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Resumen

Las funciones distancia invo lu cradas en problemas de inves ti ga ción de opera ciones

tradi cio nal mente se han mode lado usando combi na ciones lineales posi tivas de

métricas Lp. Por lo tanto, las funciones distancia resul tantes son simé tricas,

uniformes y posi tivas defi nidas. A partir de una nueva defi ni ción de longitud de

arco, propo nemos un método para modelar funciones distancia gene ra li zadas, que

llamamos premé tricas, las cuales pueden ser asimé tricas, no uniformes y no posi -

tivas defi nidas. Demos tramos que toda función distancia que satis face la desi -

gualdad del trián gulo y cuya deri vada direc cional unila teral es continua, puede ser

mode lada como un problema de cálculo de varia ciones. La “longitud” de un arco

d-geodé sico C(a,b) que va desde a hasta b respecto de la premé trica d (la d-longitud)

puede ser nega tiva, y por tanto la d-distancia desde a hasta b puede repre sentar la

mínima energía nece saria para mover un objeto móvil desde a hasta b. Ilus tramos

nuestro   método   con   dos   ejem plos.
 

Des crip to res:  Fun cio nes dis tan cia, geo dé si cas, cálcu lo de va ria cio nes, pro ble ma de 

lo ca li za ción de servicios.

Abstract

Tra di tio nally the dis tan ce func tions in vol ved in pro blems of Ope ra tions Re search ha ve

been mo de led using po si ti ve li near com bi na tions of me trics Lp. Thus, the re sul ting dis tan -

ce func tions are symme tric, uni forms and po si ti ve de fi ni te. Star ting from a new de fi ni tion

of arc length, we pro po se a met hod for mo de ling ge ne ra li zed dis tan ce func tions, that we

call pre me trics, which can be asy mme tric, non uni form, and non po si ti ve de fi ni te. We show 

that every dis tan ce func tion sa tisf ying the trian gle ine qua lity and ha ving a con ti nuous

one-si ded di rec tio nal de ri va ti ve can be mo de led as a pro blem of cal cu lus of va ria tions. The 

“length” of a d-geo de sic arc C(a,b) from a to b with res pect to the pre me tric d (the

d-length) can be ne ga ti ve, and the re fo re the d-dis tan ce from a to b may re pre sent the mi ni -

mum energy nee ded to mo ve a mo bi le ob ject from a to b. We illus tra te our method with two

examples.

Key words: Dis tan ce func tions, geo de sics, va ria tio nal cal cu lus, fa ci lity lo ca tion pro blem.
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Intro duc ción

Las fun cio nes dis tan cia in vo lu cra das en pro ble mas del
mun do real fre cuen te men te son asi mé tri cas, no uni for -
mes y no po si ti vas de fi ni das. Por ejem plo, en el mo de la -
do de trá fi co en ho ras pi co, o del trá fi co so bre una su -
per fi cie no ho ri zon tal, se ob tie nen fun cio nes dis tan cia
asi mé tri cas y no uni for mes. Un ejem plo que lle va a fun -
cio nes dis tan cia no po si ti vas de fi ni das es el mo vi mien to 
de un robot con un sistema de recuperación de energía. 

En la li te ra tu ra ac tual el mo de la do de fun cio nes dis -
tan cia se ha en fo ca do ex clu si va men te al ajus te es ta dís -
ti co de pa rá me tros de fun cio nes ta les co mo las nor mas
Lp pe sa das, o com bi na cio nes li nea les po si ti vas de és tas.
Las nor mas Lp pe sa das y las com bi na cio nes li nea les po -
si ti vas de és tas, con du cen a fun cio nes dis tan cia si mé tri -
cas, po si ti vas de fi ni das, y uni for mes. Esto sig ni fi ca que
la dis tan cia de a a b es igual a la dis tan cia de b a a, que la 
dis tan cia en tre cua les quie ra dos pun tos di fe ren tes es es -
tric ta men te po si ti va, y que la dis tan cia des de un pun to
has ta otro pun to es in va rian te ba jo tras la cio nes, res pec -
ti va men te. Lo ve et al. (1979), Be rens et al. (1985) y
Brim berg et al. (1993) ob tu vie ron fun cio nes dis tan cia a
par tir de las nor mas Lp pe sa das. Ward et al. (1980) y
Brim berg et al. (1992) for mu la ron fun cio nes dis tan cia a
par tir de com bi na cio nes li nea les po si ti vas de nor mas Lp
pe sa das. Hodg son et al. (1987), Drez ner et al. (1989) y
Plas tria (1992) ob tu vie ron fun cio nes dis tan cia asi mé -
tricas, pe ro uni for mes y po si ti vas de fi ni das. Apli can
sus fun cio nes dis tan cia a pro ble mas de lo ca li za ción
de ser vi cios. 

En es te tra ba jo se pro po ne una nue va for ma de mo -
de lar fun cio nes dis tan cia, las cua les pue den ser asi mé -
tri cas, no uni for mes y no po si ti vas ne ga ti vas. Nues tras
fun cio nes dis tan cia se pue den re fe rir a cos tos de trans -
por te, dis tan cias de re co rri do, tiem po de re co rri do, ener -
gía gas ta da, etc. 

