Ingenieria Investigacion y Tecnologia. Vol XI. Nim.4. 2010 423-420, ISSN1405-7743 FI-UNAM

(articulo arbitrado)

INVESTIGACION Q)
ingeg
ri

Y TECNOLOGIA

Configuracién multi-objetivo de sistemas de produccién

utilizando estrategias evolutivas

Multi-Objective Configuration of Manufacturing
Systems Using Evolutionary Strategies

Salazar-Hornig E.J.
Departamento de Ingenieria Industrial
Universidad de Concepcion, Chile
E-mail: esalazar@udec.cl

Rojas-Oyarzin R.S.
Departamento de Ingenieria Industrial
Universidad de Concepcion, Chile
E-mail: rociroja@udec.cl

(Recibido: abril de 2008; aceptado: mayo de 2010)

Resumen

Se presenta un método multi-objetivo para determinar la configuracién de un
sistema de produccién tipo jobshop flexible dindmico, de multiples centros de
trabajo con multicapacidad, utilizando la estrategia evolutiva conocida como
(u+2A)—ES. La poblacién de soluciones que evoluciona de generacién en generacién,
es evaluada mediante simulacién. Se determina el ntimero adecuado de méaquinas
por centro de trabajo, balanceando la utilizacién de los recursos y el tiempo de flujo
de los trabajos. Sibien, el método se aplica a un sistema prototipo, es generalizable a
cualquier problema de configuracién y tipo de recursos (discreto o continuo).

Descriptores: configuracién de sistemas, optimizacién multiobjetivo, algoritmos
evolutivos, estrategias evolutivas, simulacién.

Abstract

A multi-objective optimization method using the evolutionary strategy known as
(u+A)—ES to determine the configuration of a dynamic flexible jobshop manufacturing
system with multiple multi-capacity workcenters is presented. The population of solu-
tions, which evolve from generation to generation is evaluated by simulation. The number
of identical machines at each workstation is determined, balancing the resource utiliza-
tion and jobs flowtime. The method is applied to a prototype system, but it can be general-
ized to any problem of system configuration and resource type (discrete or continuous).

Keywords: System configuration, multiobjective optimization, evolutionary algorithms,
evolutionary strategies, simulation.
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Introduccién

Configurar un sistema productivo implica determinar
el nivel de recursos (méaquinas, operarios, almacenes,
etc.) necesarios para alcanzar una operacién eficiente,
dada la necesidad de controlar los costos de produccidn,
manteniendo un nivel razonable de recursos (capacidad
de produccién) y de satisfaccién al cliente (cumplimien-
to de la demanda).

El problema tiene muchas variantes; sin embargo, el
objetivo principal se centra en la definicién del nivel de
recursos que hagan mds eficiente la operacién de un sis-
tema productivo (Paris er al., 2001; Pierreval er al.,
2003). Pierreval y Tautou (1997) combinan simulacién
y algoritmos evolutivos para determinar la capacidad de
un silo de almacenamiento y elegir entre dos métodos
de manufactura. Almutawa et al. (2005) presentan un
enfoque de optimizacién basada en simulacién para op-
timizar el nimero de maquinas de diferente capacidad
de procesamiento en un proceso de produccién por lo-
tes. Feyzioglu er al. (2005) presentan un método mul-
ti-objetivo para minimizar el nivel de recursos en un sis-
tema de produccidn, satisfaciendo restricciones operati-
vas. Defersha y Chen (2006) presentan una heuristica
basada en algoritmos genéticos para formar familias de
partes y células de méquinas en el disefio de un sistema
celular.

Configuracién de un sistema de produccién

En este trabajo se desarrolla un método para resolver un
problema de configuracién de un sistema productivo ti-
po jobshop flexible dindmico de M centros de trabajo
(CT) de multicapacidad. En cada CT, (k = 1, ... , M)
existen my maquinas idénticas. El sistema procesa NN ti-
pos diferentes de érdenes de produccién (OP), que arri-
ban en forma dindmica a través de un proceso aleatorio.
Una OP de tipoi (f = 1, ..., N) se compone de n; opera-
ciones a procesarse en una secuencia predeterminada (el
tipo de OP determina la ruta de proceso). Los tiempos
de proceso son dependientes de cada operacién y se mo-
delan en forma aleatoria.

