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Resumen

Se presenta un método multi-obje tivo para deter minar la confi gu ra ción de un

sistema de produc ción tipo jobshop flexible diná mico, de múlti ples centros de

trabajo con multi ca pa cidad, utili zando la estra tegia evolu tiva cono cida como

(µ+l)– ES. La pobla ción de solu ciones que evolu ciona de gene ra ción en gene ra ción,

es evaluada mediante simu la ción. Se deter mina el número adecuado de máquinas

por centro de trabajo, balan ceando la utili za ción de los recursos y el tiempo de flujo

de los trabajos. Si bien, el método se aplica a un sistema proto tipo, es gene ra li zable a

cual quier   problema   de   confi gu ra ción   y   tipo   de   recursos   (discreto   o   continuo).

Descrip tores: confi gu ra ción de sistemas, opti mi za ción multiob je tivo, algo ritmos

evolu tivos,  estra te gias   evolu tivas,   simu la ción.

Abstract

A multi-ob jec tive op ti mi za tion method us ing the evo lu tion ary strat egy known as

(µ+l)–ES to de ter mine the con fig u ra tion of a dy namic flex i ble jobshop man u fac tur ing

sys tem with mul ti ple multi-ca pac ity workcenters is pre sented. The pop u la tion of so lu -

tions, which evolve from gen er a tion to gen er a tion is eval u ated by sim u la tion. The num ber

of iden ti cal ma chines at each work sta tion is de ter mined, bal anc ing the re source uti li za -

tion and jobs flowtime. The method is ap plied to a pro to type sys tem, but it can be gen er al -

ized to any prob lem of sys tem con fig u ra tion and re source type (dis crete or con tin u ous).

Keywords: Sys tem con fig u ra tion, multiobjective op ti mi za tion, evo lu tion ary al go rithms,

evo lu tion ary strat e gies, sim u la tion.
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Intro duc ción

Con fi gu rar un sis te ma pro duc ti vo im pli ca de ter mi nar
el ni vel de re cur sos (má qui nas, ope ra rios, al ma ce nes,
etc.) ne ce sa rios pa ra al can zar una ope ra ción efi cien te,
da da la ne ce si dad de con tro lar los cos tos de pro duc ción,
man te nien do un ni vel ra zo na ble de re cur sos (ca pa ci dad
de pro duc ción) y de sa tis fac ción al clien te (cum pli mien -
to de la de man da).

El pro ble ma tie ne mu chas va rian tes; sin em bar go, el
ob je ti vo prin ci pal se cen tra en la de fi ni ción del ni vel de
re cur sos que ha gan más efi cien te la ope ra ción de un sis -
te ma pro duc ti vo (Pa ris et al., 2001; Pie rre val et al.,
2003). Pie rre val y Tau tou (1997) com bi nan si mu la ción
y al go rit mos evo lu ti vos pa ra de ter mi nar la ca pa ci dad de 
un si lo de al ma ce na mien to y ele gir en tre dos mé to dos
de ma nu fac tu ra. Almu ta wa et al. (2005) pre sen tan un
en fo que de op ti mi za ción ba sa da en si mu la ción pa ra op -
ti mi zar el nú me ro de má qui nas de di fe ren te ca pa ci dad
de pro ce sa mien to en un pro ce so de pro duc ción por lo -
tes. Fey zio glu et al. (2005) pre sen tan un mé to do mul -
ti-ob je ti vo pa ra mi ni mi zar el ni vel de re cur sos en un sis -
te ma de pro duc ción, sa tis fa cien do res tric cio nes ope ra ti -
vas. De fers ha y Chen (2006) pre sen tan una heurística
basada en algoritmos genéticos para formar familias de
partes y células de máquinas en el diseño de un sistema
celular.

