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Resumen

En este artículo se reportan los resultados obtenidos de la experimentación con una

planta de jitomate (Lycopersicon esculentum, Mill), en donde se propone una

estructura neurodifusa para modelar la evapotranspiración instantánea. Se definen

dos dinámicas de operación temporal (diurna y nocturna) en el modo de funciona-

miento del sistema, se trabaja con un modelo de jerarquía difusa, así como una

estructura de reglas Si-Entonces del tipo Takagi-Sugeno (T-S) con sus consecuentes

lineales. La medición de la radiación solar se utiliza como selector difuso de las dos

dinámicas de trabajo. La identificaciónde las premisas de las reglas difusas se obtiene

mediante el algoritmo de clasificación difuso C-means y los parámetros de los conse-

cuentes se determinan mediante el algoritmo de mínimos cuadrados ponderado por

los valores de pertenencia. Se usa la variable del déficit de presión de vapor (DPV) para

una mejor simplificación en la estructura neurodifusa del modelo de evapotranspi-

ración. Esta variable se mide de manera indirecta usando las lecturas de la

inge ni
e
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INVESTIGACIÓN

Y TECNOLOGÍA



temperatura y la humedad relativa del invernadero, y así se obtiene una interpretación

física del microclima que ayuda a preservar la calidad y sanidad del cultivo en el

invernadero.

Descriptores: modelado jerárquico difuso, déficit de presión de vapor, evapotranspira-

ción instantánea, algoritmo difuso de clasificación C-means.

Abstract

This paper shows the applicability of a neurofuzzy method applied to a tomato plant

(Lycopersicon esculentum, Mill), in order to obtain a model of the instantaneous

evapotranspiration. Two operational dynamics (diurnal and nocturnal) are defined in a hier-

archical fuzzy model by a Takagi-Sugeno (T-S) type with linear consequents. The fuzzy selec-

tor of the two dynamics is the solar radiation measure. The fuzzy C-means algorithm is used to

identify the fuzzy rules premises. The hierarchical fuzzy modelling is used to obtain a

multi-model of the evapotranspiration cycles. In order to simplify the model structure, the vari-

able of vapour pressure deficit (VPD) is introduced, and thus, a physical interpretation of the

interior climate is obtained. VPD helps to preserve the quality and production level in the

greenhouse crop.

Keywords: Hierarchical fuzzy modelling, vapour pressure deficit, instantaneous

evapotranspiration, fuzzy C-means classification algorithm.

Introducción

El modelado de la evapotranspiración de cultivos en in-
vernadero, ha sido estudiado por diversos autores con
diferentes enfoques, así como el control del microclima,
como se muestra en (Seginer, 2002), (Sigrimis et al.,
2000), (Harmanto et al., 2004), (Körner et al., 2003),
(Orgaz et al., 2004), (Jou et al., 2004), (Tantau et al.,
2003), (Poss et al., 2004), (Abdulelah et al., 2004), (Me-
drano et al., 2004), (Roh et al., 1996). Algunos enfoques
están orientados al uso eficiente de la energía para man-
tener la temperatura y la humedad (microclima) del in-
vernadero en el rango deseable para una adecuada cali-
dad en el cultivo, y de esta forma, disminuir la aplica-
ción de agroquímicos para el control de plagas y enfer-
medades del cultivo. El microclima de un invernadero
depende en parte de la dinámica de la evapotranspira-
ción presente, la cual incluye: la transpiración de la
planta y la evaporación del suelo, así como de las condi-
ciones existentes en los mecanismos del invernadero
(cortinas, domos, sombra, humidificadores y calefac-
ción), también de las perturbaciones climáticas. Uno de
los parámetros que mejor integran el estado de sanidad
y desarrollo de un cultivo, es el DPV, el cual está ligado
directamente con las dinámicas de evapotranspiración.
En (Prenger et al., 2001) y (Körner et al., 2003) se mues-
tra que el estado del cultivo se ve alterado por las varia-
ciones extremas del microclima y la dinámica de