El desempeno del sistema es evaluado en funcién de
dos criterios, el tiempo de flujo y la utilizacién de los re-
cursos, empleando la regla de despacho FIFO para se-
cuenciar las OP; sin embargo, otras reglas de despacho
pueden utilizarse dependiendo de los objetivos del pro-
blema. Haupt (1989) describe y clasifica reglas de despa-
cho clésicas, Dominic et al. (2004) y Holthaus (1997)
presentan conceptos recientes de reglas de despacho.

Para el primer objetivo, que se relaciona con la capa-
cidad de respuesta de la empresa para cumplir con la de-
manda de sus productos, se considera la fraccién de pro-
ceso media (f), definida como el promedio de la razén
entre el tiempo de proceso total y el tiempo de flujo de
cada trabajo. Para el segundo objetivo, que se relaciona
con un adecuado uso de la inversion, se define la utiliza-
cién media del sistema (U) representada por el prome-
dio de utilizacién de los centros de trabajo.

La medida de desempefo fraccién de proceso media
(f) posee una relacién inversa con la utilizacién media
del sistema (U). Mientras mayor es el ndmero de ma-
quinas en el sistema, menor es la utilizacién media del
sistema, aumentando la fraccién media de proceso, da-
do que al existir méas recursos disminuyen las esperas
producidas por la escasez de estos. Por lo tanto, el obje-
tivo es determinar el nimero adecuado de méquinas por
centro de trabajo que permita alcanzar un equilibrio en-
tre ambas medidas. Este es un problema de optimiza-
cién multiobjetivo, puesto que presenta dos funciones
objetivos a maximizar, fy U:

Maximizar (f,U)

s.a.

min, < my < max, para k=1, ... .M

donde (f,U) es el vector objetivo a maximizar, fy U re-
presentan las funciones objetivos individuales:

j=1 4

min, y max, es el nimero minimo y maximo de maqui-
nas en el centro de trabajo k; p; y F; el tiempo de proceso
y de flujo para el j-ésimo trabajo procesado, y U, la utili-
zacién media del centro de trabajo k. La fraccién p/F; es
la fraccién de proceso para el trabajo j, es decir, la pro-
porcién del tiempo que representa su proceso respecto
del tiempo total de permanencia en el sistema.

Optimizacién multiobjetivo

Segtn Coello (1999), la optimizacién multiobjetivo se
define como la optimizacién de un vector de funciones
(objetivo) dependientes de un vector de variables de de-
cisién en una regién factible, las que representan mate-
méticamente diferentes objetivos individuales, general-
mente en conflicto. En este sentido, el término “optimi-
zar” significa encontrar soluciones aceptables a todos
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los objetivos, y en general, no existe una tGnica solucién
que sea mejor con respecto a todos los objetivos.

En un problema de optimizacién multiobjetivo tipi-
co, existe un conjunto de soluciones que son superiores
en algln objetivo, pero inferiores a otras soluciones en
otros objetivos. Estas soluciones son conocidas como
Soluciones Pareto Optimas. Una solucién factible A para
un problema multiobjetivo es Pareto Optima (solucién
eficiente o no dominada), si ninguna otra solucién facti-
ble es tan buena como A con respecto a cada objetivo, y
estrictamente mejor con respecto a por lo menos un ob-
jetivo. El conjunto de soluciones eficientes es denomi-
nada Frontera de Pareto.

Algoritmos evolutivos en
optimizacién multi-objetivo

Bajo el término algoritmos evolutivos se entiende a todos
los algoritmos basados en procedimientos de bisqueda
inspirados en mecanismos de la evolucién natural, co-
mo por ejemplo, algoritmos genéticos y estrategias evoluti-
vas, utilizando un vocabulario de genética natural. Aso-
cia el concepto de individuo a solucién factible del pro-
blema, y el de poblacién a un conjunto de soluciones
factibles.

Los individuos estan formados por unidades (genes o
caracteres) ordenadas en sucesion lineal, siendo evalua-
dos a través de su aptitud (fitness).

Se identifican dos generaciones de algoritmos evolu-
tivos multiobjetivo (Coello, 2000), la primera clasifica
los métodos en Pareto y no Pareto, la segunda genera-
cién introduce los conceptos de elitismo y de poblacién
secundaria.

