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Resumen
En este articulo se reportan los resultados obtenidos de la experimentacién con una
planta de jitomate (Lycopersicon esculentum, Mill), en donde se propone una
estructura neurodifusa para modelar la evapotranspiracién instantanea. Se definen
dos dindmicas de operacién temporal (diurna y nocturna) en el modo de funciona-
miento del sistema, se trabaja con un modelo de jerarquia difusa, asi como una
estructura de reglas Si-Entonces del tipo Takagi-Sugeno (7-S) con sus consecuentes
lineales. La medicién de la radiacién solar se utiliza como selector difuso de las dos
dindmicas de trabajo. Laidentificacién de las premisas de las reglas difusas se obtiene
mediante el algoritmo de clasificacién difuso C-means y los pardmetros de los conse-
cuentes se determinan mediante el algoritmo de minimos cuadrados ponderado por
los valores de pertenencia. Se usa la variable del déficit de presion de vapor (DPV) para
una mejor simplificacién en la estructura neurodifusa del modelo de evapotranspi-
racién. Esta variable se mide de manera indirecta usando las lecturas de la
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temperatura y la humedad relativa del invernadero, y asi se obtiene una interpretacién
fisica del microclima que ayuda a preservar la calidad y sanidad del cultivo en el
invernadero.

Descriptores: modelado jerdrquico difuso, déficit de presién de vapor, evapotranspira-
cién instantanea, algoritmo difuso de clasificacién C-means.

Abstract

This paper shows the applicability of a neurofuzzy method applied to a tomato plant
(Lycopersicon esculentum, NMill), in order to obtain a model of the instantaneous
evapotranspiration. Two operational dynamics (diurnal and nocturnal) are defined in a hier-
archical fuzzy model by a Takagi-Sugeno (1-S) type with linear consequents. The fuzzy selec-
tor of the two dynamics is the solar radiation measure. The fuzzy C-means algorithm is used to
identify the fuzzy rules premises. The hierarchical fuzzy modelling is used to obtain a
multi-model of the evapotranspiration cycles. In order to simplify the model structure, the vari-
able of vapour pressure deficit (VPD) is introduced, and thus, a physical interpretation of the
interior climate is obtained. VPD helps to preserve the quality and production level in the
greenhouse crop.

Keywords: Hierarchical fuzzy modelling, vapour pressure deficit, instantaneous

evapotranspiration, fuzzy C-means classification algorithm.

Introduccién

El modelado de la evapotranspiracién de cultivos en in-
vernadero, ha sido estudiado por diversos autores con
diferentes enfoques, asi como el control del microclima,
como se muestra en (Seginer, 2002), (Sigrimis et al.,
2000), (Harmanto et al., 2004), (Koérner et al., 2003),
(Orgaz et al., 2004), (Jou et al., 2004), (Tantau ez al.,
2003), (Poss et al., 2004), (Abdulelah ez al., 2004), (Me-
drano et al., 2004), (Roh et al., 1996). Algunos enfoques
estan orientados al uso eficiente de la energfa para man-
tener la temperatura y la humedad (microclima) del in-
vernadero en el rango deseable para una adecuada cali-
dad en el cultivo, y de esta forma, disminuir la aplica-
cién de agroquimicos para el control de plagas y enfer-
medades del cultivo. El microclima de un invernadero
depende en parte de la dindmica de la evapotranspira-
cién presente, la cual incluye: la transpiracién de la
planta y la evaporacién del suelo, asi como de las condi-
ciones existentes en los mecanismos del invernadero
(cortinas, domos, sombra, humidificadores y calefac-
cién), también de las perturbaciones climaticas. Uno de
los pardmetros que mejor integran el estado de sanidad
y desarrollo de un cultivo, es el DPV/ el cual esta ligado
directamente con las dindmicas de evapotranspiracién.
En (Prenger et al., 2001) y (Kérner et al., 2003) se mues-
tra que el estado del cultivo se ve alterado por las varia-
ciones extremas del microclima y la dindmica de

evapotranspiracién, condicién que puede propiciar la
incidencia de enfermedades y plagas. Un enfoque que
ayuda a trabajar los ciclos de produccién en invernadero
de forma preventiva con resultados favorables, median-
te el control del microclima y acciones fitosanitarias, se
le conoce como manejo integrado de plagas (MIP) (Tan-
tau et al., 2003). Asimismo, en (Lépez et al., 2008) se
considera un sistema inteligente para que a través de la
AIP y el DPV, se realicen acciones preventivas en el cul-
tivo de un invernadero. Una buena forma de prevenir
enfermedades y plagas, asi como mejorar la calidad y
cantidad de la produccién, es realizando el control en la-
zo cerrado del microclima con la retroalimentacién del
DPV.En (Kérner ez al., 2003) se reportan valores de refe-
rencia del DPV entre 0.3-1.0 kPa que ayudan a mante-
ner los cultivos sin problemas de enfermedad y con una
adecuada transpiracién de las plantas. En Sdnchez y Re-
bolledo (2001) se reporta un rango de temperatura ade-
cuado para el cultivo de jitomate en invernadero que de-
be estar en 16-24 °C; sin embargo, las perturbaciones
climéticas no lineales no siempre permiten mantener
estos valores de temperatura en el rango de interés. Es
por esto que en (Gary, 2001) se ilustra como la integra-
cién de la radiacién solar es una variable importante en
las estrategias para el control de riego. Recientemente,
algunas técnicas basadas en inteligencia artificial (IA) y
algoritmos computacionales han sido utilizadas con re-
sultados alentadores en el modelado y control del