evapotranspiración, condición que puede propiciar la
incidencia de enfermedades y plagas. Un enfoque que
ayuda a trabajar los ciclos de producción en invernadero
de forma preventiva con resultados favorables, median-
te el control del microclima y acciones fitosanitarias, se
le conoce como manejo integrado de plagas (MIP) (Tan-
tau et al., 2003). Asimismo, en (López et al., 2008) se
considera un sistema inteligente para que a través de la
AIP y el DPV, se realicen acciones preventivas en el cul-
tivo de un invernadero. Una buena forma de prevenir
enfermedades y plagas, así como mejorar la calidad y
cantidad de la producción, es realizando el control en la-
zo cerrado del microclima con la retroalimentación del
DPV. En (Körner et al., 2003) se reportan valores de refe-
rencia del DPV entre 0.3-1.0 kPa que ayudan a mante-
ner los cultivos sin problemas de enfermedad y con una
adecuada transpiración de las plantas. En Sánchez y Re-
bolledo (2001) se reporta un rango de temperatura ade-
cuado para el cultivo de jitomate en invernadero que de-
be estar en 16-24 °C; sin embargo, las perturbaciones
climáticas no lineales no siempre permiten mantener
estos valores de temperatura en el rango de interés. Es
por esto que en (Gary, 2001) se ilustra cómo la integra-
ción de la radiación solar es una variable importante en
las estrategias para el control de riego. Recientemente,
algunas técnicas basadas en inteligencia artificial (IA) y
algoritmos computacionales han sido utilizadas con re-
sultados alentadores en el modelado y control del
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microclima, la evapotranspiración y control de la irriga-
ción en invernadero, como se ilustra en (Bahat et al.,
2000), (Abdulelah et al., 2004), (Castañeda et al., 2006),
(Trajkovic et al., 2000), (Salgado et al., 2004), (Jou et al.,
2004). Por ejemplo, en Salgado et al. (2004) se propone
un modelo con el enfoque de jerarquía difusa para apro-
ximar la temperatura de un invernadero, en donde la di-
námica del modelo de la temperatura se separa en dos
regímenes de trabajo: temperatura con ventilación for-
zada y temperatura sin ventilación forzada. En Roh et
al. (1996) utilizan la integración de la radiación solar pa-
ra controlar la frecuencia en los ciclos de riego en un cul-
tivo de pepinos. En Sigrimis et al. (2000) utilizan la inte-
gración de la temperatura en periodos de días (1, 2, 3, o
más), para realizar el control de la temperatura con un
enfoque de ahorro en el consumo de energía. En Gary
(2001) se reportan algunas estrategias para realizar el
control de los ciclos de riego y la nutrición en donde se
citan ejemplos para la producción de jitomate en
invernadero.

En el presente trabajo se realiza la integración de la
radiación solar entre cada ciclo de riego, la cual se usa
como una variable de entrada al modelo que se propone,
donde se ilustra que la radiación solar es la variable que
más peso tiene en las estrategias para el control del rie-
go, mientras que los sistemas de control en lazo abierto
mediante temporizadores (de uso bastante extendido
actualmente) no responden adecuadamente a las nece-
sidades de riego del cultivo. En Flores et al. (2005) se
efectúa la integración de la radiación solar como un pa-
rámetro para realizar el control de los ciclos de riego a
una producción de jitomate en invernadero. Este traba-
jo presenta también la integración de la radiación entre
cada ciclo de riego, que se utiliza como una variable de
entrada al modelo neurodifuso de evapotranspiración
instantánea. Otro enfoque para programar los ciclos de
irrigación, se presenta en Abdulelah et al. (2004), en
donde se propone un modelo difuso para usar el índice
de estrés hídrico foliar del cultivo (por sus siglas al in-
glés CWSI) como indicador del momento del riego, don-
de se mide la temperatura foliar del cultivo con un ter-
mómetro infrarrojo, entre otras diferentes variables del
microclima. El CWSI toma valores desde cero hasta uno,
el valor ideal se considera cercano a cero (sin estrés
hídrico), cuando el valor del CWSI es uno es letal para el
cultivo. Sin embargo, en Abdulelah et al. (2004) no se
indica una metodología para determinar las necesidades
hídricas de la planta y solamente proponen que el
parámetro CWSI sea un valor cercano a cero para
mantener sin estrés hídrico el cultivo. Así, proponen un
modelo tipo Mamdani con 150 reglas difusas, con lo

cual es claro que no es una tarea simple la programación
de un microcontrolador comercial.

El trabajo que se reporta en este artículo propone
una estructura neurodifusa para modelar la evapotrans-
piración de forma instantánea de una planta, que utili-
za el DPV como una entrada al modelo neurodifuso, el
cual puede ser tomado como la referencia para un culti-
vo de la misma variedad bajo invernadero. Se utilizan
las mediciones del microclima de un invernadero experi-
mental tipo Richel de La Université du Sud-Toulon
Var-Francia, así como registros de una balanza electró-
nica de alta precisión (± 0.325 gr a 100 kg) para medir
la masa de la planta. Esta es una forma de medir la eva-
potranspiración de manera directa, también se le
conoce como método lisimétrico (Coras, 2000).