Estas fun cio nes dis tan cia son úti les en mu chos pro -
ble mas de Inves ti ga ción de Ope ra cio nes que re quie ren
dis tan cias en sus for mu la cio nes, ta les co mo pro ble mas
de trans por te, problemas de localización de servicios,
problema del agente viajero, etc.

Premé tricas

De fi ni mos la fun ción dis tan cia pre mé tri ca co mo una
fun ción bi na ria d: Rn ´ Rn ® R que cum ple la pro pie dad
de iden ti dad (la dis tan cia de un pun to con si go mis mo es 
ce ro, d(a, a) = 0 pa ra to da aÎRn) y la de si gua lad del
trián gu lo (pa ra to da a, b, cÎRn d(a,b) £ d(a,c) + d(c,b)).

Re cor dar que una mé tri ca es una fun ción bi na ria que
cum ple la de si gual dad del trián gu lo ("a, b, cÎRn, d(a,b) 
£ d(a,c)+d(c,b)), no ne ga ti vi dad ("a, bÎRn, d(a,b) > 0 
Û a ¹ b) y si me tría (" a, bÎRn, d(a,b) = d(b,a)).

De acuer do con las pro pie da des que cum plen, las
fun cio nes dis tan cia se pue den cla si fi car co mo si gue:

Una mé tri ca dé bil es una pre mé tri ca no ne ga ti va,
d(a,b) ³ 0 pa ra to do a, bÎRn. Una cua si mé tri ca es una
mé tri ca dé bil que sa tis fa ce la con di ción de de fi ni to rei -
dad, pa ra to da a,bÎRn, d(a,b) = 0 Þ a = b, es de cir, una
cua si mé tri ca es una pre mé tri ca es tric ta men te po si ti va
(pa ra to da a,bÎRn d(a,b) > 0 Û a ¹ b). Una pseu do mé tri -
ca es una mé tri ca dé bil si mé tri ca (pa ra to da a, bÎRn,
d(a,b) = d(b,a)). Una mé tri ca es una pseudometrica que
satisface la propiedad de definitoreidad.

La lon gi tud de un ar co (or de na do) C(a,b) res pec to de una 
pre mé tri ca d es la me nor co ta su pe rior de la sumatoria 

d i i
i

k

( , )x x
+

=

å 1
0

don de (a = x0, x1, x2, ¼, xk, xk+1 = b) es una su ce sión de
pun tos so bre C(a,b) que va de a a b. Si es te lí mi te exis te
y es fi ni to, el ar co se lla ma d-rec ti fi ca ble. Se de mues tra
(Sán chez et al., 2008) que si la de ri va da di rec cio nal uni -
la te ral de d, da da por

F
d( h d

hh
( , ) lim

, ) ( , )
x v

x x v x x
=

+ -

® +0
 ,

(Roc ka fe llar, 1970) es con ti nua, en ton ces la d-lon gi tud
de un ar co C(a,b) d-rec ti fi ca ble es tá da da por 

l C F s s ds
d

( ( , )) ( ( ), & ( ))a b x x
a

b

= ò ,                                   (1)

don de x: [a, b] ® Rn es una re pre sen ta ción pa ra mé tri ca
cla se C1 de C(a,b). Pues to que d cum ple la pro pie dad de
iden ti dad, d(x,x) = 0 pa ra to do xÎRn, la de ri va da di rec -
cio nal uni la te ral F se pue de es cri bir co mo

F
d( h

hh
( , ) lim

, )
x v

x x v
=

+

® +0
 pa ra to do x,vÎRn.          (2)

Un ar co d-geo dé si co es un ar co C(a,b) tal que la dis tan cia
des de a has ta b es un mí ni mo, 

d F s s ds( , ) min ( ( ), & ( ))a b x x
a

b

=
Î òx W[a,b]

  a, bÎRn.
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Por las pro pie da des de las in te gra les, la lon gi tud de un
ar co for ma do por dos o más sub ar cos es igual a la su ma
de las lon gi tu des de sus sub ar cos. Ade más, por la de si -
gual dad del trián gu lo to do sub ar co de un ar co d-geo dé -
si co es un ar co d-geo dé si co. 

Es in me dia to que un ar co C(a,b) es d-geo dé si co, si y
só lo si, la res tric ción de d a C(a,b) cum ple la igual dad del 
trián gu lo res pec to del pun to fi nal b, 

d(x(s),b)=d(x(s),x(t))+d(x(t),b)  a £ s £ t £ b,       (3)

don de x: [a, b] ® Rn es una re pre sen ta ción pa ra mé tri ca
de C(a,b).