128 Ingenieria Investigacion y Tecnologia. Vol. XI. Num. 2. 2010 127-139, ISSN1405-7743 FI-UNAM



Ramos-Ferndndez J.C., Lépez-Morales V., Lafont F, Enea G. y Duplaix J.

microclima, la evapotranspiracién y control de la irriga-
cién en invernadero, como se ilustra en (Bahat er al.,
2000), (Abdulelah et al., 2004), (Castaneda et al., 2006),
(Trajkovic er al., 2000), (Salgado et al., 2004), (Jou et al.,
2004). Por ejemplo, en Salgado et al. (2004) se propone
un modelo con el enfoque de jerarquia difusa para apro-
ximar la temperatura de un invernadero, en donde la di-
namica del modelo de la temperatura se separa en dos
regimenes de trabajo: temperatura con ventilacién for-
zada y temperatura sin ventilacién forzada. En Roh et
al. (1996) utilizan la integracién de la radiacién solar pa-
ra controlar la frecuencia en los ciclos de riego en un cul-
tivo de pepinos. En Sigrimis ez a/. (2000) utilizan la inte-
gracién de la temperatura en periodos de dias (1, 2, 3, o
mas), para realizar el control de la temperatura con un
enfoque de ahorro en el consumo de energfa. En Gary
(2001) se reportan algunas estrategias para realizar el
control de los ciclos de riego y la nutricién en donde se
citan ejemplos para la producciéon de jitomate en
invernadero.

En el presente trabajo se realiza la integracién de la
radiacién solar entre cada ciclo de riego, la cual se usa
como una variable de entrada al modelo que se propone,
donde se ilustra que la radiacién solar es la variable que
mds peso tiene en las estrategias para el control del rie-
go, mientras que los sistemas de control en lazo abierto
mediante temporizadores (de uso bastante extendido
actualmente) no responden adecuadamente a las nece-
sidades de riego del cultivo. En Flores et al. (2005) se
efectda la integracién de la radiacién solar como un pa-
rametro para realizar el control de los ciclos de riego a
una produccién de jitomate en invernadero. Este traba-
jo presenta también la integracién de la radiacién entre
cada ciclo de riego, que se utiliza como una variable de
entrada al modelo neurodifuso de evapotranspiracién
instantdnea. Otro enfoque para programar los ciclos de
irrigacién, se presenta en Abdulelah er al. (2004), en
donde se propone un modelo difuso para usar el indice
de estrés hidrico foliar del cultivo (por sus siglas al in-
glés CWSI) como indicador del momento del riego, don-
de se mide la temperatura foliar del cultivo con un ter-
moémetro infrarrojo, entre otras diferentes variables del
microclima. El CWSI toma valores desde cero hasta uno,
el valor ideal se considera cercano a cero (sin estrés
hidrico), cuando el valor del CWSI es uno es letal para el
cultivo. Sin embargo, en Abdulelah et al. (2004) no se
indica una metodologia para determinar las necesidades
hidricas de la planta y solamente proponen que el
pardmetro CWSI sea un valor cercano a cero para
mantener sin estrés hidrico el cultivo. Asi, proponen un
modelo tipo Mamdani con 150 reglas difusas, con lo

cual es claro que no es una tarea simple la programacién
de un microcontrolador comercial.

El trabajo que se reporta en este articulo propone
una estructura neurodifusa para modelar la evapotrans-
piracién de forma instantdnea de una planta, que utili-
za el DPV como una entrada al modelo neurodifuso, el
cual puede ser tomado como la referencia para un culti-
vo de la misma variedad bajo invernadero. Se utilizan
las mediciones del microclima de un invernadero experi-
mental tipo Richel de La Université du Sud-Toulon
Var-Francia, as{ como registros de una balanza electré-
nica de alta precisién (= 0.325 gr a 100 kg) para medir
la masa de la planta. Esta es una forma de medir la eva-
potranspiracién de manera directa, también se le
conoce como método lisimétrico (Coras, 2000).

Calculo del déficit de
presién de vapor

En la estructura del modelo neurodifuso que aqui se
propone, es de especial interés medir en tiempo real el
déficit de presién de vapor (DPV), y para medirlo de for-
ma indirecta, se utilizan las mediciones del invernadero
de: la temperatura en grados Celsius (°C) () y la hu-
medad (HR% =H ) del invernadero. Se puede lograr una
mejor interpretacién de la dindmica evapotranspirativa
de la planta, si se mide la temperatura foliar con instru-
mentos del tipo infrarrojo o laser.