Cálculo del déficit de
presión de vapor

En la estructura del modelo neurodifuso que aquí se
propone, es de especial interés medir en tiempo real el
déficit de presión de vapor (DPV), y para medirlo de for-
ma indirecta, se utilizan las mediciones del invernadero
de: la temperatura en grados Celsius (ºC) (Ti ) y la hu-
medad( % )HR H i� del invernadero. Se puede lograr una
mejor interpretación de la dinámica evapotranspirativa
de la planta, si se mide la temperatura foliar con instru-
mentos del tipo infrarrojo o láser.

Así, en (Prenger et al., 2001) se calcula el DPV me-
diante una tabla psicrométrica y mediante las ecuacio-
nes (1)-(4).

T Ti� � �18 49167. . (1)

e es
A T B CT DT ET F T

� �
� � � � �6 8947

2 3

. ( / ln( )) (2)

e e Ha s i� � /100 (3)

DPV e es a� � �6 894. ( ) (4)

donde T es la temperatura en grados Rankine, eses la
presión de vapor saturado y ea es la presión de vapor del
aire ambas en kPa y las constantes A=�1.040�104 ,
B=�11.294, C=�0.0270, D=�1.289�10 5� , E�2.478�10 9� ,
F=�6.545 y DPV (kPa).

Un parámetro básico en el cálculo de la evapotrans-
piración es el índice de área foliar (IAF), el cual es una
relación del área foliar por metro cuadrado de tierra. Es
conveniente incluir el IAF en la estructura del modelo
de evapotranspiración y microclima de un invernadero,
ya que éste representa la densidad del cultivo, si se desea



obtener un modelo de evapotranspiración de un ciclo
completo de producción. En la estructura de modelado
neurodifuso de evapotranspiración instantánea que se
reporta en este trabajo, no se considera el IAF, puesto
que la variación en el tamaño de la planta no es conside-
rable entre cada ciclo de irrigación.

Materiales y métodos

Se instaló una maceta con una planta de jitomate varie-
dad corazón de toro y substrato inerte (perlita, tipo B
0-1.5 mm, 80-90 kg/m²) sobre una balanza electrónica
dentro del invernadero, durante el mes de junio de 2005.
Se realizaron mediciones de la masa cada minuto. Con
un sistema de computadoras personales (PC) conectadas a
una red de comunicación interna (Intranet) y un sistema
de adquisición de datos analógicos y digitales, se midieron
las variables del microclima y se ejecutaron las acciones de
control del microclima invernadero. La gestión para la ad-
quisición de datos y el control de los ciclos de irrigación
(en lazo abierto) se desarrollaron con el software
LabVIEW Ver. 6.1. El hardware de adquisición de datos de
las variables climáticas se realizó con el sistema modular
FP-2000 de National Instruments. Los sensores para medir
las variables ambientales y el microclima del invernadero
son del tipo analógico, los cuales envían la información
eléctrica normalizada dentro del rango 4-20 mA hacia el
sistema de adquisición de datos.

En una PC se guardaron las mediciones de la masa, el
microclima, las variables ambientales y las acciones de
control del sistema de sombra y la ventilación cenital.
Naturalmente, la primera variable calculada fue el DPV
para las condiciones existentes en el invernadero.

En la figura 1 se muestran algunas mediciones de la
humedad relativa (H i ), la temperatura (Ti ) del inverna-
dero y el DPV calculado con (1)-(4).

Se observa que la ( )H i tiene valores inferiores de
20%, al mismo tiempo la Ti alcanza n valores por arriba
de 45 °C. Así, el DPV adquiere valores máximos de alre-
dedor de 8.0 kPa durante el periodo de altas temperatu-
ras. Estos valores de temperatura y humedad son extre-
mos para un cultivo agrícola en invernadero.

Observe que a medida que la temperatura incremen-
ta la humedad disminuye. Estos valores tomados como
referencia no son comunes en un invernadero manejado
correctamente y con sistemas de regulación en lazo
cerrado.

Enseguida y mediante un algoritmo en computado-
ra, se realizó la aplicación de riego con un control clásico
encendido-apagado, que se programó para activarse ca-
da hora. La solución que se utilizó para irrigar la planta
se preparó para la nutrición de jitomate, en formulación
similar a la que se indica en (Sánchez y Rebolledo,
2001). Así mismo, se cuidó que el potencial de hidroge-
no (pH) del agua estuviera dentro del rango sugerido
para el cultivo de jitomate.
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En la figura 2 se muestra el sistema que se utilizó pa-
ra realizar la experimentación, en donde se observa la
balanza electrónica, la maceta con la planta, la guía tu-
tor de la planta y el depósito del agua drenada. A la iz-
quierda, se encuentra el depósito de agua con la solu-
ción nutrimental y una pequeña bomba eléctrica.