Una d-geo dé si ca es un ar co con la pro pie dad de que
sus sub ar cos su fi cien te men te pe que ños son ar cos d-geo -
dé si cos, y que no es tá con te ni do pro pia men te en otro
ar co que cum ple es ta pro pie dad. Por tan to, una d-geo dé -
si ca no es tá con te ni da pro pia men te en otra d-geo dé si ca. 
Ade más, en una d-geo dé si ca cual quier tria da de pun tos
su fi cien te men te pró xi mos es tán co nec ta dos por un ar co 
d-geo dé si co. Obser var que un sub ar co de una d-geo dé si -
ca pue de no ser un ar co d-geodésico.

Una pre mé tri ca d es (geo dé si ca men te) com ple ta si pa ra
to dos los pun tos exis te un ar co d-geo dé si co que los une.

To da pre mé tri ca com ple ta con de ri va da di rec cio nal
uni la te ral con ti nua pue de ser mo de la da me dian te un
pro ble ma de cálcu lo de va ria cio nes. En tér mi nos for ma -
les, se tiene el siguiente teorema:

Teorema 1
(Exis tencia de una función funda mental F0

corres pon diente a una premé trica d) 

Pa ra to da pre mé tri ca d: Rn ́  Rn ® R com ple ta, cu ya de ri -
va da di rec cio nal uni la te ral F: Rn ´ Rn®R da da por (2) es
con ti nua, en ton ces exis te al me nos una fun ción F0:
Rn´ Rn ® R tal que 

d F s s ds( , ) min ( ( ), & ( ))a b x x
a

b

=
Î òx W[a,b]

0
 

                                                                                 (4)
pa ra to da a, b Î Rn.

En par ti cu lar, la de ri va da di rec cio nal uni la te ral de d
cum ple (4), es de cir,

d F s s ds( , ) min ( ( ), & ( ))a b x x
a

b

=
Î òx W[a,b]

pa ra to da a, b Î Rn,

te nién do se que F(x, v) es una fun ción ho mo gé nea po si -
ti va de gra do en uno en x pa ra to do v Î Rn, y es con ve xa 
en v pa ra to do xÎRn. 

Demos tra ción

Se sa be que si una pre mé tri ca d: Rn ´ Rn ® R tie ne una
de ri va da di rec cio nal uni la te ral F: Rn ´ Rn ® R con ti nua,
en ton ces to do ar co C(a,b) cla se C1 es d-rec ti fi ca ble y su
d-lon gi tud es tá da da por (1). Pues to que d es com ple ta,
exis te una d-geo dé si ca cla se C1 de a a b que re suel ve 

min ( ( ), & ( ))
xÎ òW[a,b]

F s s dsx x
a

b

,

que por de fi ni ción de ar co d-geo dé si co es igual a la dis -
tan cia d(a, b). Por tan to F cum ple (4). Res ta pro bar que
F(x, v) es una fun ción ho mo gé nea po si ti va de gra do
uno en x pa ra to do vÎRn, y ade más con ve xa en v pa ra
to do xÎRn, lo cual se prue ba di rec ta men te: 

Pa ra a > 0,
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y por tan to F(x, v) es una fun ción ho mo gé nea po si ti va
de gra do uno en x pa ra to do vÎRn. 

De la ecua ción (2) y por ser F(x, v) una fun ción ho -
mo gé nea po si ti va de gra do uno en x, pa ra to do vÎRn, 

F
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( , ( ) ) lim

, ( ( ) ) )
x v w

x x v w
a a

a a
+ - =

+ + -

® +
1

1

0

£
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d h d h h h
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1x x v x v x v wa a a a

= + - = + -F F F F( , ) ( ,( ) ) ( , ) ( ) ( , )x v x w x v x va a a a1 1 ,

y por tan to F(x, v) es una fun ción con ve xa en v pa ra to -
do xÎRn. 

Q.E.D.



En la ecua ción (4) la fun ción F0: R
n´ Rn ® R es una fun -

ción da da a prio ri lla ma da fun ción fun da men tal de d.

Teorema 2 
(Premé trica defi nida a partir de una función

funda mental)

Sea F0: R
n´ Rn ® R una fun ción ho mo gé nea po si ti va de

gra do uno con F0(x, 0) = 0 pa ra to do xÎRn, y tal que
cum ple la si guien te con di ción de so lu bi li dad: pa ra ca da
par or de na do a, bÎRn exis te un ca mi no x: [a, b]®Rn de
a a b cla se C1 que re suel ve el pro ble ma de cálcu lo de
va ria cio nes 

min ( ( ), & ( )) .
xÎ òW[a,b]

F s s ds
0

x x
a

b

                                             (5)

Sea d: Rn ´ Rn ® R la fun ción da da por (4). Enton ces: 

a) d es una premétrica sobre Rn, la cual es completa si F0

es la derivada direccional uni lat eral de d. 
b)F0 es la derivada direccional uni lat eral de d si y

solamente si F0(x, v) es convexa en v. 

Demos tra ción 

La ho mo ge nei dad po si ti va de F0 im pli ca que to da trans -
for ma ción con ti nua que pre ser va la orien ta ción de un
ca mi no x: [a, b] ® Rn que re suel ve (4) es un ca mi no que
tam bién re suel ve (4), te nien do am bos ca mi nos la mis -
ma ima gen. 