Asi, en (Prenger et al., 2001) se calcula el DPV me-
diante una tabla psicrométrica y mediante las ecuacio-

nes (1)-(4).

T =18-T, + 49167 (1)
¢, =6 8947 .o (A/T+B+ CT+DI* +ET 4 Fn(T) @)
e, =e,-H, /100 (3)
DPV =68%-(e, —e,) (4)

donde T es la temperatura en grados Rankine, e es la
presién de vapor saturado y e, es la presién de vapor del
aire ambas en kPa y las constantes A=-1.040x10",
B=-11.294, C=-0.0270, D=-1.289x10 ", E-2.478x10 ",
F=-6.545y DPV (kPa).

Un pardmetro bésico en el cdlculo de la evapotrans-
piracién es el indice de area foliar (IAF), el cual es una
relacién del drea foliar por metro cuadrado de tierra. Es
conveniente incluir el IAF en la estructura del modelo
de evapotranspiracién y microclima de un invernadero,
ya que éste representa la densidad del cultivo, si se desea
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obtener un modelo de evapotranspiracién de un ciclo
completo de produccién. En la estructura de modelado
neurodifuso de evapotranspiracién instantdnea que se
reporta en este trabajo, no se considera el IAF, puesto
que la variacién en el tamano de la planta no es conside-
rable entre cada ciclo de irrigacién.

Materiales y métodos

Se instalé una maceta con una planta de jitomate varie-
dad corazén de toro y substrato inerte (perlita, tipo B
0-1.5 mm, 80-90 kg/m?) sobre una balanza electrénica
dentro del invernadero, durante el mes de junio de 2009.
Se realizaron mediciones de la masa cada minuto. Con
un sistema de computadoras personales (PC) conectadas a
una red de comunicacién interna (Intranet) y un sistema
de adquisicién de datos analégicos y digitales, se midieron
las variables del microclima y se ejecutaron las acciones de
control del microclima invernadero. La gestién para la ad-
quisicién de datos y el control de los ciclos de irrigacién
(en lazo abierto) se desarrollaron con el software
LabVIEW Ver. 6.1. El hardware de adquisicién de datos de
las variables climaticas se realiz6 con el sistema modular
FP-2000 de National Instruments. Los sensores para medir
las variables ambientales y el microclima del invernadero
son del tipo analdgico, los cuales envian la informacién
eléctrica normalizada dentro del rango 4-20 mA hacia el
sistema de adquisicién de datos.

55 T T 50

En una PC se guardaron las mediciones de la masa, el
microclima, las variables ambientales y las acciones de
control del sistema de sombra y la ventilacién cenital.
Naturalmente, la primera variable calculada fue el DPV
para las condiciones existentes en el invernadero.

En la figura 1 se muestran algunas mediciones de la
humedad relativa (H,), la temperatura (T,) del inverna-
dero y el DPV calculado con (1)-(4).

Se observa que la (H,) tiene valores inferiores de
20%, al mismo tiempo la T, alcanza n valores por arriba
de 45 °C. Asi, el DPV adquiere valores maximos de alre-
dedor de 8.0 kPa durante el periodo de altas temperatu-
ras. Estos valores de temperatura y humedad son extre-
mos para un cultivo agricola en invernadero.

Observe que a medida que la temperatura incremen-
ta la humedad disminuye. Estos valores tomados como
referencia no son comunes en un invernadero manejado
correctamente y con sistemas de regulacién en lazo
cerrado.

Enseguida y mediante un algoritmo en computado-
ra, se realizé la aplicacién de riego con un control clasico
encendido-apagado, que se programo para activarse ca-
da hora. La solucién que se utiliz6 para irrigar la planta
se prepar6 para la nutricién de jitomate, en formulacién
similar a la que se indica en (Sdnchez y Rebolledo,
2001). Asf mismo, se cuidé que el potencial de hidroge-
no (pH) del agua estuviera dentro del rango sugerido
para el cultivo de jitomate.

(%)

HR

15 L . 20 L
18:28 11:27F 04:35 21:45 18:28 11:27

L 1 L 1
04:35 21:45 18:28 11:27 04:35 21:35

Figura 1. Humedad relativa (Hi %), temperatura (Ti °C) y DPV (kPa).
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Enla figura 2 se muestra el sistema que se utilizé pa-
ra realizar la experimentacion, en donde se observa la
balanza electrénica, la maceta con la planta, la gufa tu-
tor de la planta y el depésito del agua drenada. A la iz-
quierda, se encuentra el depésito de agua con la solu-
cién nutrimental y una pequefia bomba eléctrica.

Deposito de
irrigacion

Balanza
tele-controlado electtbnica

Figura 2. Planta de jitomate, sistema de riego
y balanza electrénica

El agua drenada se conservé sobre la balanza electré-
nica en un depédsito como se ve en la figura 2, ya que de
esta forma se puede cuantificar el total de agua drenada
al final de los ciclos de riego. También se realizaron ci-
clos de riego con cantidades de agua conservadoras para
evitar el drenado.