El agua drenada se conservó sobre la balanza electró-
nica en un depósito como se ve en la figura 2, ya que de
esta forma se puede cuantificar el total de agua drenada
al final de los ciclos de riego. También se realizaron ci-
clos de riego con cantidades de agua conservadoras para
evitar el drenado.

Como se recomienda en Nuez et al. (2001), el volu-
men de agua disponible para el experimento se inició
con sustrato saturado de agua, y durante toda la experi-
mentación se caracterizó la evapotranspiración del con-
junto sustrato-planta-microclima. De esta forma, se
probaron dinámicas de evapotranspiración desde condi-
ciones con saturación de agua en el sustrato hasta con-
diciones de estrés de la planta, que permiten así verificar
la robustez de la estructura del modelo que se propone
en este trabajo.

Lo anterior, obedece a que en las técnicas de modela-
do neurodifuso con aprendizaje mediante mediciones
del proceso, se sugiere excitar al sistema en los modos
de operación que se desean modelar e identificar para
asegurar que las dinámicas que se aproximan con la
estructura del modelado sean muy apegadas a las
dinámicas reales (Babuška, 1998).

Desarrollo de la instrumentación
virtual para la irrigación

Se realizaron diferentes manipulaciones con el sistema
de irrigación para caracterizar el caudal entregado por
una pequeña bomba eléctrica alimentada con un voltaje
de 5 volts y que es controlada (encendido/apagado) con
una tarjeta de adquisición de datos que fabrica la em-
presa Rabit®, que cuenta con un puerto de comunica-
ción TCP conectada a una PC remota. Mediante inter-
polación lineal y utilizando diferentes mediciones de la
masa agregada en gramos (gr) de agua y el tiempo de en-
cendido de la pequeña bomba en segundos (s), se carac-
terizó el caudal entregado por la bomba eléctrica de
acuerdo a (5).

Q t
t si bomba

si bomba
( )

. . ;

;

4137 1625 1

0 0

� �

�

�

�

	

, (5)

donde Q t( ) es el caudal entregado por la bomba medido
en gramos por segundo ( / )gr s , t es el tiempo que dura
encendida la bomba en segundos. La simulación del mo-
delo de aproximación del caudal entregado por la peque-
ña bomba y los datos reales, se muestran en la figura 3.

En un sistema de producción con un invernadero co-
mercial equipado con sistema de riego por goteo, se de-
be realizar la caracterización del caudal de los goteros,
considerando que son autocompensantes. De esta for-
ma, se puede obtener una ecuación que represente al
caudal de agua adicionado a cada planta en función del
tiempo de encendido-apagado del motor-bomba del sis-
tema de irrigación. Utilizando (5) se desarrolló un ins-
trumento virtual en ambiente de programación de

Figura 2. Planta de jitomate, sistema de riego

y balanza electrónica

Figura 3. Línea continúa caudal real,

línea punteada caudal simulado



LabVIEW, para efectuar los ciclos de irrigación, y donde
se pueden reprogramar los ciclos de irrigación (en
segundos), que se realizan cada hora, a partir de las 6:00
hasta las 22:00 horas.

Estructura neurodifusa de modelado
utilizando mediciones del sistema

Tradicionalmente, el arte de modelar sistemas ha sido
tratado como un enlace del conocimiento con herra-
mientas matemáticas y la observación en el comporta-
miento del sistema a modelar. El modelo neurodifuso ti-
po T-S de evapotranspiración instantánea que se propo-
ne en este artículo describe las relaciones entre las varia-
bles del sistema por medio de reglas difusas Si-Entonces,
como se ilustra a continuación:

R S Xi i: es Ai Entonces Y Xi i� 
 (6)

donde Ri es la regla que describe el i-ésimo submodelo,
X es un vector donde se encuentran todas las variables
medidas, Ai es la categoría similar o característica co-
mún del conjunto de variables X, Yi es la variable de sa-
lida del sistema y 
 i es el vector de parámetros del sub-
modelo de aproximación.

Una ventaja de la estructura de modelado que aquí
se propone sobre otras metodologías donde se utilizan
parámetros que se describen de forma empírica, v. gr.
(Coras, 2001), es que con este modelo se puede realizar
la aproximación de manera instantánea de la
evapotranspiración.

La aproximación en tiempo real que se realiza para
una planta puede extrapolarse para un gran número de
plantas y obtenerse así, una buena aproximación de re-
ferencia en un cultivo dentro de un invernadero de
dimensiones comerciales.

Algoritmo de clasificación de
dinámicas C-means difuso

En (6) se observa que Ai es la i-ésima clasificación de
la premisa en la regla Ri , de las variables que son medi-
das para determinar Ai se realizó un proceso de identifi-
cación. Para ello, se programó el algoritmo de clasifica-
ción C-means difuso que a continuación se describe.

