equilibrio líquido-
vapor del sistema tertbutanol – 1 

butanol a 100 mm de Hg. Modelo de 
Wilson y Gas ideal (Gau et al., 2000) donde γi es el coefi ciente 

de actividad del componente i.

Parámetros de energía del 
modelo de Wilson

θ1, θ2 ∈ (–8500, 320000)
n = 2

Fobj = 0.0103
θ1 = –568
θ2 = 745.3 

14 Correlación del equilibrio líquido-
vapor del sistema agua – 1,2 

etanodiol a 430 mm de Hg. Modelo 
de UNIQUAC y Gas ideal (Bonilla-

Petriciolet et al., 2007)

Parámetros de energía del 
modelo UNIQUAC
θ1, θ2 ∈ (–5000, 20000)

n = 2

Fobj = 1.4085
θ1 = –1131.8
θ2 = 3617.7 

15 Correlación del equilibrio líquido-
vapor del sistema benceno – 

hexafl uorobenceno a 30 °C. Modelo 
de Wilson y Gas ideal (Gau et al., 

2000)
donde γi es el coefi ciente 

de actividad del componente i.

Parámetros de energía del 
modelo de Wilson

θ1, θ2 ∈ (–8500, 320000)
n = 2

Fobj = 0.0118
θ1 = –467.8 
θ2 = 1313.9 

16 Correlación del equilibrio líquido-
vapor del sistema benceno 

– hexafl uorobenceno a 70 °C 
empleando el enfoque de errores en 

variables. Variables de estado (x1, 
y1, P, T) con el siguiente vector de 
desviaciones estándar (0.001, 0.01, 
0.75, 0.1). Modelo de Wilson y Gas 

ideal (Gau y Stadtherr, 2002)

donde σ representa la desviación 
estándar y el superíndice t se refi ere 
al valor desconocido de la variable 

de estado.

Parámetros de energía del 
modelo de Wilson

θ1, θ2 ∈ (–8500, 320000)
y variables de estado 

 donde
zt ∈ (zexp – 3σ, zexp + 3σ)

 siendo σ la desviación estándar 
mientras que el superíndice exp 
indica el valor experimental de 

la variable de estado. n = 20

Fobj = 8.503
θ1 = –424.2 
θ2 =  1006.8

17 Correlación del equilibrio líquido-
vapor del sistema metanol – 1,2 

dicloroetano empleando el enfoque 
de errores en variables. Variables de 

estado  con el siguiente 

vector de desviaciones estándar 
(0.005, 0.015, 0.75, 0.000309). Modelo 
de van Laar y Gas ideal (Esposito y 

Floudas, 1998)

donde TS = T / Tr, Tr = 323.15 K 
y el superíndice t se refi ere al valor 

desconocido de la variable de 
estado.

Parámetros del modelo de

van Laar 

y variables de estado  
 donde

zt ∈ (zexp – 3σ, zexp + 3σ)
siendo σ la desviación estándar 
mientras que el superíndice exp 
indica el valor experimental de 

la variable de estado. n = 12

Fobj = 3.326

 1.912

 1.608
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considerados. Como se había mencionado, general-
mente el método SA es más confi able para minimizar a 
la función objetivo en los problemas analizados. No 
obstante, dicho método aún puede converger a óptimos 
locales en algunos casos de estudio, principalmente en 
aquellos casos relacionados con el ajuste de parámetros 
en modelos termodinámicos. También, se puede apre-
ciar que no existe una tendencia entre el número de va-
riables de optimización de los casos de estudio y el 
comportamiento de la métrica asociada a la robustez de 
ambos métodos estocásticos. Por otra parte, como era 
de esperarse, el esfuerzo numérico de ambas estrate-

gias de optimización incrementa conforme el número 
de variables de optimización también aumenta.

Para el caso de los problemas de análisis de estabili-
dad de fases en sistemas no reactivos, los resultados 
obtenidos son consistentes con el estudio de Bonilla et 
al. (2006) donde se indica que el método SA es más ro-
busto que el método VFSA. También, la ejecución de 
cálculos fl ash empleando la minimización de la energía 
libre de Gibbs y el método SA es más conveniente. Re-
sulta interesante notar que la determinación de azeó-
tropos homogéneos en sistemas no reactivos es efi cien-
te y robusta empleando el método VFSA, en contraste 

Tabla 5. Casos de estudio considerados en la evaluación del comportamiento numérico de los métodos Simulated Annealing y Very Fast 
Simulated Annealing en cálculos termodinámicos: Análisis de estabilidad de fases en sistemas no reactivos.

Núm. Caso de estudio Función objetivo Variables de optimización Òptimo global

18 Estabilidad de fases del sistema 
N2-C1-C2 a 270 K y 7,600 KPa

z (0.25, 0.2, 0.55)
Ecuación de estado SRK 
con reglas de mezclado 

convencionales (Hua et al., 1998)

donde  son los potenciales 
químicos evaluados a las composiciones 

y y z, respectivamente.

n = 3

Fobj = −7.2874E-03
xest (0.1193826, 

0.141070, 0.7395473)

19 Estabilidad de fases del sistema 
C1-C2-C3-C4-C5-C6-C7-16-C17+ 

 a 353 K y 38,500 KPa
z (0.6598, 0.09084, 0.04726, 
0.03509, 0.01492, 0.01657, 

0.1047, 0.03082)
Ecuación de estado SRK 
con reglas de mezclado 

convencionales (Harding y 
Floudas, 2000)

n = 8

Fobj = −1.7220E-03
xest (0.770526, 0.090623, 

0.040465, 0.026596, 
0.010260, 0.010172, 
0.047103, 0.004255)