Por tan to, da dos a y b, ca da so lu ción de (4) de pen de
só lo del ar co y no de la elec ción par ti cu lar de su re pre -
sen ta ción pa ra mé tri ca. Enton ces la fun ción d da da por
(4) es tá bien de fi ni da. 

(a)  Por las pro pie da des de las in te gra les, la fun ción d da -
da por (4) cum ple la pro pie dad de iden ti dad y la de si -
gual dad del trián gu lo, y por tan to d es una pre mé tri ca.
Si F = F0, en ton ces pa ra ca da par or de na do de pun tos a
y b exis te un ar co C(a,b) que cum ple d(a,b) =
ld

 (C(a,b)), y por de fi ni ción C(a,b) es un ar co d-geo dé si -
co. Así que d es una pre mé tri ca com ple ta.

(b)  Ü: La ho mo ge nei dad po si ti va de F0 im pli ca que la
con ve xi dad de F0 se re du ce a
F0(x, v1+v2) £ F0(x,v1) + F0(x,v2) pa ra to do v1, v2 ÎRn.
Por tan to, la con ve xi dad de F0 im pli ca que la de ri va da
di rec cio nal uni la te ral F de la fun ción d da da por (4) es la
pro pia fun ción F0: 

F
h

F s s ds
h o

( , ) lim min ( ( ), & ( ))x v x x
x x vh

x

x v

=
® +

+

+ Î

1
0x W[ , ]

h

x vò
æ

è
ç
ç

ö

ø
÷
÷

= F .
0
( , )

La úl ti ma igual dad se pue de ex pli car co mo si gue. En el
lí mi te cuan do h ® 0+, x(s) se pue de con si de rar cons tan -
te, y por tan to el in te gran do dF s

0
( ( ), &x x(s)) só lo de pen de 

de & ( )x s . De bi do a la con ve xi dad de F0, la in te gral al can za
su va lor mí ni mo si & ( )x s  tie ne la di rec ción de v en to dos
los pun tos a lo lar go del ar co que va de x a x + vh. Por
tan to, el in te gran do F s s

0
( ( ), & ( ))x x  per ma ne ce cons tan te

a lo lar go del ar co que va de x a x + vh y to ma el va lor
F0(x, v). Þ: Re cí pro ca men te, su pón ga se que la fun ción
F0 que de fi ne a d a tra vés de (4) es igual a la de ri va da di -
rec cio nal uni la te ral de d, F = F0. Por (a) d es una pre mé -
tri ca, es de cir, d cum ple la de si gual dad del trián gu lo. Por 
la úl ti ma afir ma ción del teo re ma 1, F0 es una fun ción
con ve xa.

                                                                           Q.E.D.

Obten ción de las d-geodé sicas

Ba jo cier tas con di cio nes, el pro ble ma va ria cio nal (4) se
re suel ve me dian te las ecua cio nes de Eu ler La gran ge:

¶
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¶

F

x

d
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F

x
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0 0 0 12- = =
&

, ,... , .                                  (6)

Las so lu cio nes de (6) son las d-geo dé si cas aso cia das a la
pre mé tri ca d: Rn´Rn®R, las cua les con tie nen los ar cos
d-mí ni mos que re suel ven (4). La dis tan cia d(a,b) se de -
ter mi na sus ti tu yen do en el in te gran do de la ecua ción
(4) una d-geo dé si ca que va de a a b.

Pa ra el ca so n = 2, las coor de na das de ca da pun to se
de no tan por (x, y), y (6) se es cri be como 
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y en es te ca so, (4) se pue de es cri bir co mo 

d F x y x y ds( , ) min ( , , & , &)a b a b
a

b

= Î
Î òx W[a,b]

para  toda , R
0

2 . 
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Si F0 se ex pre sa en tér mi nos de una va ria ble in de pen -
dien te, en ton ces (9) re sul ta 

d F x y y dx
x

( , ) min ( , , ' )a b
a

b

=
Î òW[a,b]

0
  pa ra to da a b, ÎR2 . (10)

Pa ra el pro ble ma (10) las ecua cio nes de Eu ler La gran ge
(7) y (8) vie nen a ser
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0 0.       (11)

Geodé sicas de una suma de premé tricas 

Es in me dia to que cual quier su ma de pre mé tri cas en Rn

es una pre mé tri ca en Rn. El si guien te teo re ma in di ca que 
si un ar co es una geo dé si ca de va rias pre mé tri cas en Rn,
en ton ces es te ar co es una geo dé si ca de la su ma de esas
pre mé tri cas.

Teorema 3
(Geodé sicas de una suma de premé tricas) 

Sean d1 y d2 dos pre mé tri cas so bre Rn, y sea C una geo -
dé si ca de d1 y d2. Enton ces C es una geo dé si ca de d1+d2.

Demos tra ción

Sea d una pre mé tri ca de fi ni da por,

d(a,b) = d1(a,b) + d2(a,b) pa ra to da a, bÎRn.

Si C es una geo dé si ca de d1 y d2, es de cir, d1 y d2 sa tis fa -
cen (3), en ton ces la su ma d = d1 + d2 tam bién sa tis fa ce
(3), y por tan to C es una geo dé si ca de d. 