Dada una matriz de mediciones Z de un experimen-
to real, que se puede escribir en forma matricial (7),
donde las columnas son las muestras en el tiempo,
mientras que las filas son las variables Z N n

��
� , donde

n es el número de variables y N es el número de
muestras.

Z

z z z

z z z

z z z

N

N

n n nN

�




�

�

�

�

�

�

�

�

�

�

�

11 12 1

21 22 2

1 2

�

�

� � � �

�

(7)

El objetivo de utilizar el algoritmo C-means difuso es
hacer la clasificación en cúmulos de datos con similitud
entre sí, donde este término se entiende como una simi-
litud matemática que se calcula por medio de una norma
métrica, y para el algoritmo C-means difuso, se utiliza
la norma Euclidiana (Babuška, 1998), (Yen et al, 1999).
Enseguida, se define el número de cúmulos o particio-
nes difusas 1<c<N, donde c es el número de cúmulos en
la estructura de reglas difusas T-S, donde cada cúmulo
identifica la premisa de una regla. Se propone el expo-
nente difuso m>1. Como C-means es un algoritmo ite-
rativo, se fija una tolerancia (�) y un máximo número de
iteraciones (l) para finalizar la búsqueda de los cúmulos
con similitud entre sí. Se inicializa la matriz de partición
difusa U

ik

0 0
� � con números aleatorios �[ , ]0 1 .

Con el algoritmo C-means difuso se estiman los an-
tecedentes de la estructura de reglas Si-Entonces, que son
los centros de los cúmulos o prototipos de cúmulos de
datos, como se describe en el siguiente algoritmo.

Algoritmo C-means difuso

Repetir para l �12, ,...

Paso 1: Cálculo de los prototipos de los centros de
cúmulos de datos

v

z

i ci
l

ik

l m

k
k

N

ik

l m

k

N
� � �

�

�

�

�

�

�

( )

( )

;

�

�

1

1

1

1

1 .

Paso 2: Cálculo de las distancias

D z v A z v i c k N
ikA k i

l T

k i
l2 1 1� � � � � � �( ) ( ); , ,

donde A es la matriz identidad.

Paso 3: Cálculo de la matriz de partición difusa

Si D
ikA

�0 para 1 1� � � �i c k N,

�
ik

l

ikA

jkA

m

j

c D

D

�

�

�

�

1

2 1

1

( ) /( )

.
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De otra manera:

�
ik

l
�0 si D

ikA
�0, y �

ik

l
�[ , ]0 1 con �

ik

l

i

c

�

�

� 1
1

Hasta U Ul l
� �

�1
� .

Fin del Algoritmo

El algoritmo C-means difuso converge hasta que se cum-
ple la condición U Ul l

� �
�1

� ó bien hasta un número
máximo de iteraciones (l).

Aplicación del algoritmo C-means difuso
a las dinámicas del sistema

En las pruebas realizadas a la estructura que se propone
en este trabajo, el número máximo de iteraciones se pre-
fijó en 50 iteraciones (l=50) y el resultado en la conver-
gencia del algoritmo no fue mayor a 30 iteraciones. Se
observó que el tiempo de convergencia en la búsqueda
de los prototipos de cúmulos fue menor al periodo de
muestreo que se programó en el sistema de adquisición
de datos para los experimentos efectuados. También,
en las simulaciones que se realizaron con los datos de
los experimentos, se concluyó que era suficiente hacer
el aprendizaje con los datos de un ciclo de irrigación,
que permiten hacer una buena aproximación del ciclo
de irrigación futuro, lo cual hace factible la implementa-
ción del algoritmo en tiempo real. Aún así, en este tra-
bajo se tomaron una gran cantidad de mediciones
(3000), para que el aprendizaje de los submodelos se
realizara durante siete ciclos de irrigación para el perio-
do diurno y 200 mediciones (3 horas con 20 minutos)
para el periodo nocturno.

Así, se puede apreciar la robustez en la respuesta de
la estructura de modelado neurodifusa de evapotranspi-
ración instantánea que se propone, cuando se trabaja
con un rango de datos mayor a la que se tendría con el
algoritmo trabajando en tiempo real.

En la fase de validación con los parámetros determi-
nados en el aprendizaje, el modelo neurodifuso de eva-
potranspiración instantánea, aproxima la evapotranspi-
ración por más de un día y una noche. Es decir, se puede
realizar el aprendizaje entre cada ciclo de riego y obte-
ner un modelo que prediga la evapotranspiración antes
del siguiente ciclo de riego. De esta forma, se puede con-
servar un déficit de agua cercana a cero, considerando la
disponibilidad de agua en la maceta como se sugiere en
Nuez et al. (2001). Aún así, es siempre recomendable
tener un porcentaje de drenaje un poco mayor a cero
(Sánchez y Rebolledo, 2001).