Entre los algoritmos evolutivos no Pareto de primera
generacion se puede mencionar a VEGA (vector evalua-
ted genetic algorithm) de Schaffer (1985); y otros méto-
dos como Agregacion de Funciones, Programacion por Me-
tas'y el Enfoque Min — Max (Coello, 1999).

Dentro de los algoritmos evolutivos Pareto de pri-
mera generacién se puede mencionar MOGA (multi-ob-
jective genetic algorithm) de Fonseca y Fleming (1993),
NSGA (Nondominated Sorting Genetic Algorithm) de Sri-
nivas y Deb (1993) y NPGA (Niched Pareto Genetic Algo-
rithm) de Horn et al. (1994).

Entre los algoritmos evolutivos de segunda genera-
cién se pueden mencionar SPEA (Streng Pareto Evolutio-
nary Algorithm) de Zitzler y Thiele (1999), PAES (Pareto
Archived Evolutionary Strategy) de Knowles y Corne
(1999), PESA (Pareto Envelope based Selection Algorithm) de
Corne et al. (2000), SPEA II de Zitzler et al. (2001), PESA
Il de Corne et al. (2001), MOMGA (Multi-Objective with

Messy Genetic Algorithm) de Van Veldhuizen y Lamont
(2000) y MOMGA 11 de Zydallis et al. (2001).

Algoritmo para la configuracién
de un sistema de produccién

En este trabajo se utiliza el enfoque de optimizacién del
vector objetivo, especificamente el método Min-Max.
Este método utiliza la distancia entre una solucién fac-
tible (eficiente) y una solucién ideal (vector de variables
de decision correspondiente a los éptimos individuales).
Este método busca encontrar un punto en la Frontera
de Pareto donde la desviacién méxima al punto ideal sea
minima.

Estrategia evolutiva

Las estrategias evolutivas son algoritmos evolutivos ba-
sados en procesos aleatorios de seleccién y de variacién
que fueron disefados inicialmente para resolver proble-
mas de optimizacién de pardmetros. El proceso de selec-
cién favorece con mayor probabilidad a aquellos indivi-
duos con mayor fitness (padres) para ser sometidos a
los operadores genéticos de variacién: mutacién y/o re-
combinacién (Michalewicz, 1999; Back et al., 1997).

El proceso de recombinacién permite una mezcla de
informacién de los padres para traspasarlo a los descen-
dientes (nuevas soluciones). La mutacién modifica cier-
tas caracteristicas de los individuos y previene la pérdi-
da completa de ciertas caracteristicas en la poblacién.
Back et al. (1997) describen este proceso evolutivo, que
se inicia con una poblacién inicial de u individuos, la
que evoluciona de generacién en generacién por medio
de operadores de variacién, cuya finalidad es preservar
la diversidad genética en la poblacién. El proceso evolu-
tivo se repite hasta cumplir algin criterio de finaliza-
cién (generalmente hasta alcanzar un ndmero de
generaciones).

En este trabajo se utiliza la estrategia evolutiva
(u+X) — ES, donde p individuos producen A descendien-
tes que son evaluados determinando su fitness. La nue-
va poblacién de (u+X) individuos es reducida por un
proceso de seleccién a p individuos.

La representacién genética de un individuo es un
vector de M genes, (m,, m,, ..., my,;), donde el valor m,
delgenk (k =1, ..., M) representa el nimero de maqui-
nas en el CT,, limitado en el intervalo [min,, max,].

La poblacién inicial de soluciones se determina en
forma aleatoria, segin Pierreval y Tautou (1997) y Mi-
chalewicz (1999). La solucién ideal corresponde al caso
cuando la fraccién media de proceso es 1, los trabajos no
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presentan tiempo de espera en su proceso y la utiliza-
cién media es 1, lo que significa que las maquinas estdn
siendo utilizadas el 100% del tiempo. Asi, la funcién de
evaluacién para el individuo k de la poblacién se define
como la distancia euclidiana entre (f,,U,) y la solucién
ideal (1,1):

d, =J0-f)?+1-U,)* k=1,.N

14

donde N, corresponde al tamafio de la poblacién.

Una vez obtenida la poblacién de descendientes, el
proceso de seleccién elige los p individuos de mejor fit-
ness, forma referida frecuentemente como Ranking y Se-
leccion (Spear et al., 1993).

La mutacién es un operador genético que modifica
aleatoriamente uno o mds genes de un individuo. Su
propdsito es prevenir que la poblacién converja tempra-
namente a un éptimo local y se permita explorar nue-
vas vecindades de soluciones.