Confi gu ra ción de un sistema de produc ción

En es te tra ba jo se de sa rro lla un mé to do pa ra re sol ver un 
pro ble ma de con fi gu ra ción de un sis te ma pro duc ti vo ti -
po jobs hop fle xi ble di ná mi co de M cen tros de tra ba jo
(CT) de mul ti ca pa ci dad. En ca da CTk (k = 1, … , M)
exis ten mk má qui nas idén ti cas. El sis te ma pro ce sa N ti -
pos di fe ren tes de ór de nes de pro duc ción (OP), que arri -
ban en for ma di ná mi ca a tra vés de un pro ce so alea to rio.
Una OP de ti po i (i = 1, … , N) se com po ne de ni ope ra -
cio nes a pro ce sar se en una se cuen cia pre de ter mi na da (el 
ti po de OP de ter mi na la ru ta de pro ce so). Los tiem pos
de pro ce so son de pen dien tes de ca da ope ra ción y se mo -
de lan en for ma alea to ria.

El de sem pe ño del sis te ma es eva lua do en fun ción de
dos cri te rios, el tiem po de flu jo y la uti li za ción de los re -
cur sos, em plean do la re gla de des pa cho FIFO pa ra se -
cuen ciar las OP; sin em bar go, otras re glas de des pa cho
pue den uti li zar se de pen dien do de los ob je ti vos del pro -
ble ma. Haupt (1989) des cri be y cla si fi ca re glas de des pa -
cho clá si cas, Do mi nic et al. (2004) y Holt haus (1997)
pre sen tan con cep tos re cien tes de re glas de des pa cho.

Pa ra el pri mer ob je ti vo, que se re la cio na con la ca pa -
ci dad de res pues ta de la em pre sa pa ra cum plir con la de -
man da de sus pro duc tos, se con si de ra la frac ción de pro -
ce so me dia (f), de fi ni da co mo el pro me dio de la ra zón
en tre el tiem po de pro ce so to tal y el tiem po de flu jo de
ca da tra ba jo. Pa ra el se gun do ob je ti vo, que se re la cio na
con un ade cua do uso de la in ver sión, se de fi ne la uti li za -
ción me dia del sis te ma (U) re pre sen ta da por el pro me -
dio de uti li za ción de los cen tros de tra ba jo.

La me di da de de sem pe ño frac ción de pro ce so me dia
(f) po see una re la ción in ver sa con la uti li za ción me dia
del sis te ma (U). Mien tras ma yor es el nú me ro de má -
qui nas en el sis te ma, me nor es la uti li za ción me dia del
sis te ma, au men tan do la frac ción me dia de pro ce so, da -
do que al exis tir más re cur sos dis mi nu yen las es pe ras
pro du ci das por la es ca sez de es tos. Por lo tan to, el ob je -
ti vo es de ter mi nar el nú me ro ade cua do de má qui nas por 
cen tro de tra ba jo que per mi ta al can zar un equi li brio en -
tre am bas me di das. Este es un pro ble ma de op ti mi za -
ción mul tiob je ti vo, pues to que pre sen ta dos fun cio nes
ob je ti vos a ma xi mi zar, f y U:

Maximizar (f,U)
s.a.
mink  £  mk  £  máxk      para   k=1, … ,M

don de (f,U) es el vec tor ob je ti vo a ma xi mi zar, f y U re -
pre sen tan las fun cio nes ob je ti vos in di vi dua les:
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mink y maxk es el nú me ro mí ni mo y má xi mo de má qui -
nas en el cen tro de tra ba jo k; pj y Fj el tiem po de pro ce so
y de flu jo pa ra el j-ési mo tra ba jo pro ce sa do, y Uk la uti li -
za ción me dia del cen tro de tra ba jo k. La frac ción pj/Fj es
la frac ción de pro ce so pa ra el tra ba jo j, es de cir, la pro -
por ción del tiem po que re pre sen ta su pro ce so res pec to
del tiem po to tal de per ma nen cia en el sis te ma.