Como se recomienda en Nuez et al. (2001), el volu-
men de agua disponible para el experimento se inicié
con sustrato saturado de agua, y durante toda la experi-
mentacién se caracterizd la evapotranspiracién del con-
junto sustrato-planta-microclima. De esta forma, se
probaron dindmicas de evapotranspiracién desde condi-
ciones con saturacién de agua en el sustrato hasta con-
diciones de estrés de la planta, que permiten asi verificar
la robustez de la estructura del modelo que se propone
en este trabajo.

Lo anterior, obedece a que en las técnicas de modela-
do neurodifuso con aprendizaje mediante mediciones
del proceso, se sugiere excitar al sistema en los modos
de operacién que se desean modelar e identificar para
asegurar que las dindmicas que se aproximan con la
estructura del modelado sean muy apegadas a las
dindmicas reales (Babuska, 1998).

Desarrollo de la instrumentacién
virtual para la irrigacién

Se realizaron diferentes manipulaciones con el sistema
de irrigacién para caracterizar el caudal entregado por
una pequena bomba eléctrica alimentada con un voltaje
de 5 volts y que es controlada (encendido/apagado) con
una tarjeta de adquisicién de datos que fabrica la em-
presa Rabit®, que cuenta con un puerto de comunica-
cién TCP conectada a una PC remota. Mediante inter-
polacion lineal y utilizando diferentes mediciones de la
masa agregada en gramos (gr) de agua y el tiempo de en-
cendido de la pequena bomba en segundos (s), se carac-
teriz6 el caudal entregado por la bomba eléctrica de
acuerdo a (5).

4137t -1625; si bomba =1
t ©)

0; si bomba =0 ’

donde Q(t) es el caudal entregado por la bomba medido
en gramos por segundo (gr/s),t es el tiempo que dura
encendida la bomba en segundos. La simulacién del mo-
delo de aproximacién del caudal entregado por la peque-
fa bomba y los datos reales, se muestran en la figura 3.

Q (grfs)

0 2 4 s 0 10 12 14 18
t(s)
Figura 3. Linea continiia caudal real,
linea punteada caudal simulado

En un sistema de produccién con un invernadero co-
mercial equipado con sistema de riego por goteo, se de-
be realizar la caracterizacién del caudal de los goteros,
considerando que son autocompensantes. De esta for-
ma, se puede obtener una ecuacién que represente al
caudal de agua adicionado a cada planta en funcién del
tiempo de encendido-apagado del motor-bomba del sis-
tema de irrigacién. Utilizando (5) se desarrollé un ins-
trumento virtual en ambiente de programacién de
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LabVIEW, para efectuar los ciclos de irrigacién, y donde
se pueden reprogramar los ciclos de irrigacién (en

segundos), que se realizan cada hora, a partir de las 6:00
hasta las 22:00 horas.

Estructura neurodifusa de modelado
utilizando mediciones del sistema

Tradicionalmente, el arte de modelar sistemas ha sido
tratado como un enlace del conocimiento con herra-
mientas matematicas y la observacién en el comporta-
miento del sistema a modelar. El modelo neurodifuso ti-
po T-S de evapotranspiracién instantanea que se propo-
ne en este articulo describe las relaciones entre las varia-
bles del sistema por medio de reglas difusas Si-Entonces,
como se ilustra a continuacién:

R;:S, Xes A, EntoncesY, = X8, (6)

donde R, es la regla que describe el i-ésimo submodelo,
X es un vector donde se encuentran todas las variables
medidas, A, es la categoria similar o caracteristica co-
mun del conjunto de variables X, Y, es la variable de sa-
lida del sistema y 0. es el vector de pardmetros del sub-
modelo de aproximacién.

Una ventaja de la estructura de modelado que aqui
se propone sobre otras metodologias donde se utilizan
pardmetros que se describen de forma empirica, v. gr.
(Coras, 2001), es que con este modelo se puede realizar
la aproximacién de manera instantdnea de la
evapotranspiracion.

La aproximacion en tiempo real que se realiza para
una planta puede extrapolarse para un gran nimero de
plantas y obtenerse asf, una buena aproximacién de re-
ferencia en un cultivo dentro de un invernadero de
dimensiones comerciales.

Algoritmo de clasificacién de
indmicas C-means difuso

En (6) se observa que A, es la i-ésima clasificacién de
la premisa en la regla R;, de las variables que son medi-
das para determinar A, se realizé un proceso de identifi-
cacién. Para ello, se programé el algoritmo de clasifica-
cién C-means difuso que a continuacién se describe.