El operador de recombinacién combina dos cromo-
somas padres para formar uno o dos descendientes (hi-
jos) por intercambio de genes de los padres. Este opera-
dor permite realizar una busqueda en profundidad,
explotando las buenas caracteristicas de la poblacién
actual.

En este trabajo se considerd un operador de mutacion
en vecindad basado en la idea original de las estrategias
evolutivas en que todos los genes varfan en una vecin-
dad de su valor actual (Michalewicz, 1999), y una adap-
tacién discreta de la recombinacion intermedia de Muh-
lenbein et al. (1993).

Mutacion en vecindad: el valor de cada gen del indivi-
duo mutado se obtiene de una vecindad del valor actual;
si m, = min, ( max, ) entonces m, se incrementa (decre-
menta) en 1. Simin, < m, < max, se determina en forma
aleatoria si m,, se incrementa o decrementa en 1.

Recombinacion intermedia: los valores de los genes de
los descendientes se generan como una ponderacién
aleatoria de los valores de los genes de los padres; se cal-
culav, = aym,, + (1- a,)-my,, con m,, el valor del gen k
del padre i (1=1,2), a, ~ U[-d, 1+d] (en este trabajo se
utilizé d=0.25, por lo que a, ~ U[-0.25,1.25] ). El valor
v, se redondea al entero mds cercano; si min, <v, < max,
entonces n1, = v,, en otro caso, si v, < min, (v, > max,)
entonces n;, = min, (m, = maxy).

Por ejemplo, en un sistema de 3 CT, con limites infe-
rior y superior de maquinas por CT indicado en la tabla
1, el cromosoma (5, 6, 9) muta al cromosoma (4, 7, 10),
si en forma aleatoria se determina que el primer gen se
decrementa en 1 y el tercer gen se incrementa en 1 (el

gen 2 se incrementa en 1 dado que su valor actual era
igual al minimo).

Tabla 1. Ejemplo de sistema de 3 CT

CT 1 2 3
min, 3 6 5
mdx, 8 15 12

Como ilustracién de recombinacién, considere que
para los padres (9, 10, 9) y (6, 8, 11) se genera en forma
aleatoria (a4, a, as) = (0.8, -0.1, 1.2), obteniéndose (v;,
vy, vg) = (8.2, 7.8, 8.6) > (5, 8, 9). Dado que los valores
redondeados se encuentran en el intervalo permitido, el
descendiente es (5, 8, 9).

Aplicacién al sistema prototipo

El sistema prototipo utilizado (Salazar y Larrazébal,
20006) consiste en diez centros de trabajo (CT) de multi-
capacidad con maquinas idénticas. Se procesan 5 tipos
de trabajos, que arriban a través de un proceso aleatorio
con tiempos entre arribos distribuido exponencial con
media 0.1 horas. En la tabla 2 se resumen las caracterfs-
ticas por tipo de trabajo. Ruta corresponde a la secuen-
cia de CT que procesan las #; operaciones del trabajo ti-
po i. El tiempo de proceso de las operaciones se conside-
ra aleatorio distribuido triangular simétrico p; ~
T(aj;,by,c), donde p; representa el tiempo de proceso de
la j-ésima operacién del i-ésimo tipo de trabajo (tabla
Al en Anexo). Se utiliza la regla de despacho FIFO para
la programacién de los trabajos.

Tabla 2. Nimero minimo y mdximo de mdquinas

Tipo Probabilidad n; Ruta
1 0.20 4 3-1-2-5
2 0.15 5 4-8-6-1-2
3 0.15 8  5-3-6-4-2-8-1-7
4 0.40 10 9-8-1-6-5-7-4-2-3-10
5 0.10 7 7-2-1-9-10-6-5

El rango para el nimero de maquinas en cada CT se
obtuvo utilizando el factor de utilizacién p=ta/(stp),
siendo 1, y 1, la tasa media de arribo y de proceso, res-
pectivamente, y s corresponde al nimero de maquinas
en el CT (Law y Kelton, 2000). Para fijar los limites de
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maéquinas, se define una utilizacién de referencia p, ob-
teniendo el valor de s que garantiza la utilizacién de re-
ferencia. Para el limite inferior se impone la condicién
de estado estacionario (p < 1), y para el limite superior
se define p = 0.3. La tabla 3 especifica el rango para el
numero de maquinas por CT.