Opti mi za ción multiob je tivo

Se gún Coe llo (1999), la op ti mi za ción mul tiob je ti vo se
de fi ne co mo la op ti mi za ción de un vec tor de fun cio nes
(ob je ti vo) de pen dien tes de un vec tor de va ria bles de de -
ci sión en una re gión fac ti ble, las que re pre sen tan ma te -
má ti ca men te di fe ren tes ob je ti vos in di vi dua les, ge ne ral -
men te en con flic to. En es te sen ti do, el tér mi no “op ti mi -
zar” sig ni fi ca en con trar so lu cio nes acep ta bles a to dos
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los ob je ti vos, y en ge ne ral, no exis te una úni ca so lu ción
que sea me jor con res pec to a to dos los ob je ti vos.

En un pro ble ma de op ti mi za ción mul tiob je ti vo tí pi -
co, exis te un con jun to de so lu cio nes que son su pe rio res
en al gún ob je ti vo, pe ro in fe riores a otras so lu cio nes en
otros ob je ti vos. Estas so lu cio nes son co no ci das co mo
So lu cio nes Pa re to Ópti mas. Una so lu ción fac ti ble A pa ra
un pro ble ma mul tiob je ti vo es Pa re to Ópti ma (so lu ción
efi cien te o no do mi na da), si nin gu na otra so lu ción fac ti -
ble es tan bue na co mo A con res pec to a ca da ob je ti vo, y
es tric ta men te me jor con res pec to a por lo me nos un ob -
je ti vo. El con jun to de so lu cio nes efi cien tes es de no mi -
na da Fron te ra de Pa re to.

Algo ritmos evolu tivos en 
opti mi za ción multi-obje tivo

Ba jo el tér mi no al go rit mos evo lu ti vos se en tien de a todos
los al go rit mos ba sa dos en pro ce di mien tos de bús que da
ins pi ra dos en me ca nis mos de la evo lu ción na tu ral, co -
mo por ejem plo, al go rit mos ge né ti cos y es tra te gias evo lu ti -
vas, uti li zan do un vo ca bu la rio de ge né ti ca na tu ral. Aso -
cia el con cep to de in di vi duo a so lu ción fac ti ble del pro -
ble ma, y el de po bla ción a un con jun to de so lu cio nes
fac ti bles. 

Los in di vi duos es tán for ma dos por uni da des (ge nes o 
ca rac te res) or de na das en su ce sión li neal, sien do eva lua -
dos a tra vés de su ap ti tud (fit ness).

Se iden ti fi can dos ge ne ra cio nes de al go rit mos evo lu -
ti vos mul tiob je ti vo (Coe llo, 2000), la pri me ra cla si fi ca
los mé to dos en Pa re to y no Pa re to, la se gun da ge ne ra -
ción in tro du ce los con cep tos de elitismo y de población
secundaria.

Entre los al go rit mos evo lu ti vos no Pa re to de pri me ra 
ge ne ra ción se pue de men cio nar a VEGA (vec tor eva lua -
ted ge ne tic al go rithm) de Schaf fer (1985); y otros mé to -
dos co mo Agre ga ción de Fun cio nes, Pro gra ma ción por Me -
tas y el Enfo que Min – Max (Coello, 1999).

Den tro de los al go rit mos evo lu ti vos Pa re to de pri -
me ra ge ne ra ción se pue de men cio nar MOGA (multi-ob -
jec ti ve ge ne tic al go rithm) de Fon se ca y Fle ming (1993),
NSGA (Non do mi na ted Sor ting Ge ne tic Algo rithm) de Sri -
ni vas y Deb (1993) y NPGA (Ni ched Pa re to Ge ne tic Algo -
rithm) de Horn et al. (1994).