Dada una matriz de mediciones Z de un experimen-
to real, que se puede escribir en forma matricial (7),
donde las columnas son las muestras en el tiempo,
mientras que las filas son las variables Z e R"*, donde
n es el nimero de variables y N es el ndmero de
muestras.

n Ao AN
z V4 4
n Ax N
zZ=|"2 : )
V4 z z

n2 nN

El objetivo de utilizar el algoritmo C-means difuso es
hacer la clasificacién en cimulos de datos con similitud
entre si, donde este término se entiende como una simi-
litud matemdtica que se calcula por medio de una norma
métrica, y para el algoritmo C-means difuso, se utiliza
la norma Euclidiana (Babugka, 1998), (Yen et al, 1999).
Enseguida, se define el ndmero de cimulos o particio-
nes difusas 1<c<N, donde ¢ es el nimero de cimulos en
la estructura de reglas difusas T-S, donde cada camulo
identifica la premisa de una regla. Se propone el expo-
nente difuso m>1. Como C-means es un algoritmo ite-
rativo, se fija una tolerancia (¢) y un maximo nimero de
iteraciones (/) para finalizar la busqueda de los cimulos
con similitud entre si. Se inicializa la matriz de particién
difusa U’ =p§, con nimeros aleatorios €[0,1]

Con el algoritmo C-means difuso se estiman los an-
tecedentes de la estructura de reglas Si-Entonces, que son
los centros de los cimulos o prototipos de cimulos de
datos, como se describe en el siguiente algoritmo.

Algoritmo C-means difuso
Repetir para /=12,...

Paso 1: Célculo de los prototipos de los centros de
cimulos de datos
N
Y,

I k=1 . H
=t i<i<c

2w

k=1
Paso 2: Célculo de las distancias

D2 =(z

ikA

—Vf)TA(Zk —v);1<i<c1<k<N,

k

donde A es la matriz identidad.
Paso 3: Célculo de la matriz de particién difusa

SiD,, >0paral<i<c, 1<k<N

/ 1
uik’ = ¢ D
(

j=1 D

kA )2/(m -1)

kA

132 Ingenieria Investigacion y Tecnologia. Vol. XI. Num. 2. 2010 127-139, ISSN1405-7743 FI-UNAM



Ramos-Ferndndez J.C., Lépez-Morales V., Lafont F, Enea G. y Duplaix J.

De otra manera:
w' =0siD,, >0,ypu’, e[01]con Yy, =1
i=1
Hasta HU’ -y H <g.
Fin del Algoritmo

El algoritmo C-means difuso converge hasta que se cum-
ple la condicién U -U" H <¢ 6 bien hasta un ntimero
maéximo de iteraciones (/).

Aplicacion del algoritmo C-means difuso
a las dinamicas del sistema

En las pruebas realizadas a la estructura que se propone
en este trabajo, el nimero méximo de iteraciones se pre-
fijé en 50 iteraciones (/=>50) y el resultado en la conver-
gencia del algoritmo no fue mayor a 30 iteraciones. Se
observé que el tiempo de convergencia en la bisqueda
de los prototipos de cimulos fue menor al periodo de
muestreo que se programé en el sistema de adquisicién
de datos para los experimentos efectuados. También,
en las simulaciones que se realizaron con los datos de
los experimentos, se concluyé que era suficiente hacer
el aprendizaje con los datos de un ciclo de irrigacién,
que permiten hacer una buena aproximacién del ciclo
de irrigacién futuro, lo cual hace factible la implementa-
cién del algoritmo en tiempo real. Aln asi, en este tra-
bajo se tomaron una gran cantidad de mediciones
(3000), para que el aprendizaje de los submodelos se
realizara durante siete ciclos de irrigacién para el perio-
do diurno y 200 mediciones (3 horas con 20 minutos)
para el periodo nocturno.

Asf, se puede apreciar la robustez en la respuesta de
la estructura de modelado neurodifusa de evapotranspi-
racién instantdnea que se propone, cuando se trabaja
con un rango de datos mayor a la que se tendria con el
algoritmo trabajando en tiempo real.

En la fase de validacién con los pardmetros determi-
nados en el aprendizaje, el modelo neurodifuso de eva-
potranspiracién instantanea, aproxima la evapotranspi-
racién por mas de un dia y una noche. Es decir, se puede
realizar el aprendizaje entre cada ciclo de riego y obte-
ner un modelo que prediga la evapotranspiracién antes
del siguiente ciclo de riego. De esta forma, se puede con-
servar un déficit de agua cercana a cero, considerando la
disponibilidad de agua en la maceta como se sugiere en
Nuez et al. (2001). AUn asi, es siempre recomendable
tener un porcentaje de drenaje un poco mayor a cero
(Sénchez y Rebolledo, 2001).

Calculo de los consecuentes lineales
para el modelo difuso T-S

La estimacién de los pardmetros consecuentes se realiza
con el método de minimos cuadrados ordinal, en cada
ctmulo de datos identificado con el algoritmo C-means
difuso se hace un mapeo con un submodelo lineal y en
consecuencia le corresponde una regla Si-Entonces. Los
vectores de mediciones del experimento a modelar son
agrupados como se indica en (8) y (9)

1 2 n
XX Xy
1 2 n
X X X
X< %o ®
: X,
1 2 n
XN Xy XN
Y1
Yy
Y=""1, 9
YN

donde X e RV, N es el nimero de muestras tomadas
del experimento para realizar el aprendizaje, es el nd-
mero de vectores de las mediciones que se utilizan como
entradas del modeloy Y e R""* es el vector de medicio-
nes de la variable que se desea aproximar. Se utilizan los
valores del grado de pertenencia en cada cimulo de da-
tos que se expresan en una matriz diagonal como en

(10).

p'tl O 0
0 .0

W , (10)
0 0 - u,

donde p , son los valores de pertenencia calculados con
el algoritmo de C-means difuso de la /-ésima iteracién,
i=1,2.,¢c,k=1,2,.,N es el indice de muestreo.