Tabla 3. Nimero minimo y mdximo de mdquinas

cr 1+ 2 3 4 5 6 7 8 9 10
mmn, 7 7 4 5 5 6 4 4 3 2
mdx, 26 25 25 18 19 23 16 16 11 9

Para evaluar cada solucién (configuracién), se simu-
16 el sistema prototipo durante 200 horas (40 horas de
warm-up y 160 horas para la recoleccién de informa-
cién). El procesamiento se realiz6 mediante el software
SPS_Optimizer/Configuration!.

Se utilizé p = 30 y A = 60 para el tamafo de la po-
blacién de padres y de descendientes, respectivamente.

Para el criterio de término se consideran 250
generaciones.

Para evaluar el desempefio del método se considera-
ron dos factores: mejores soluciones (evolucién de la me-
jor solucién a través de las generaciones y calidad media
de la poblacion (fitness promedio de la poblacién en cada
generacién). Para obtener una evaluacién mds represen-
tativa se realizaron cinco réplicas.

La figura 1 muestra la evolucién de la mejor solucién
en cada una de las 5 réplicas; la mejor solucién obtuvo
un fitness igual a 0.21218.

Fitness
0,45

0,40
0,35
0,30

0,25

0,20

0,15

1 21 41 61 81 101 121 141 161 181 201 221 241
Generaciones

1 Réplica ——— 2 Réplica 3°Réplica
# Réplica 5 Réplica

Figura 1: Evolucién de mejores soluciones

! Desarrollado por Profesor Eduardo Salazar H. (esalazar@udec.cl)

La figura 2 muestra graficamente la evolucién de la
calidad de la poblacién, la que mejora a medida que au-
menta el ndmero de generaciones. La calidad de la po-
blacién se obtiene promediando el fitness promedio de
las 5 réplicas en cada generacién.

Fitness
0.65 1

0.60
0.55
0.50 1
0.45
0.40 4
0.35
0.30 §
0.25

0.20 T T T T T T T T
1 29 57 8 113 141 169 197 225
Generaciones

Figura 2: Calidad de la poblacién

Se obtuvieron las cincuenta mejores soluciones ge-
neradas en el proceso evolutivo de cada una de las 5 ré-
plicas, disponiendo de un conjunto de 250 buenas solu-
ciones del problema. Se agrupan aquellas soluciones
idénticas (igual nimero de méaquinas en los CT), pro-
mediando sus utilizaciones medias por CT. De esta for-
ma, es posible ajustar el fitness y se eligen las cincuenta
mejores soluciones, para luego definir la Frontera de Pa-
reto (figura 3 y tabla A2 en anexo).

Las soluciones que forman la Frontera de Pareto tie-
nen la caracteristica de que por lo menos en uno de los
objetivos son mejores que las otras soluciones. Para aco-
tar el ndmero de soluciones se decide utilizar como cri-
terio de seleccién que la fraccién de proceso del sistema
y la utilizacién media de las maquinas sean de al menos
80%.

Frontera de Pareto

0,86 -

0.85 -
0,84
0,83 -

0,82 1
0,81

0,80 1 R
0,79 4 e 0’0\
0,78 4

0,77

080 082 0,84 086 0,88 09 092 0%
Fraccion de Proceso

Utilizacion Media

Figura 3. Frontera de Pareto
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De acuerdo a este criterio, son nueve las soluciones
que lo satisfacen. Cada una de estas soluciones presenta
su propia configuracién de maquinas en cada centro de
trabajo.

Para determinar una tnica solucién al problema, se
presentan tres enfoques de analisis de las soluciones de
la Frontera de Pareto: del mejor fitness, del tomador de de-
cision y de andlisis detallado:

Mejor Fitness: se considera que la mejor solucién es la
que posee el mejor fitness, es decir, la solucién que esté
mds cercana a la solucién ideal. La mejor solucién, con
fitness 0.21218, presenta fraccién de proceso promedio
88,16% vy utilizacién media 82,39%. La configuracién
del sistema resulta: 9, 9, 5, 7, 8, 8, 5, 6, 4 y 3 méaquinas,
respectivamente.