Entre los al go rit mos evo lu ti vos de se gun da ge ne ra -
ción se pue den men cio nar SPEA (Streng Pa re to Evo lu tio -
nary Algo rithm) de Zitz ler y Thie le (1999), PAES (Pa re to
Archi ved Evo lu tio nary Stra tegy) de Know les y Cor ne
(1999), PESA (Pa re to Enve lo pe ba sed Se lec tion Algo rithm) de 
Cor ne et al. (2000), SPEA II de Zitz ler et al. (2001), PESA
II de Cor ne et al. (2001), MOMGA (Mul ti-Objec ti ve with

Messy Ge ne tic Algo rithm) de Van Veld hui zen y La mont
(2000) y MOMGA II de Zyda llis et al. (2001).

Algo ritmo para la confi gu ra ción 
de un sistema de produc ción

En es te tra ba jo se uti li za el en fo que de op ti mi za ción del
vec tor ob je ti vo, es pe cí fi ca men te el mé to do Min-Max.
Este mé to do uti li za la dis tan cia en tre una so lu ción fac -
ti ble (efi cien te) y una so lu ción ideal (vec tor de va ria bles 
de de ci sión co rres pon dien te a los óp ti mos in di vi dua les). 
Este mé to do bus ca en con trar un pun to en la Fron te ra
de Pa re to don de la des via ción má xi ma al pun to ideal sea 
mí ni ma.

Estra tegia evolu tiva

Las es tra te gias evo lu ti vas son al go rit mos evo lu ti vos ba -
sa dos en pro ce sos alea to rios de se lec ción y de va ria ción
que fue ron di se ña dos ini cial men te pa ra re sol ver pro ble -
mas de op ti mi za ción de pa rá me tros. El pro ce so de se lec -
ción fa vo re ce con ma yor pro ba bi li dad a aque llos in di vi -
duos con ma yor fit ness (pa dres) pa ra ser so me ti dos a
los ope ra do res ge né ti cos de va ria ción: mu ta ción y/o re -
com bi na ción (Mi cha le wicz, 1999; Back et al., 1997).

El pro ce so de re com bi na ción per mi te una mez cla de
in for ma ción de los pa dres pa ra tras pa sar lo a los des cen -
dien tes (nue vas so lu cio nes). La mu ta ción mo di fi ca cier -
tas ca rac te rís ti cas de los in di vi duos y pre vie ne la pér di -
da com ple ta de cier tas ca rac te rís ti cas en la po bla ción.
Back et al. (1997) des cri ben es te pro ce so evo lu ti vo, que
se ini cia con una po bla ción ini cial de µ in di vi duos, la
que evo lu cio na de ge ne ra ción en ge ne ra ción por me dio
de ope ra do res de va ria ción, cu ya fi na li dad es pre ser var
la di ver si dad ge né ti ca en la po bla ción. El pro ce so evo lu -
ti vo se re pi te hasta cumplir algún criterio de fi na li za -
ción (generalmente hasta alcanzar un número de
generaciones).

En es te tra ba jo se uti li za la es tra te gia evo lu ti va
(m+l) – ES, don de m in di vi duos pro du cen l des cen dien -
tes que son eva lua dos de ter mi nan do su fit ness. La nue -
va po bla ción de (m+l) in di vi duos es re du ci da por un
pro ce so de se lec ción a m in di vi duos.

La re pre sen ta ción ge né ti ca de un in di vi duo es un
vec tor de M ge nes, (m1, m2, …, mM), don de el va lor mk

del gen k (k = 1, … , M) re pre sen ta el nú me ro de má qui -
nas en el CTk, li mi ta do en el in ter va lo [mink, maxk].