Finalmente, los pardmetros consecuentes de cada
submodelo, se calculan con el algoritmo de minimos
cuadrados (11).

0 =[X" WX XTWY (11)

donde 0, e """ es el vector de pardmetros lineales que
caracteriza al /-ésimo submodelo neurodifuso.

Es decir, un submodelo lineal corresponde a cada ct-
mulo de datos similares entre si, representados por la
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estructura de reglas difusas T-S, como se muestra en
(6). Asi, particularmente en este caso, se tiene que cada
regla tiene la siguiente estructura:

R;:SiXesV, Entonces Y, =X0,, (12)

donde R, es la regla que describe el i-ésimo submodelo.
La premisa de la reglaes: Si X es V, donde V, es el vec-
tor de centros del /-ésimo cimulo de datos. El conse-
cuente de la i-ésima regla es Entonces Y, = X0,, donde Y,
es la aproximacién con la activacién de la j-ésima regla,
X son las mediciones del sistema que son la entrada al
modelo neurodifuso y 0, es el vector de pardmetros esti-
mados mediante el algoritmo de minimos cuadrados

(11).

Modelo de evapotranspiraciéon
instantanea

Para obtener la estructura del modelo jerarquico neuro-
difuso de evapotranspiracién instantanea del tipo T-S
(12), se analizaron diferentes arquitecturas de entra-
da-salida con las variables medidas climaéticas, las accio-
nes de control del invernadero y la masa del conjunto
maceta-planta, utilizando todas las variables disponi-
bles del invernadero experimental. Se utiliz6é un primer
conjunto de datos para hacer el aprendizaje y estimar
los parametros de las reglas difusas T-S. Con otro con-
junto de datos se realizé la validacién de los submodelos
obtenidos. Para las arquitecturas que se proponen en es-
te trabajo, se considerd el menor nimero de variables de
entrada al modelo. La razén es que hay dos dindmicas
naturales de evapotranspiracién instantanea, una para
el dia (luz solar) y otra para la noche. Por la noche, la ra-
diacién solar es cercana a cero y normalmente no se rea-
lizan ciclos de irrigacién.

En la figura 4 se muestra la arquitectura propuesta
para el submodelo de evapotranspiracién que corres-
ponde a la dindmica diurna, donde T, (k) y H, (k) son la
temperatura y la humedad relativa del interior del in-
vernadero en el evento de tiempo (k), respectivamente.

Tik)

Hitky 398 D)
Radi T8

Masa(k) C-means

Figura 4. Submodelo de evapotranspiracion
para la dindmica del dia

La variable Masa(k) es la masa de la maceta con la
planta, (kg) y J. Rad, esla integracién de la radiacién so-
lar en el interior del invernadero (Rad, (k) en kW/m?)
que se calcula por medio de (13).

0;si bomba =1
R d =J k=K yppami 18
[ Rad, " Rad, (k);si bomba =0’ (13)

k=k,

donde k, es el primer instante después de la transicién en-
ciende (bomba =1) hacia apaga (bomba =0)y K, , . esel
instante en el cual se inicia el ciclo de irrigacién. En los ex-
perimentos realizados se fij6 un tiempo corto para esta
transicion (<9s). El periodo de muestreo que se utilizé pa-
ra la adquisicién de datos fue de un minuto. Cada vez que
hay un ciclo de irrigacién se inicializa | Rad, =0, es decir,
un instante después cuando se adiciond agua a la planta se
inicia la integracién de la radiacion solar hasta el siguiente
ciclo de irrigacién. Hay que remarcar que los resultados
obtenidos utilizando la | Rad, como una entrada al mode-
lo, mejoraron la aproximacién del mismo con relacién a
las diferentes arquitecturas entradas-salida que se proba-
ron con las mediciones disponibles del invernadero. Asi, el
submodelo para la dindmica diurna esté en funcién de las
cuatro variables, como se ilustra en (14).

MD =[T, (k)H, (k)| Rad, Masa(k)] (14)

En consecuencia, a través de este primer modelo se
puede calcular la masa de agua evapotranspirada duran-
te el dia y durante el periodo de tiempo comprendido
entre cada ciclo de irrigacién por medio de (195).

S () MDD,
EVD(k+1) = = (15)

3
2n

donde EVD(k +1) es la evapotranspiracién aproximada,
(kg), ! (k), eselvalor de pertenencia del i-ésimo ctimu-
lo del algoritmo C-means difuso, y

0, :[af"af{"aljRMia;””” 1"

es el i-ésimo vector de pardmetros de los consecuentes
lineales obtenidos con aprendizaje local, con el método
de minimos cuadrados.