Tomador de decision: el tomador de decisién es
quien establece el balance de los objetivos. Por ejem-
plo, si la utilizacién media del sistema es el objetivo
critico, se considera la solucién con mayor utilizacién
media: 85,37%, con fitness 0.23150 y fraccién de pro-
ceso promedio 82,06%. La configuracién del sistema
resulta: 9, 8, 5, 6, 6, 8, 5, 5, 4 y 4 mdquinas,
respectivamente.

Andlisis detallado: las soluciones de la Frontera de Pa-
reto se analizan en forma detallada mediante estudios
de simulacién de mads réplicas obteniendo una estima-
cién maés precisa de la fraccién de proceso promedio y
utilizacién media del sistema.

Conclusiones

Se han identificado aplicaciones de los enfoques evolu-
tivos en el drea de disefio de sistemas de manufactura,
siendo posible incorporar multiples objetivos y restric-
ciones comUnmente encontradas en la practica.

En este trabajo se ha utilizado la estrategia evolutiva
conocida como (u+X) — ES para configurar un sistema
productivo prototipo tipo jobshop flexible dindmico. Si
bien las Estrategias Evolutivas han sido aplicadas princi-
palmente a problemas continuos de optimizacién de
pardmetros, en este caso, esta estrategia se aplicé a un
problema discreto, determinando el nimero de maqui-
nas en cada centro de trabajo.

Este problema considera dos objetivos, maximizar la
utilizacién media de las méquinas, relacionado con res-
tricciones de recursos y maximizar la fraccién de proce-
so de las érdenes de produccién, relacionado con la ca-
pacidad del sistema para responder a la demanda, consi-
derando el enfoque Min-Max para la optimizacién
multiobjetivo.

Las estrategias evolutivas requieren definir y calibrar
pardmetros, antes de resolver cualquier problema, en
particular, el problema de configuracién analizado en
este trabajo.

De acuerdo a esta investigacién se observé que los pa-
rémetros que se utilicen inciden en la calidad media de la
poblacién como en la obtencién de la mejor solucién.

Anexo

Tabla A1. Pardmetros distribucion triangular tiempos de proceso

Tipo Orden Pardmetro ;7,,.~T(a,/,b,/,c,/)
1 a 0.500, 0.600, 0.850, 0.500
b 0.750, 0.850, 1.025, 0.650
c 1.000, 1.100, 1.200, 0.800
2 a 0.800. 0.800, 0.750, 0.700, 0.600
b 1.000, 1.050, 0.875, 0.800, 0.800
c 1.200, 1.300, 1.000, 0.900, 1.000
3 a 0.400, 0.250, 0.700, 0.300, 0.350, 0.400, 0.500, 0.450
b 0.800, 0.575, 0.850, 0.800, 0.725, 0.625, 0.85, 0.725
c 1.200, 0.900, 1.000, 1.300, 1.100, 0.850, 1.200, 1.000
4 a 0.600, 0.400, 0.650, 0.800, 0.500, 0.650, 0.600, 0.550, 0.400, 0.450
b 0.650, 0.500, 0.725, 0.850, 0.625, 0.725, 0.650, 0.650, 0.450, 0.525
c 0.700, 0.600, 0.800, 0.900, 0.750, 0.800, 0.700, 0.750, 0.500, 0.600
5 a 0.300, 0.250, 0.300, 0.350, 0.400, 0.500, 0.200
b 0.600, 0.525, 0.650, 0.625, 0.550, 0.750, 0.525
c 0.900, 0.800, 1.000, 0.900, 0.700, 1.000,0.850
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Tabla A2: Frontera de Pareto

Fitness f U
0,21218 0,88164 0,82390
0,21221 0,88018 0,82485
0,21309 0,90389 0,80982
0,21365 0,86598 0,83362
0,21583 0,85941 0,83625
0,21643 0,84845 0,84549
0,21969 0,88287 0,81413
0,22198 0,83802 0,84822
0,22286 0,90663 0,79764
0,22919 0,91134 0,78866
0,23150 0,82056 0,85374
0,23299 0,92050 0,78099

Finalmente, se concluye que utilizando estrategias
evolutivas se pueden resolver problemas discretos, co-
mo el de configuracién de sistemas productivos, obte-
niéndose buenos resultados en tiempos computaciona-
les aceptables (para el problema analizado en este traba-
jo, el tiempo CPU requerido fue del orden de 10 s en un
computador centrino de 1,5 GHz).
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