20 Estabilidad de fases del sistema
C1-C2-C3-C4-C5-C6-C7-C8-C9-C10 

a 162.2 °C y 18,900 KPa
z (0.6436, 0.0752, 0.0474, 0.0412, 

0.0297, 0.0138, 0.0303, 
0.0371, 0.0415, 0.0402)

Ecuación de estado SRK 
con reglas de mezclado 

convencionales (Ammar y 
Renon, 1987)

n = 10

Fobj = −1.017E-04
xest (0.589140, 0.073634, 

0.048673, 0.044369, 
0.033425, 0.016202, 
0.037067, 0.047230, 
0.054955, 0.055306)

21 Estabilidad de fases del sistema 
Etilenglicol – Lauril alcohol- 

Nitrometano a 1 atm y 298 K 
z (0.4, 0.3, 0.3)

Modelo de solución UNIQUAC 
(McDonald y Floudas, 1995)

n = 3

Fobj = −1.0839E-01
xest (0.752529, 0.002407, 

0.245063)

22 Estabilidad de fases del sistema 
Agua–Fenol–Hexano a 81.6343 °C

z (0.6, 0.15, 0.25)
Modelo de solución NRTL

(Heidemann y Andel-Ghani, 
2001)

donde  son los potenciales 
químicos evaluados a las composiciones 

y y z, respectivamente.

n = 3

Fobj = −3.0886E-01
xest (0.9961865, 

0.0038097, 0.0000038)
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con los diferentes métodos determi-
nistas que han sido desarrollados 
para este tipo de problemas (Har-
ding et al., 1997; Maier et al., 1998). 
Generalmente, tales métodos deter-
ministas requieren reformulaciones 
del problema y exhiben un tiempo 
de cómputo signifi cativo para siste-
mas multivariables. También, el mé-
todo SA es confi able para esta apli-
cación, pero presenta un esfuerzo 
numérico signifi cativamente mayor 
que el correspondiente al otro méto-
do estocástico. Considerando estos 
resultados, la aplicación de méto-
dos estocásticos para la determi-
nación de azeótropos homogéneos 
supera en algunos aspectos a los 
métodos deterministas disponibles 
para este tipo de cálculos. 

Finalmente, el método VFSA no 
es adecuado para los casos de es-
tudio que comprenden el ajuste de 
parámetros en la modelación del 
equilibrio líquido-vapor y en la mo-
delación de coefi cientes de acti vidad 
en sistemas electrolíticos acuosos. 
Los resultados obtenidos indican 
que para estos problemas, el método 
VFSA frecuentemente converge a 
óptimos locales de la función objeti-
vo. Es conveniente mencionar que el 
método SA también convergió en 

Figura 3. Perfiles de comportamiento numérico para la métrica 

 empleando los métodos estocásticos SA 

y VFSA en cálculos termodinámicos

Figura 4. Perfiles de comportamiento numérico para la métrica 

 empleando los métodos estocásticos SA y VFSA

en cálculos termodinámicos

Tabla 6. Valores promedio de fobjy NFE para los casos de estudio considerados para 
la evaluación y comparación del Simulated Annealing y Very Fast Simulated 
Annealing en cálculos termodinámicos

Núm. problema

Simulated Annealing Very Fast Simulated Annealing

1 8.05E–10 40593 5.51E–12 17790

2 8.18E–09 265801 7.93E–10 127951

3 8.92E–10 40417 4.05E–12 17708

4 8.25E–10 40929 1.49E–11 17974

5 0.0613 39505 0.0793 3768

6 0.0905 40209 0.1766 13991

7 0.2246 40529 0.2864 14286

8 0.0010 39745 0.0075 5179

9 0.1831 40705 0.2271 17061

10 -0.7698 897805 -0.7698 475422

11 -1.1868 267701 -1.1868 130106

12 -0.0914 168129 -0.0903 81566

13 0.0111 39825 13.2344 2930

14 1.7059 40033 1.8187 3152

15 0.0160 40769 0.6975 2506

16 8.5034 4582401 8.5034 11784641

17 3.3258 1612801 3.3258 848046

18 -0.0073 91981 -0.0073 42980

19 -0.0017 700929 -0.0016 364238

20 -0.0001 1104801 -0.0001 583281

21 -0.1084 91657 -0.1084 42657

22 -0.3089 92917 -0.3089 39567
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varias ocasiones a óptimos locales en estos problemas 
termodinámicos. Estos resultados indican que las carac-
terísticas de este tipo de problemas son útiles para eva-
luar la robustez de cualquier método estocástico o de-
terminista de optimización global a pesar de que 
presentan solamente dos variables de optimización. 

Conclusiones

Este trabajo describe la aplicación del método VFSA y 
la comparación de sus perfi les de comportamiento con 
respecto al SA en cálculos termodinámicos. Los resulta-
dos obtenidos indican que el método Simulated Annea-
ling de Corana et al. (1987) es más robusto que el método 
Very Fast Simulated Annealing de Sharma y Kaikkonen 
(1999) para los casos de estudio considerados en este 
trabajo. Sin embargo, existen diferencias signifi cativas 
entre la efi ciencia de ambos métodos, siendo el método 
VFSA más rápido para alcanzar la convergencia. 
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