La po bla ción ini cial de so lu cio nes se de ter mi na en
for ma alea to ria, se gún Pie rre val y Tau tou (1997) y Mi -
cha le wicz (1999). La so lu ción ideal co rres pon de al ca so
cuan do la frac ción me dia de pro ce so es 1, los tra ba jos no 



pre sen tan tiem po de es pe ra en su pro ce so y la uti li za -
ción me dia es 1, lo que sig ni fi ca que las má qui nas es tán
sien do uti li za das el 100% del tiem po. Así, la fun ción de
eva lua ción pa ra el in di vi duo k de la po bla ción se de fi ne
co mo la dis tan cia eu cli dia na en tre (fk,Uk) y la so lu ción
ideal (1,1):

d f U k N
k k k p= - + - =( ) ( ) ,...1 1 12 2

don de Np co rres pon de al ta ma ño de la po bla ción.
Una vez ob te ni da la po bla ción de des cen dien tes, el

pro ce so de se lec ción eli ge los m in di vi duos de me jor fit -
ness, for ma re fe ri da fre cuen te men te co mo Ran king y Se -
lec ción (Spear et al., 1993).

La mu ta ción es un ope ra dor ge né ti co que mo di fi ca
alea to ria men te uno o más ge nes de un in di vi duo. Su
pro pó si to es pre ve nir que la po bla ción con ver ja tem pra -
na men te a un óp ti mo lo cal y se per mi ta ex plo rar nue -
vas ve cin da des de so lu cio nes. 

El ope ra dor de re com bi na ción com bi na dos cro mo -
so mas pa dres pa ra for mar uno o dos des cen dien tes (hi -
jos) por in ter cam bio de ge nes de los pa dres. Este ope ra -
dor per mi te rea li zar una bús que da en profundidad,
explotando las buenas características de la población
actual.

En es te tra ba jo se con si de ró un ope ra dor de mu ta ción
en ve cin dad ba sa do en la idea ori gi nal de las es tra te gias
evo lu ti vas en que to dos los ge nes va rían en una ve cin -
dad de su va lor ac tual (Mi cha le wicz, 1999), y una adap -
ta ción dis cre ta de la re com bi na ción in ter me dia de Müh -
len bein et al. (1993).

Mu ta ción en ve cin dad: el va lor de ca da gen del in di vi -
duo mu ta do se ob tie ne de una ve cin dad del va lor ac tual; 
si mk = mink ( maxk ) en ton ces mk se in cre men ta (de cre -
men ta) en 1. Si mink < mk < maxk se de ter mi na en for ma 
alea to ria si mk se in cre men ta o de cre men ta en 1.

Re com bi na ción in ter me dia: los va lo res de los ge nes de
los des cen dien tes se ge ne ran co mo una pon de ra ción
alea to ria de los va lo res de los ge nes de los pa dres; se cal -
cu la vk = ak·m1k + (1- ak)·m2k, con mik el va lor del gen k
del pa dre i (i=1,2), ak ~ U[-d, 1+d] (en es te tra ba jo se
uti li zó d=0.25, por lo que ak ~ U[-0.25,1.25] ). El va lor
vk se re don dea al en te ro más cer ca no; si mink £ vk £ maxk

en ton ces mk = vk, en otro ca so, si vk < mink (vk > maxk)
en ton ces mk = mink (mk = maxk).

Por ejem plo, en un sis te ma de 3 CT, con lí mi tes in fe -
rior y su pe rior de má qui nas por CT in di ca do en la ta bla
1, el cro mo so ma (5, 6, 9) mu ta al cro mo so ma (4, 7, 10),
si en for ma alea to ria se de ter mi na que el pri mer gen se
de cre men ta en 1 y el ter cer gen se in cre men ta en 1 (el

gen 2 se in cre men ta en 1 da do que su va lor ac tual era
igual al mí ni mo).

Co mo ilus tra ción de re com bi na ción, con si de re que
pa ra los pa dres (5, 10, 9) y (6, 8, 11) se ge ne ra en for ma
alea to ria (a1, a2, a3) = (0.8, -0.1, 1.2), ob te nién do se (v1,
v2, v3) = (5.2, 7.8, 8.6) ® (5, 8, 9). Da do que los va lo res
re don dea dos se en cuen tran en el in ter va lo per mi ti do, el
des cen dien te es (5, 8, 9).