                                                                                             Q.E.D.

Coro lario del teorema 3

Sea dF una pre mé tri ca so bre Rn y sea dh la pre mé tri ca co -
rres pon dien te a una fun ción real va lua da h: Rn®R.
Enton ces las geo dé si cas de dF y las geo dé si cas de
d = dh + dF son las mis mas. 

Premé trica asociada a una función real

Sea h: Rn®R una fun ción real va lua da. La fun ción bi na -
ria dh: R

n ´ Rn®R de fi ni da por dh(a,b) = h(b) - h(a) pa ra
to da a, bÎRn,

sa tis fa ce la igual dad del trian gu lo,

dh(a,b) = dh(a,c) + dh(c,b) pa ra to da a, b, cÎRn,

y tam bién sa tis fa ce la pro pie dad de iden ti dad. Por tan -
to, dh es una pre mé tri ca, de no mi na da pre mé tri ca aso cia -
da a la fun ción real h. Esta pre mé tri ca sa tis fa ce la pro pie -
dad de an ti si me tría, d d( , ) ( , )a b b a= - , pa ra to da a,
bÎRn. To dos los ar cos de a a b tie nen la mis ma lon gi tud
res pec to de la pre mé tri ca dh(a,b), y por tan to, to dos los
ar cos de a a b son ar cos dh-geo dé si cos. Esta pre mé tri ca
es com ple ta aún cuan do dh sea una fun ción bi na ria
dis con ti nua. 

Si la fun ción h es di fe ren cia ble, en ton ces la de ri va da
di rec cio nal uni la te ral de dh es 

F
d s

s

h s
h

s o

h

s o
( , & ) lim

( , & )
lim

( & )
x x

x x x x x
=

+
=

+ -

® ®+ +D D

D

D

D h

s

( )x

D

              = Ñ ×( ) &h x pa ra to do x xÎ ÎR Sn n, & ,

don de Ñh es el gra dien te de la fun ción h y × de no ta el
pro duc to pun to. Enton ces, la lon gi tud con res pec to a la
pre mé tri ca dh de cual quier ar co x que va de a a b es tá da -
da por 

l h ds h h d
h h
( ) ( ) & ( ) ( ) ( , ),x x b a a b

a

b

= × = - =ò D

pa ra to da x ÎW
[ ]

,
a,b

 lo que con fir ma que to dos los ar cos
de a a b tie nen la mis ma lon gi tud con res pec to a la pre -
mé tri ca, dh, h(b) - h(a).

Mode lado de funciones distancia: mode lado
de premé tricas sobre R2 con inter pre ta ción

física

En es ta sec ción ob ten dre mos la fun ción fun da men tal F
y su co rres pon dien te pre mé tri ca d pa ra el mo vi mien to
de un ob je to des li zán do se so bre una su per fi cie ru go sa.
La fuer za ex ter na apli ca da a tal ob je to de be ven cer la
gra ve dad y la fric ción. El do mi nio de la fun ción dis tan -
cia (pre mé tri ca d) a con si de rar es el pla no ho ri zon tal R2,
y la “lon gi tud” de un ar co que va de aÎR2 a bÎR2 es tá
de fi ni da co mo la ener gía gas ta da a lo lar go del ar co de bi -
da a las fuer zas de gra ve dad y de fric ción. Por tan to, la
“dis tan cia” de a a b es la mí ni ma ener gía gas ta da pa ra
mo ver el ob je to des de a has ta b.



El ob je to se des li za “len ta men te”, de mo do que las fuer -
zas iner cia les son des pre cia bles com pa ra das con las de la 
gra ve dad y la fric ción. 

Por el teo re ma 1, to da pre mé tri ca com ple ta con de ri -
va da di rec cio nal uni la te ral con ti nua se pue de mo de lar a
par tir de una fun ción fun da men tal F(x,v) ho mo gé nea
po si ti va de gra do uno y con ve xa en v, lo cual re que ri rá
re sol ver el pro ble ma de cálcu lo de va ria cio nes en (4). Re -
cí pro ca men te, por el teo re ma 2, si F(x,v) es ho mo gé nea
po si ti va de gra do uno y con ve xa en v (y por tan to F es la 
de ri va da di rec cio nal uni la te ral de d) y ade más F cum ple
que pa ra ca da par or de na do de pun tos a, b en R2 exis te
un ca mi no de a a b cla se C1 que re suel ve el pro ble ma de
cálcu lo de va ria cio nes (5), en ton ces la pre mé tri ca da da
por (4) es una pre mé tri ca com ple ta. 