El submodelo para la dindmica nocturna, no incluye
la variable IRM’ ., ya que por la noche la radiacién solar
es casi nula. Asf, la arquitectura del submodelo propues-
to para la noche se muestra en la figura 5.
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Tifk)

A 3regl

Hdg | T g
T-

Masa(k) S

———| C-means

Figura 5. Submodelo de evapotranspiracion
para el periodo nocturno

La planta transpira cuando se encuentra hidratada
de forma adecuada y cuando la planta tiene necesidad
de agua y comienza a sufrir estrés hidrico, ésta se au-
to-protege hasta cierto punto de su deshidratacién ce-
rrando sus estomas por donde transpira y as{ auto-regu-
la su temperatura biolégicamente. El submodelo final
para la dindmica nocturna estd en funcién de tres
variables, como se muestra en (16).

NN =[T,(k)H (k) Masa(k)], (16)
en consecuencia, a través del modelo obtenido se puede
calcular la masa de agua evapotranspirada en la dindmi-
ca de noche y entre cada periodo de muestreo por medio

de (17).

St (0 [MNT,
EVN(k+1) =2 —
Sui®)

donde EVN(k+1) es la evapotranspiracién en la noche
(kg). Elvector B, =[5/ b b 1" sonlos pardmetros de
los consecuentes lineales T-S, de la i-ésima regla, con
i=1, 2, 3 reglas.

El modelo global instantdneo se obtiene con la agre-
gacién jerdrquica difusa de los submodelos con (18),
donde se utiliza el valor de pertenencia de la radiacién
solar, que es la variable del selector difuso.

: (17)

EVG(k+1) =n" (Rad, (k))EVN (k +1)
+u’ (Rad , (k))EVD(k +1) (18)
donde EVG(k+1) es la evapotranspiracién global y
w'Rad, (k) y n“Rad, (k) son los valores de pertenencia
del selector difuso para los submodelos de la noche y el
dia, respectivamente. En este método se utilizan tres
cimulos para cada submodelo (dia, noche) y el pardme-
tro difuso m=2.5.

0.02 T T T T T
gl Aimn L
i} 1 1 1 ‘ L ‘
16:28 02:57 1127 20:00 04:35 1310 21:45
Litros de agua en riego
21 T T T T T
205k -
a0 1 1 1 1 1
16:28 0257 11:27 20:00 04:35 1310 2145
Masa de la planta
g 1ot
. T T T T T
5 :l/lk—"’_’l_,./l/l/v /l/l/l/l/—ﬁ_,/l/VI/ ]
% 0 I W
16:28 0257 11:27 20:00 04:35 1310 2145

Radiacidn solar integrada entre cada ciclo de riego

11:27

Litros de agua evapotranspirada real y simulada

20:00 04:37 13:10 21.45

Error de aproximacian

20:00

Figura 6. Evapotranspiracién utilizando temperatura y humedad relativa

21:45
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La identificacién de los pardmetros antecedentes y
consecuentes del submodelo que corresponde al periodo
nocturno, se realizé con los datos del 15 de junio de
2005 desde las 21:52 hasta las 01:15 del 16 de junio de
2005.

Para el submodelo diurno se tomaron los datos del
dia 16 de junio de 2005 desde las 06:01 hasta las 13:59
del mismo dfa.

La validacién de los submodelos obtenidos se efec-
tud con los datos del dfa 15 de junio de 2005 desde las
18:28, hasta las 20:55 del 17 de junio de 2005.

Los resultados del modelo neurodifuso de evapo-
transpiracién instantdnea se pueden ver en la figura 6.
El ndmero de muestra £ = 1 corresponde a la muestra
de las 18:28 del dia 15 de junio de 2005. En la figura 6 se
muestran los ciclos de irrigacién con una cantidad de
agua en litros (L). Si se considera, la densidad del agua
evapotranspirada igual a uno, entonces se puede aproxi-
mar la cantidad de agua como 1 gr = 1 ml.

Debido a que el modelo neurodifuso propuesto tiene
también como objetivo proporcionar datos precisos de
la salida con la minima cantidad de variables en la en-
trada, en los siguientes resultados que se muestran en
simulacién en la figura 7, se suplieron las variables de
temperatura y humedad por la variable del Déficit de

0oz

Presién de Vapor Se utilizaron los mismos periodos de
los datos de aprendizaje y de validacién del modelo de
evapotranspiracién mostrado previamente. De esta for-
ma, también se mejoré la varianza del error y la media
del error como indices de calidad en la aproximacién
con el mismo periodo de experimentacién. La estructu-
ra del modelo, donde se utiliza el DPV es bastante sim-
ple en cuanto al nimero de pardmetros en los antece-
dentes y consecuentes.