Apli ca ción al sistema proto tipo

El sis te ma pro to ti po uti li za do (Sa la zar y La rra zá bal,
2006) con sis te en diez cen tros de tra ba jo (CT) de mul ti -
ca pa ci dad con  má qui nas idén ti cas. Se pro ce san 5 ti pos
de tra ba jos, que arri ban a tra vés de un pro ce so alea to rio
con tiem pos en tre arri bos dis tri bui do ex po nen cial con
me dia 0.1 ho ras. En la ta bla 2 se re su men las ca rac te rís -
ti cas por ti po de tra ba jo. Ru ta co rres pon de a la se cuen -
cia de CT que pro ce san las ni ope ra cio nes del tra ba jo ti -
po i. El tiem po de pro ce so de las ope ra cio nes se con si de -
ra alea to rio dis tri bui do trian gu lar si mé tri co pij ~
T(aij,bij,cij), don de pij re pre sen ta el tiem po de pro ce so de
la j-ési ma ope ra ción del i-ési mo ti po de tra ba jo (ta bla
A1 en Ane xo). Se uti li za la re gla de des pa cho FIFO pa ra
la pro gra ma ción de los tra ba jos.

El ran go pa ra el nú me ro de má qui nas en ca da CT se
ob tu vo uti li zan do el fac tor de uti li za ción r=ta/(s·tp),
sien do ta y tp la ta sa me dia de arri bo y de pro ce so, res -
pec ti va men te, y s co rres pon de al nú me ro de má qui nas
en el CT (Law y Kel ton, 2000). Pa ra fi jar los lí mi tes de
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Tabla 1. Ejemplo de sistema de 3 CT

CT 1 2 3

mínk 3 6 5

máxk 8 15 12

Tabla 2. Número mínimo y máximo de máquinas

Tipo Probabilidad ni Ruta

1 0.20 4 3-1-2-5

2 0.15 5 4-8-6-1-2

3 0.15 8 5-3-6-4-2-8-1-7

4 0.40 10 9-8-1-6-5-7-4-2-3-10

5 0.10 7 7-2-1-9-10-6-5
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má qui nas, se de fi ne una uti li za ción de re fe ren cia r, ob -
te nien do el va lor de s que ga ran ti za la uti li za ción de re -
fe ren cia. Pa ra el lí mi te in fe rior se im po ne la con di ción
de es ta do es ta cio na rio (r < 1), y pa ra el lí mi te su pe rior
se de fi ne r = 0.3. La ta bla 3 es pe ci fi ca el ran go pa ra el
nú me ro de má qui nas por CT.

Pa ra eva luar ca da so lu ción (con fi gu ra ción), se si mu -
ló el sis te ma pro to ti po du ran te 200 ho ras (40 ho ras de
warm-up y 160 ho ras pa ra la re co lec ción de in for ma -
ción). El pro ce sa mien to se rea li zó me dian te el soft wa re
SPS_Opti mi zer/Con fi gu ra tion1.

Se uti li zó m = 30 y l = 60 pa ra el ta ma ño de la po -
bla ción de pa dres y de des cen dien tes, res pec ti va men te. 

Pa ra el cri te rio de tér mi no se con si de ran 250
ge ne ra cio nes.

Pa ra eva luar el de sem pe ño del mé to do se con si de ra -
ron dos fac to res: mejo res so lu cio nes (evo lu ción de la me -
jor so lu ción a tra vés de las ge ne ra cio nes y cali dad me dia
de la po bla ción (fit ness pro me dio de la po bla ción en ca da
ge ne ra ción). Pa ra ob te ner una eva lua ción más re pre sen -
ta ti va se realizaron cinco réplicas.

La fi gu ra 1 mues tra la evo lu ción de la me jor so lu ción 
en ca da una de las 5 ré pli cas; la me jor so lu ción ob tu vo
un fit ness igual a 0.21218.