Un objeto desli zán dose sobre una super ficie
rugosa bajo la influencia de la 

gravedad y fric ción

En es ta sec ción, la pre mé tri ca d tie ne un sig ni fi ca do fí si -
co. La “dis tan cia” de a a b re pre sen ta la ener gía mí ni ma
ne ce sa ria pa ra des li zar un ob je to de ma sa m so bre una
su per fi cie z=f (x, y) des de (a, f(a))ÎR3 has ta (b, f(b))ÎR3, 
don de a y b son las pro yec cio nes del pun to ini cial y fi -
nal, res pec ti va men te, so bre el pla no ho ri zon tal. El do -
mi nio de la pre mé tri ca d es el pla no ho ri zon tal. Se su po -
ne que f : R2®R es una fun ción di fe ren cia ble. En ge ne -
ral, el coe fi cien te de fric ción m(x, y, &x, &y) es una fun ción

de la po si ción (x, y) y la di rec ción (&x, &y), pe ro por sim pli -
ci dad m se con si de ra cons tan te. La mag ni tud de la fuer -
za de gra ve dad es mg, y la mag ni tud de la fuer za de fric -
ción es mmgcosq, don de q es al án gu lo de in cli na ción del
pla no tan gen te a f en (x, y, f (x,y)) con res pec to al pla no
ho ri zon tal, y g es la ace le ra ción de la gra ve dad. Se con si -
de ra que la ve lo ci dad es su fi cien te men te pe que ña co mo
pa ra que la fuer za de iner cia sea des pre cia ble con res pec -
to a las fuer zas de gra ve dad y de fric ción. La úl ti ma con -
si de ra ción im pli ca que los seg men tos de rec ta son ar cos
d-geo dé si cos.

Pues to que

tan ( , ) ,q
¶

¶

¶

¶
= =

æ

è
ç

ö

ø
÷ +

æ

è
çç

ö

ø
÷÷Df x y

f

x

f

y

2 2

en ton ces

cosq = [1 + (¶f ¤ ¶x)2 + (¶f ¤ ¶y)2]-1/2.                              (13)

Se su po ne que el ob je to se mue ve des de (x, y, f (x,y))
has ta (x+Dx, y+Dy, f(x+Dx,y+Dy)) so bre la su per fi cie,

don de Dx y Dy son su fi cien te men te pe que ñas, de mo do
que: a) la pro yec ción de la tra yec to ria so bre el pla no ho -
ri zon tal es el seg men to de rec ta que va des de (x,y) has ta
(x + Dx, y + Dy); b) el ob je to se des li za so bre el pla no tan -
gen te a f en (x, y, f (x,y)). Por tan to, 

f x x y y f x y x
f

x
y

f

y
( , ) ( , ) .+ + = + +D D D D

¶

¶

¶

¶

Enton ces el cuer po se des li za so bre la su per fi cie f a lo
lar go del seg men to de rec ta que va des de (x, y, f(x,y))
has ta (x+Dx, y + Dy, f(x,y) + Dx ¶f ¤ ¶x + Dy ¶f ¤ ¶y). Este
seg men to es tá con te ni do en el pla no tan gen te a f en
(x, y, f(x,y)) y tie ne una lon gi tud eu cli dia na da da por

( ) ( ) ( ) .D D D D Dl x y x
f

x
y
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La can ti dad de ener gía ne ce sa ria pa ra ven cer la fuer za de 
gra ve dad es 
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y la ener gía ne ce sa ria pa ra ven cer la fuer za de fric ción es

D (D D D DW mg x y x
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Por sim pli ci dad se con si de ra mg = 1. To man do en cuen -
ta la ecua ción (13), la ener gía to tal es 

D D DW x
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La fun ción fun da men tal F(x,y,&x,&y) en es te ca so es tá da -
da por 

F x y x y
W

ss
0

0
( , , & , &) lim ,=

® +D

D

D

don de Ds es la pro yec ción de Dl so bre el pla no ho ri zon -
tal. F x y x y( , , & , &) es el fac tor por el cual ds de be ser mul ti -
pli ca do pa ra ob te ner la ener gía dW ne ce sa ria pa ra mo ver 
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el ob je to una dis tan cia ds so bre el pla no ho ri zon tal. En
el lí mi te, la dis tan cia ds co rres pon de a la dis tan cia dl so -
bre la su per fi cie f. To man do en cuen ta que & &x y2 2 1+ = , la 
fun ción fun da men tal F vie ne a ser 

F x y x y x
f

x
y

f

y
0
( , , & , &) & &= + +

¶

¶

¶

¶
m

                                                                               (14)
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La su ma de los dos pri me ros tér mi nos del la do de re cho
de (14) es el gra dien te de f. Por (12), la pre mé tri ca df aso -
cia da con la fun ción f es tá da da por 

df (a,b) = f(b) - f(a) pa ra to da a, bÎR2,

la cual es una pre mé tri ca an ti si mé tri ca que pue de ser
cal cu la da di rec ta men te de f. 

El ter cer tér mi no de la ecua ción (14), que se de no ta
por Fm,

F x y x y
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y
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es una fun ción con ve xa y ho mo gé nea po si ti va de pri -
mer gra do en &x  y  &y, y no de pen de ex plí ci ta men te del pa -
rá me tro s. Por la ecua ción (9), la pre mé tri ca dm aso cia da
a Fm es tá da da por 

d F x y x y ds
x

m m( , ) min ( , , & , &)a b
a

b

=
Î òW[a,b]

  pa ra to da a b, ÎR2 .