Cálculo de los consecuentes lineales
para el modelo difuso T-S

La estimación de los parámetros consecuentes se realiza
con el método de mínimos cuadrados ordinal, en cada
cúmulo de datos identificado con el algoritmo C-means
difuso se hace un mapeo con un submodelo lineal y en
consecuencia le corresponde una regla Si-Entonces. Los
vectores de mediciones del experimento a modelar son
agrupados como se indica en (8) y (9)
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donde X N n
��

� , N es el número de muestras tomadas
del experimento para realizar el aprendizaje, es el nú-
mero de vectores de las mediciones que se utilizan como
entradas del modelo y Y N

��
�1 es el vector de medicio-

nes de la variable que se desea aproximar. Se utilizan los
valores del grado de pertenencia en cada cúmulo de da-
tos que se expresan en una matriz diagonal como en
(10).
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donde �
ik

son los valores de pertenencia calculados con
el algoritmo de C-means difuso de la l-ésima iteración,
i= 1, 2, .., c, k=1,2,...,N es el índice de muestreo.

Finalmente, los parámetros consecuentes de cada
submodelo, se calculan con el algoritmo de mínimos
cuadrados (11).


 i
T

i
T

iX W X X W Y�
�[ ] 1 (11)

donde 
 i
n

��
�1 es el vector de parámetros lineales que

caracteriza al i-ésimo submodelo neurodifuso.
Es decir, un submodelo lineal corresponde a cada cú-

mulo de datos similares entre sí, representados por la



estructura de reglas difusas T-S, como se muestra en
(6). Así, particularmente en este caso, se tiene que cada
regla tiene la siguiente estructura:

R Si X esV Entonces Y Xi i i i: � 
 , (12)

donde Ri es la regla que describe el i-ésimo submodelo.
La premisa de la regla es: Si X es Vi donde Vi es el vec-
tor de centros del i-ésimo cúmulo de datos. El conse-
cuente de la i-ésima regla es Entonces Y Xi i� 
 , donde Yi

es la aproximación con la activación de la i-ésima regla,
X son las mediciones del sistema que son la entrada al
modelo neurodifuso y 
 i es el vector de parámetros esti-
mados mediante el algoritmo de mínimos cuadrados
(11).

Modelo de evapotranspiración
instantánea

Para obtener la estructura del modelo jerárquico neuro-
difuso de evapotranspiración instantánea del tipo T-S
(12), se analizaron diferentes arquitecturas de entra-
da-salida con las variables medidas climáticas, las accio-
nes de control del invernadero y la masa del conjunto
maceta-planta, utilizando todas las variables disponi-
bles del invernadero experimental. Se utilizó un primer
conjunto de datos para hacer el aprendizaje y estimar
los parámetros de las reglas difusas T-S. Con otro con-
junto de datos se realizó la validación de los submodelos
obtenidos. Para las arquitecturas que se proponen en es-
te trabajo, se consideró el menor número de variables de
entrada al modelo. La razón es que hay dos dinámicas
naturales de evapotranspiración instantánea, una para
el día (luz solar) y otra para la noche. Por la noche, la ra-
diación solar es cercana a cero y normalmente no se rea-
lizan ciclos de irrigación.

En la figura 4 se muestra la arquitectura propuesta
para el submodelo de evapotranspiración que corres-
ponde a la dinámica diurna, donde T ki ( ) y H ki ( ) son la
temperatura y la humedad relativa del interior del in-
vernadero en el evento de tiempo (k), respectivamente.

La variable Masa k( ) es la masa de la maceta con la
planta, (kg) y Radi� es la integración de la radiación so-
lar en el interior del invernadero ( ( )Rad ki en kW/m²)
que se calcula por medio de (13).
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donde k
0

es el primer instante después de la transición en-
ciende ( )bomba �1 hacia apaga ( )bomba �0 y K

bomba �1
es el

instante en el cual se inicia el ciclo de irrigación. En los ex-
perimentos realizados se fijó un tiempo corto para esta
transición ( )�9s . El periodo de muestreo que se utilizó pa-
ra la adquisición de datos fue de un minuto. Cada vez que
hay un ciclo de irrigación se inicializa Radi �� 0, es decir,
un instante después cuando se adicionó agua a la planta se
inicia la integración de la radiación solar hasta el siguiente
ciclo de irrigación. Hay que remarcar que los resultados
obtenidos utilizando la Radi� como una entrada al mode-
lo, mejoraron la aproximación del mismo con relación a
las diferentes arquitecturas entradas-salida que se proba-
ron con las mediciones disponibles del invernadero. Así, el
submodelo para la dinámica diurna está en función de las
cuatro variables, como se ilustra en (14).