La fi gu ra 2 mues tra grá fi ca men te la evo lu ción de la
ca li dad de la po bla ción, la que me jo ra a me di da que au -
men ta el nú me ro de ge ne ra cio nes. La ca li dad de la po -
bla ción se ob tie ne pro me dian do el fit ness pro me dio de
las 5 réplicas en cada generación.

Se ob tu vie ron las cin cuen ta me jo res so lu cio nes ge -
ne ra das en el pro ce so evo lu ti vo de ca da una de las 5 ré -
pli cas, dis ponien do de un con jun to de 250 bue nas so lu -
cio nes del pro ble ma. Se agru pan aque llas so lu cio nes
idén ti cas (igual nú me ro de má qui nas en los CT), pro -
me diando sus uti li za cio nes me dias por CT. De es ta for -
ma, es po si ble ajus tar el fit ness y se eli gen las cin cuen ta
me jo res so lu cio nes, pa ra lue go de fi nir la Fron te ra de Pa -
re to (figu ra 3 y ta bla A2 en ane xo).

Las so lu cio nes que for man la Fron te ra de Pa re to tie -
nen la ca rac te rís ti ca de que por lo me nos en uno de los
ob je ti vos son me jo res que las otras so lu cio nes. Pa ra aco -
tar el nú me ro de so lu cio nes se de ci de uti li zar co mo cri -
te rio de se lec ción que la frac ción de pro ce so del sis te ma
y la uti li za ción me dia de las má qui nas sean de al me nos
80%. 

Tabla 3. Número mínimo y máximo de máquinas

CT 1 2 3 4 5 6 7 8 9 10

mínk 7 7 4 5 5 6 4 4 3 2

máxk 26 25 25 18 19 23 16 16 11 9

1 Desa rro llado por Profesor Eduardo Salazar H. (esalazar@udec.cl)
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Figura 1: Evolu ción de mejores soluciones
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De acuer do a es te cri te rio, son nue ve las so lu cio nes
que lo sa tis fa cen. Ca da una de es tas so lu cio nes pre sen ta 
su propia configuración de máquinas en cada centro de
trabajo.

Pa ra de ter mi nar una úni ca so lu ción al pro ble ma, se
pre sen tan tres en fo ques de aná li sis de las so lu cio nes de
la Fron te ra de Pa re to: del me jor fit ness, del to ma dor de de -
ci sión y de aná li sis de ta lla do:

Me jor Fit ness: se con si de ra que la me jor so lu ción es la 
que po see el me jor fit ness, es de cir, la so lu ción que es té
más cer ca na a la so lu ción ideal. La me jor so lu ción, con
fit ness 0.21218, pre sen ta frac ción de pro ce so pro me dio
88,16% y uti li za ción me dia 82,39%. La con fi gu ra ción
del sis te ma re sul ta: 9, 9, 5, 7, 8, 8, 5, 6, 4 y 3 máquinas,
respectivamente.

To ma dor de de ci sión: el to ma dor de de ci sión es
quien es ta ble ce el ba lan ce de los ob je ti vos. Por ejem -
plo, si la uti li za ción me dia del sis te ma es el ob je ti vo
crí ti co, se con si de ra la so lu ción con ma yor uti li za ción 
me dia: 85,37%, con fit ness 0.23150 y frac ción de pro -
ce so pro me dio 82,06%. La con fi gu ra ción del sis te ma
re sul ta: 9, 8, 5, 6, 6, 8, 5, 5, 4 y 4 má qui nas,
res pec ti va men te.

Aná li sis de ta lla do: las so lu cio nes de la Fron te ra de Pa -
re to se ana li zan en for ma de ta lla da me dian te es tu dios
de si mu la ción de más ré pli cas ob te nien do una es ti ma -
ción más pre ci sa de la frac ción de pro ce so pro me dio y
utilización media del sistema.