Por el co ro la rio del teo re ma 3, las geo dé si cas de dm coin -
ci den con las geo dé si cas de la pre mé tri ca dF = df + dm.
Por tan to, la pre mé tri ca dF aso cia da a la fun ción fun da -
men tal F0 da da por (14) es 

dF(a,b) = df (a,b) + dm (a,b) pa ra to da a, bÎR2,

don de la pre mé tri ca df se cal cu la a par tir de la fun ción f,
y la pre mé tri ca dm se cal cu la a par tir de las co rres pon -
dien tes ecua cio nes de Eu ler La gran ge. 

Sus ti tu yen do Fm en la ecua ción (10), y con si de ran do que 
dm es una pre mé tri ca de R2, se ob tie ne

d f x y
x

m m ¶ ¶( , ) min [ ( / ) ] { ( ')/a b
a

b

= + +
Î

-

òW[a,b]

1 12 1 2 2

              + +[( / ) '( / ) ] }/¶ ¶ ¶ ¶f x y f y dx2 1 2 ,

don de dx es igual a &x ds y el ca mi no x es tá da do por la
fun ción y(x). Esta pre mé tri ca se re suel ve a tra vés de la
ecua ción de Eu ler-La gran ge (11), don de la fun ción F0 se
reem pla za por Fm.

Se ilus tra nues tro mo de lo con dos ejem plos. En el
pri me ro, la su per fi cie f es un pla no in cli na do, y en el se -
gun do, f es una semiesfera. 

Ejemplo 1
Objeto que se desliza sobre un plano

incli nado

En es te ca so, el ob je to del de sa rro llo pre ce den te se des li -
za so bre un pla no ru go so con un án gu lo de in cli na ción q
con res pec to al pla no ho ri zon tal, 0 £ q <p/2. El coe fi -
cien te de fric ción m se con si de ra cons tan te. Por co mo di -
dad se to ma co mo eje x la in ter sec ción de am bos pla nos
y co mo eje y la di rec ción en la cual au men ta la pen dien -
te. Así, ¶f ¤ ¶x = 0 y ¶f ¤ ¶y = tanq.

Pues to que & &x y2 2+ =1, la ex pre sión (14) se pue de es -
cri bir co mo 

F x y x y F F y
f0

( , , & , &) & tan= + =m q
                                                                               (15)
                   +m q + 2( & cos & ) /x 2 2 1 2y .

Las geo dé si cas co rres pon dien tes a F y
f

= & tan q son to dos
los ar cos en el pla no ho ri zon tal. Las geo dé si cas de 
F x ym m q= +( & cos & ) /2 2 2 1 2  se ob tie nen re sol vien do las
ecua cio nes de Eu ler La gran ge (11). Estas geo dé si cas son
los seg men tos de rec ta. Por tan to, por el co ro la rio del
teo re ma 3, las geo dé si cas co rres pon dien tes a la fun ción
fun da men tal F0 da da por (15) son los seg men tos de rec -
ta so bre el pla no. Así, pa ra un par de pun tos da dos (a, b)
y (x, y), la geo dé si ca de dF0 que va de (a, b) a (x, y) es la
rec ta que co nec ta es tos dos pun tos. Enton ces,

 &x= (x-a) / l y &y = (y-b) / l, 

don de l = ((x - a)2 + (y - b)2)1/2 es la dis tan cia eu cli dia na
en tre los pun tos (a, b) y (x, y), los cua les es tán en el pla -
no ho ri zon tal. Sus ti tu yen do &x y &y  en (15) e in te gran do a 



lo lar go de la geo dé si ca que va de (a, b) a (x, y), se ob tie -
ne la pre mé tri ca dF0 co rres pon dien te a la fun ción fun da -
men tal F0:

d a b x y
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ds,

d a b x y
F0

(( , ),( , ))
                                                                               (16)
= - + - + -( ) tan [( ) cos ( ) ] /y b x a y bq m q2 2 2 1 2 .

La pre mé tri ca ob te ni da en (16) es uni for me, pe ro es asi -
mé tri ca de bi do al tér mi no an ti si mé tri co (y - b) tanq. 

Si tan q > m, en ton ces (16) da dis tan cias ne ga ti vas:
pa ra x = a y b > y, 

d a b x y
F0

(( , ),( , ))

= - + - = - - <( ) tan ( )(tan )y b y b y bq m q m 0.

En es te ca so, la pre mé tri ca dF0 es uni for me, y no sa tis fa -
ce las con di cio nes de no ne ga ti vi dad y de fi ni - to rei dad. 

No tar que si (2) se apli ca a la pre mé tri ca (16), se ob -
tie ne la de ri va da di rec cio nal uni la te ral F de dF0, la cual
re sul ta igual a la fun ción fun da men tal F0 (15):

F
d s

ss
( , & ) lim

( , & )
x x

x x x
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® +D

D

D0
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lim

& tan [( & ) cos (& ) ]
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D

D D D
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y s x s y s
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2 2 2 1 2
q m q

            = + +& tan ( & cos & ) /y x yq m q2 2 2 1 2 .