La figura 7 muestra los resultados de la simulacién
con esta reduccién en el nimero de variables. La varia-
ble contiene informacién del microclima del invernade-
ro, la cual es sumamente Gtil para relacionar y predecir
la sanidad y calidad de cultivo, a nivel de plagas, hongos
y deformaciones en los frutos por inadecuada
polinizacién como se ilustra en Lépez-Morales et al.

(2008).
Analisis de los resultados obtenidos

En los experimentos realizados se determiné mediante
la comparacién del error de aproximacién, que tres cd-
mulos de datos es suficiente para aproximar la evapo-
transpiracién de forma instantanea, lo que implica sub-
modelos con tres reglas difusas T-S.

o D.mw i

=

T
11:27

T
1
16:28 02:57

T
20:00

Litros de agua en riego

T T
04:35 1310 2

1:45

|
20:00 04:35 13:10 2145

w10t Peso de la planta Ky
— 4 T T T T
=
i -
= /l/lk—"’_’l_,./l/l/V MM./VVV /l/l/l/lf
e |
16:28 02:57 1127 20:00 04:35 1310 21:45

Radiacidn solar integrada entre cada ciclo de riego

| simulacién |

§ !
16:28 0257 1:27

|
20:00 04:35 1310 21:45
Litros de agua evapotranspirada, real y simulacidn

|
20:00 04:35 1310 2145

Error de aproximacidn

Figura 7. Evapotranspiracién utilizando el DPV
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Los resultados que se muestran corresponden a dos
dias de experimentacién, una condicién inicial que se
considerd es el conjunto maceta-sustrato con plena dis-
posicién de agua, es decir, después de ser saturada y
drenada el agua.

La masa inicial fue de 20.898 kg, y la masa al final de
la experimentacion fue de 20.262 kg. Se realizaron 32 ci-
clos de riego (un promedio de 11.843 gr en cada mani-
pulacién de riego), con 0.3790 kg de agua suministrada
en todo el periodo de la experimentacién, donde no se
obtuvo drenaje de agua.

Asf que, la cantidad de agua evapotranspirada du-
rante el periodo de manipulacién se puede determinar
con el siguiente balance de masa:

M, =M,+M  -M,,  —M

evapo dre

(19)

M, =My + M, =M, -M,, (20)
donde A, es la masa al final de la manipulacién, /], es
la masa de inicio, M , es la masa adicionada durante un
periodo de irrigacién, M, = esla masa de agua drenada 'y
M., esla masa de agua evapotranspirada. La masa to-
tal que la planta perdié en el periodo de los experimen-
tos realizados fue de 1.016 kg.

El déficit de agua fue grande, debido a la elevada
temperatura, y en consecuencia generd un efecto im-
portante en la evapotranspiracién. La minima tempera-
tura y humedad relativa registrada fueron de 28 °C y
17.3%, respectivamente, mientras que la maxima tem-
peratura y humedad relativa fueron 46 °Cy 51.4%, res-
pectivamente. Estos valores estan fuera de los rangos de
las variables recomendadas para un cultivo de este tipo.
La estimacién del agua total evapotranspirada es posi-
ble obtenerla con la estructura de modelado neurodifu-
so presentado. El modelo toma en cuenta las variables
principales que influyen en el proceso dindmico de eva-
potranspiracién. Con ayuda de este modelo y a través
del calculo del DPV es posible en una siguiente fase, re-
gular la cantidad de agua que se suministra a una planta
(y enseguida a un cultivo) mientras se conserva un ran-
go deseable del DPV, para asegurar condiciones ptimas
de desarrollo y sanidad del cultivo.

Conclusiones y perspectivas

La estructura neurodifusa para modelar la evapotrans-
piracién de una sola planta (testigo) en un invernadero,
como aqui se reporta, puede servir de referencia para co-
nocer la dindmica de evapotranspiracién en un cultivo
que se encuentra con las mismas condiciones de la

planta testigo. Sin embargo, esta dindmica tendrd algu-
nas modificaciones al tomarse en cuenta el cultivo com-
pleto (Medrano ez al., 2004) dentro del invernadero, de-
bido a que cada planta del cultivo que es hidratada ade-
cuadamente; en plena transpiracién funciona como un
pequefio regulador de temperatura. Una extensién di-
recta del modelo que se propone es la evapotranspira-
cién, regulando el microclima del invernadero con refe-
rencia a los perfiles sugeridos en la literatura que permi-
ten un estado de sanidad de la produccién.

Al tomar en cuenta la medicién del agua drenada de
la planta testigo en una balanza independiente a la me-
dicién de la masa evapotranspirada, con el fin de intro-
ducir una consigna de drenaje minima en los ciclos de
riego para minimizar la cantidad de agua drenada entre
cada ciclo de riego, resultarfa en una minimizacién de
agua drenada por planta en un cultivo de dimensiones
comerciales, y en consecuencia, un ahorro del agua
total utilizada. El DPV puede ademads ser utilizado co-
mo una consigna para realizar el control en lazo cerrado
del microclima, como se demuestra en este articulo, es
una variable valiosa para realizar el modelado y control
del microclima para poder regular la cantidad de
irrigacién de un cultivo.
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