MD T k H k Rad Masa ki i i� �[ ( ) ( ) ( )] (14)

En consecuencia, a través de este primer modelo se
puede calcular la masa de agua evapotranspirada duran-
te el día y durante el periodo de tiempo comprendido
entre cada ciclo de irrigación por medio de (15).
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donde EVD k( )�1 es la evapotranspiración aproximada,
(kg), � i

d k( ), es el valor de pertenencia del i-ésimo cúmu-
lo del algoritmo C-means difuso, y


 i i
Ti

i
Hi

i

Radi

i
Masa Ta a a a�

�[ ]

es el i-ésimo vector de parámetros de los consecuentes
lineales obtenidos con aprendizaje local, con el método
de mínimos cuadrados.

El submodelo para la dinámica nocturna, no incluye
la variable Radi� , ya que por la noche la radiación solar
es casi nula. Así, la arquitectura del submodelo propues-
to para la noche se muestra en la figura 5.
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Figura 4. Submodelo de evapotranspiración

para la dinámica del día
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La planta transpira cuando se encuentra hidratada
de forma adecuada y cuando la planta tiene necesidad
de agua y comienza a sufrir estrés hídrico, ésta se au-
to-protege hasta cierto punto de su deshidratación ce-
rrando sus estomas por donde transpira y así auto-regu-
la su temperatura biológicamente. El submodelo final
para la dinámica nocturna está en función de tres
variables, como se muestra en (16).

MN T k H k Masa ki i�[ ( ) ( ) ( )], (16)

en consecuencia, a través del modelo obtenido se puede
calcular la masa de agua evapotranspirada en la dinámi-
ca de noche y entre cada periodo de muestreo por medio
de (17).
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donde EVN k( )�1 es la evapotranspiración en la noche
(kg). El vector � i i

Ti
i
Hi

i
Masa Tb b b�[ ] son los parámetros de

los consecuentes lineales T-S, de la i-ésima regla, con
i=1, 2, 3 reglas.

El modelo global instantáneo se obtiene con la agre-
gación jerárquica difusa de los submodelos con (18),
donde se utiliza el valor de pertenencia de la radiación
solar, que es la variable del selector difuso.

EVG k Rad k EVN kn
i( ) ( ( )) ( )� � �1 1�

� ��
d

iRad k EVD k( ( )) ( )1 (18)

donde EVG k( )�1 es la evapotranspiración global y
�

n
iRad k( ) y �

d
iRad k( ) son los valores de pertenencia

del selector difuso para los submodelos de la noche y el
día, respectivamente. En este método se utilizan tres
cúmulos para cada submodelo (día, noche) y el paráme-
tro difuso m=2.5.

Figura 5. Submodelo de evapotranspiración

para el periodo nocturno

Figura 6. Evapotranspiración utilizando temperatura y humedad relativa



La identificación de los parámetros antecedentes y
consecuentes del submodelo que corresponde al periodo
nocturno, se realizó con los datos del 15 de junio de
2005 desde las 21:52 hasta las 01:15 del 16 de junio de
2005.

Para el submodelo diurno se tomaron los datos del
día 16 de junio de 2005 desde las 06:01 hasta las 13:59
del mismo día.

La validación de los submodelos obtenidos se efec-
tuó con los datos del día 15 de junio de 2005 desde las
18:28, hasta las 20:55 del 17 de junio de 2005.

Los resultados del modelo neurodifuso de evapo-
transpiración instantánea se pueden ver en la figura 6.
El número de muestra k = 1 corresponde a la muestra
de las 18:28 del día 15 de junio de 2005. En la figura 6 se
muestran los ciclos de irrigación con una cantidad de
agua en litros (L). Si se considera, la densidad del agua
evapotranspirada igual a uno, entonces se puede aproxi-
mar la cantidad de agua como 1 gr = 1 ml.

Debido a que el modelo neurodifuso propuesto tiene
también como objetivo proporcionar datos precisos de
la salida con la mínima cantidad de variables en la en-
trada, en los siguientes resultados que se muestran en
simulación en la figura 7, se suplieron las variables de
temperatura y humedad por la variable del Déficit de

Presión de Vapor Se utilizaron los mismos periodos de
los datos de aprendizaje y de validación del modelo de
evapotranspiración mostrado previamente. De esta for-
ma, también se mejoró la varianza del error y la media
del error como índices de calidad en la aproximación
con el mismo periodo de experimentación. La estructu-
ra del modelo, donde se utiliza el DPV es bastante sim-
ple en cuanto al número de parámetros en los antece-
dentes y consecuentes.