Ejemplo 2
Objeto que se desliza sobre una media esfera

Su pón ga se aho ra que el ob je to se des li za so bre una se -
mies fe ra ru go sa. Pri me ro se con si de ra que el ob je to no
se en cuen tra ba jo la in fluen cia de la gra ve dad, la cual se
in clu ye des pués. Sea una se mies fe ra de ra dio r, f(x, y) =
(r2 - x2 - y2)1/2, cu yo do mi nio es el dis co abier to D da do
por x2 + y2< r2. En es te ca so, el in te gran do en (10) se pue -
de ex pre sar co mo 

F(x, y, y’) = [1 + y’2 + (r2 - x2 - y2)-1(x + y y’)2]1/2.

Sus ti tu yen do es ta úl ti ma igual dad en la ecua ción de Eu -
ler La gran ge (11), se ob tie nen las d-geo dé si cas so bre el
dis co abier to x2 + y2< r2. Estas d-geo dé si cas son las pro -
yec cio nes de los gran des se mi círcu los en la se mies fe ra
f(x, y) = (r2 - x2 - y2) 1/2 so bre el dis co abier to D. Por tan -
to, la dis tan cia de aÎR2 a bÎR2 en el dis co abier to D, es
la lon gi tud eu cli dia na del gran se mi círcu lo que une
(a, f(a)) y (b, f(b)) en la se mies fe ra. Sean a = (a1, a2) y b
= (b1, b2) dos pun tos en el dis co abier to D. La dis tan cia
dF de (a1, a2, (r

2-a1
2-a2

2)1/2) a (b1, b2, (r
2-b1

2-b2
2)1/2) es la

lon gi tud eu cli dia na del gran se mi círcu lo que co nec ta es -
tos dos pun tos en la se mies fe ra, r q, don de 

q =
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Por tan to, la pre mé tri ca dF es

d r
F
( , ) cosa b = -1

                                                                               (17)
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La pre mé tri ca (17) sa tis fa ce las pro pie da des de las mé -
tri cas, sin em bar go, es ta mé tri ca no es uni for me: su po -
nien do r=1, d((0,0), (0,0.8))=0.93¹ d((0.5,0), (0.5,0.8)) =
1.003. 

Pa ra to mar en cuen ta la gra ve dad, sea la pre mé tri ca
da da por (12), dh (a,b) = h(b) - h(a), la cual re pre sen ta la
ener gía po ten cial. Por tan to, la su ma dF + dh es la pre -
mé tri ca d dada por 

d h h r( , ) ( ) ( ) cosa b b a= - + -1

                                                                               (18)

a b a b r a a r b b

r

1 1 2 2

2

1

2

2

2 2

1

2

2

2

2

+ + - - - -æ

è

ç
ç

ö

ø

÷
÷
 .

Por el co ro la rio del teo re ma 3, las geo dé si cas en el dis co
abier to D co rres pon dien tes a la pre mé tri ca (18) y las
geo dé si cas co rres pon dien tes a la pre mé tri ca (17) son las
mis mas.

Si h en (18) es una fun ción no cons tan te, en ton ces la 
pre mé tri ca d da da por (18) es asi mé tri ca y pue de ser no
po si ti va de fi ni da y vio lar la pro pie dad de definitoreidad. 
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Conclu siones

El mé to do pro pues to per mi te mo de lar fun cio nes dis -
tan cia ge ne ra li za das, que lla ma mos pre mé tri cas, que
cum plen la pro pie dad de iden ti dad y la de si gual dad del
trián gu lo, pe ro a di fe ren cia de las mé tri cas Lp y sus
com bi na cio nes li nea les po si ti vas usa das tra di cio nal -
men te, pue den ser asi mé tri cas, no uni for mes y no po si -
ti vas de fi ni das. Por tan to, la “dis tan cia” des de un pun to
has ta otro pue de re pre sen tar la mí ni ma ener gía gas ta da, 
el mí ni mo cos to, el mí ni mo tiem po de re co rri do, etc.
Nues tro mé to do con sis te en for mu lar una fun ción
F(x, v), lla ma da fun ción fun da men tal, la cual de pen de
de dos pa rá me tros, el pun to x y la di rec ción v en ese
pun to. La dis tan cia des de a has ta b es el mí ni mo de la
in te gral de F so bre to dos los ar cos sua ves que van de a a
b, por lo que se ob tie ne un pro ble ma de cálcu lo de va ria -
cio nes. Se de mos tró que es ta in te gral re pre sen ta la lon -
gi tud de los ar cos res pec to de la pre mé tri ca d só lo si F(x, 
v) es con ve xa en v. Me dian te dos ejem plos ilus tra mos el 
mé to do pro pues to; las fun cio nes dis tan cia ob te ni das re -
sul ta ron no si mé tri cas, no po si ti vas de fi ni das, y no uni -
for mes, las cua les no po drían mo de lar se me dian te los
mé to dos tra di cio na les de ajus te de pa rá me tros de las
mé tri cas Lp.
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