Conclusiones

Se han iden ti fi ca do apli ca cio nes de los en fo ques evo lu -
ti vos en el área de di se ño de sis te mas de ma nu fac tu ra,
sien do po si ble in cor po rar múl ti ples ob je ti vos y res tric -
cio nes co mún men te en con tra das en la prác ti ca.

En es te tra ba jo se ha uti li za do la es tra te gia evo lu ti va
co no ci da co mo (m+l) – ES pa ra con fi gu rar un sis te ma
pro duc ti vo pro to ti po ti po jobs hop fle xi ble di ná mi co. Si
bien las Estra te gias Evo lu ti vas han si do apli ca das prin ci -
pal men te a pro ble mas con ti nuos de op ti mi za ción de
pa rá me tros, en es te ca so, es ta es tra te gia se apli có a un
pro ble ma dis cre to, determinando el número de má qui -
nas en cada centro de trabajo.

Este pro ble ma con si de ra dos ob je ti vos, ma xi mi zar la 
uti li za ción me dia de las má qui nas, re la cio na do con res -
tric cio nes de re cur sos y ma xi mi zar la frac ción de pro ce -
so de las ór de nes de pro duc ción, re la cio na do con la ca -
pa ci dad del sis te ma pa ra res pon der a la de man da, con si -
de ran do el en fo que Min–Max para la optimización
multiobjetivo.

Las es tra te gias evo lu ti vas re quie ren de fi nir y ca li brar 
pa rá me tros, an tes de re sol ver cual quier pro ble ma, en
par ti cu lar, el pro ble ma de con fi gu ra ción ana li za do en
es te tra ba jo. 

De acuerdo a es ta in ves ti ga ción se ob ser vó que los pa -
rá me tros que se uti li cen in ci den en la ca li dad me dia de la
po bla ción co mo en la ob ten ción de la me jor so lu ción.

Ane xo
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Tabla A1. Pará me tros distri bu ción trian gular tiempos de proceso

Tipo Orden Parámetro pij~T(aij,bij,cij)

1 a 0.500, 0.600, 0.850, 0.500

b 0.750, 0.850, 1.025, 0.650

c 1.000, 1.100, 1.200, 0.800

2 a 0.800. 0.800, 0.750, 0.700, 0.600

b 1.000, 1.050, 0.875, 0.800, 0.800

c 1.200, 1.300, 1.000, 0.900, 1.000

3 a 0.400, 0.250, 0.700, 0.300, 0.350, 0.400, 0.500, 0.450

b 0.800, 0.575, 0.850, 0.800, 0.725, 0.625, 0.85, 0.725

c 1.200, 0.900, 1.000, 1.300, 1.100, 0.850, 1.200, 1.000

4 a 0.600, 0.400, 0.650, 0.800, 0.500, 0.650, 0.600, 0.550, 0.400, 0.450

b 0.650, 0.500, 0.725, 0.850, 0.625, 0.725, 0.650, 0.650, 0.450, 0.525

c 0.700, 0.600, 0.800, 0.900, 0.750, 0.800, 0.700, 0.750, 0.500, 0.600

5 a 0.300, 0.250, 0.300, 0.350, 0.400, 0.500, 0.200

b 0.600, 0.525, 0.650, 0.625, 0.550, 0.750, 0.525

c 0.900, 0.800, 1.000, 0.900, 0.700, 1.000,0.850
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Fi nal men te, se con clu ye que uti li zan do es tra te gias
evo lu ti vas se pue den re sol ver pro ble mas dis cre tos, co -
mo el de con fi gu ra ción de sis te mas pro duc ti vos, ob te -
nién do se bue nos re sul ta dos en tiem pos com pu ta cio na -
les acep ta bles (pa ra el pro ble ma ana li za do en es te tra ba -
jo, el tiem po CPU re que ri do fue del orden de 10 s en un
computador centrino de 1,5 GHz).
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