La figura 7 muestra los resultados de la simulación
con esta reducción en el número de variables. La varia-
ble contiene información del microclima del invernade-
ro, la cual es sumamente útil para relacionar y predecir
la sanidad y calidad de cultivo, a nivel de plagas, hongos
y deformaciones en los frutos por inadecuada
polinización como se ilustra en López-Morales et al.
(2008).

Análisis de los resultados obtenidos

En los experimentos realizados se determinó mediante
la comparación del error de aproximación, que tres cú-
mulos de datos es suficiente para aproximar la evapo-
transpiración de forma instantánea, lo que implica sub-
modelos con tres reglas difusas T-S.
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Figura 7. Evapotranspiración utilizando el DPV
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Los resultados que se muestran corresponden a dos
días de experimentación, una condición inicial que se
consideró es el conjunto maceta-sustrato con plena dis-
posición de agua, es decir, después de ser saturada y
drenada el agua.

La masa inicial fue de 20.898 kg, y la masa al final de
la experimentación fue de 20.262 kg. Se realizaron 32 ci-
clos de riego (un promedio de 11.843 gr en cada mani-
pulación de riego), con 0.3790 kg de agua suministrada
en todo el periodo de la experimentación, donde no se
obtuvo drenaje de agua.

Así que, la cantidad de agua evapotranspirada du-
rante el periodo de manipulación se puede determinar
con el siguiente balance de masa:

M M M M M
F ad evapo dre

� � � �
0

(19)

M M M M Mevapo ad F dre
� � � �

0
(20)

donde M
F

es la masa al final de la manipulación, M
0

es
la masa de inicio, M

ad
es la masa adicionada durante un

periodo de irrigación, M
dre

es la masa de agua drenada y
Mevapo es la masa de agua evapotranspirada. La masa to-
tal que la planta perdió en el periodo de los experimen-
tos realizados fue de 1.016 kg.

El déficit de agua fue grande, debido a la elevada
temperatura, y en consecuencia generó un efecto im-
portante en la evapotranspiración. La mínima tempera-
tura y humedad relativa registrada fueron de 28 °C y
17.3%, respectivamente, mientras que la máxima tem-
peratura y humedad relativa fueron 46 °C y 51.4%, res-
pectivamente. Estos valores están fuera de los rangos de
las variables recomendadas para un cultivo de este tipo.
La estimación del agua total evapotranspirada es posi-
ble obtenerla con la estructura de modelado neurodifu-
so presentado. El modelo toma en cuenta las variables
principales que influyen en el proceso dinámico de eva-
potranspiración. Con ayuda de este modelo y a través
del cálculo del DPV es posible en una siguiente fase, re-
gular la cantidad de agua que se suministra a una planta
(y enseguida a un cultivo) mientras se conserva un ran-
go deseable del DPV, para asegurar condiciones óptimas
de desarrollo y sanidad del cultivo.

Conclusiones y perspectivas

La estructura neurodifusa para modelar la evapotrans-
piración de una sola planta (testigo) en un invernadero,
como aquí se reporta, puede servir de referencia para co-
nocer la dinámica de evapotranspiración en un cultivo
que se encuentra con las mismas condiciones de la

planta testigo. Sin embargo, esta dinámica tendrá algu-
nas modificaciones al tomarse en cuenta el cultivo com-
pleto (Medrano et al., 2004) dentro del invernadero, de-
bido a que cada planta del cultivo que es hidratada ade-
cuadamente; en plena transpiración funciona como un
pequeño regulador de temperatura. Una extensión di-
recta del modelo que se propone es la evapotranspira-
ción, regulando el microclima del invernadero con refe-
rencia a los perfiles sugeridos en la literatura que permi-
ten un estado de sanidad de la producción.

Al tomar en cuenta la medición del agua drenada de
la planta testigo en una balanza independiente a la me-
dición de la masa evapotranspirada, con el fin de intro-
ducir una consigna de drenaje mínima en los ciclos de
riego para minimizar la cantidad de agua drenada entre
cada ciclo de riego, resultaría en una minimización de
agua drenada por planta en un cultivo de dimensiones
comerciales, y en consecuencia, un ahorro del agua
total utilizada. El DPV puede además ser utilizado co-
mo una consigna para realizar el control en lazo cerrado
del microclima, como se demuestra en este artículo, es
una variable valiosa para realizar el modelado y control
del microclima para poder regular la cantidad de
irrigación de un cultivo.
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