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Resumen

Las funciones distancia involucradas en problemas de investigacién de operaciones
tradicionalmente se han modelado usando combinaciones lineales positivas de
métricas L,. Por lo tanto, las funciones distancia resultantes son simétricas,
uniformes y positivas definidas. A partir de una nueva definicién de longitud de
arco, proponemos un método para modelar funciones distancia generalizadas, que
llamamos premétricas, las cuales pueden ser asimétricas, no uniformes y no posi-
tivas definidas. Demostramos que toda funcién distancia que satisface la desi-
gualdad del tridngulo y cuya derivada direccional unilateral es continua, puede ser
modelada como un problema de célculo de variaciones. La “longitud” de un arco
d-geodésico C(a,b) que va desde a hasta b respecto de la premétrica d (la d-longitud)
puede ser negativa, y por tanto la 4-distancia desde a hasta b puede representar la
minima energfa necesaria para mover un objeto mévil desde a hasta b. Ilustramos
nuestro método con dos ejemplos.

Descriptores: Funciones distancia, geodésicas, calculo de variaciones, problema de
localizaciéndeservicios.

Abstract

Traditionally the distance functions involved in problems of Operations Research have
been modeled using positive linear combinations of metrics Lp. Thus, the resulting distan-
ce functions are symmetric, uniforms and positive definite. Starting from a new definition
of arc length, we propose a method for modeling generalized distance functions, that we
call premetrics, which can be asymmetric, non uniform, and non positive definite. We show
that every distance function satisfying the triangle inequality and having a continuous
one-sided directional derivative can be modeled as a problem of calculus of variations. The
“length” of a d-geodesic arc C(a,b) from a to b with respect to the premetric d (the
d-length) can be negative, and therefore the d-distance from a to b may represent the mini-
mum energy needed to move a mobile object from a to b. We illustrate our method with two
examples.

Keywords: Distance functions, geodesics, variational calculus, facility location problem.
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Introduccién

Las funciones distancia involucradas en problemas del
mundo real frecuentemente son asimétricas, no unifor-
mes y no positivas definidas. Por ejemplo, en el modela-
do de tréafico en horas pico, o del tréfico sobre una su-
perficie no horizontal, se obtienen funciones distancia
asimétricas y no uniformes. Un ejemplo que lleva a fun-
ciones distancia no positivas definidas es el movimiento
de un robot con un sistema de recuperacién de energia.

En la literatura actual el modelado de funciones dis-
tancia se ha enfocado exclusivamente al ajuste estadis-
tico de parametros de funciones tales como las normas
Lp pesadas, o combinaciones lineales positivas de éstas.
Las normas Ly pesadas y las combinaciones lineales po-
sitivas de éstas, conducen a funciones distancia simétri-
cas, positivas definidas, y uniformes. Esto significa que
la distancia de a a b esigual a la distancia de b aa, que la
distancia entre cualesquiera dos puntos diferentes es es-
trictamente positiva, y que la distancia desde un punto
hasta otro punto es invariante bajo traslaciones, respec-
tivamente. Love et al. (1979), Berens et al. (1985) y
Brimberg er al. (1993) obtuvieron funciones distancia a
partir de las normas Ly pesadas. Ward et al. (1980) y
Brimberg et al. (1992) formularon funciones distancia a
partir de combinaciones lineales positivas de normas Ly
pesadas. Hodgson et al. (1987), Drezner et al. (1989) y
Plastria (1992) obtuvieron funciones distancia asimé-
tricas, pero uniformes y positivas definidas. Aplican
sus funciones distancia a problemas de localizacién
de servicios.

En este trabajo se propone una nueva forma de mo-
delar funciones distancia, las cuales pueden ser asimé-
tricas, no uniformes y no positivas negativas. Nuestras
funciones distancia se pueden referir a costos de trans-
porte, distancias de recorrido, tiempo de recorrido, ener-
gla gastada, etc.

Estas funciones distancia son Gtiles en muchos pro-
blemas de Investigaciéon de Operaciones que requieren
distancias en sus formulaciones, tales como problemas
de transporte, problemas de localizacién de servicios,
problema del agente viajero, etc.

Premétricas

Definimos la funcién distancia premétrica como una
funcién binaria 4: R" x R* — R que cumple la propiedad
de identidad (la distancia de un punto consigo mismo es
cero, d(a, a) = 0 para toda aeR") y la desigualad del
tridngulo (para toda a, b, ceR" d(a,b) <d(a,c) + d(c,b)).
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Recordar que una métrica es una funcién binaria que
cumple la desigualdad del tridngulo (Va, b, ceR", d(a,b)
<d(a,c)+d(c,b)), no negatividad (Va, beR" d(a,b) >0
< a#b) ysimetria (V a, beR”, d(a,b) =d(b,a)).

De acuerdo con las propiedades que cumplen, las
funciones distancia se pueden clasificar como sigue:

Una métrica débil es una premétrica no negativa,
d(a,b) > 0 para todo a, beR". Una cuasimétrica es una
métrica débil que satisface la condicién de definitorei-
dad, para toda a,beR", d(a,b) =0 = a =b, es decir, una
cuasimétrica es una premétrica estrictamente positiva
(para toda a,beR” d(a,b) > 0 < a#b). Una pseudométri-
ca es una métrica débil simétrica (para toda a, beR",
d(a,b) =d(b,a)). Una métrica es una pseudometrica que
satisface la propiedad de definitoreidad.

La longitud de un arco (ordenado) C(a,b) respecto de una
premétrica d es la menor cota superior de la sumatoria

Zk:d(x,.,xM)

i=0

donde (a =%, Xy, Xy, ..., X;, X, ;1 = b) es una sucesién de
puntos sobre C(a,b) que va de a a b. Si este limite existe
y es finito, el arco se llama d-rectificable. Se demuestra
(Sanchez et al., 2008) que si la derivada direccional uni-
lateral de 4, dada por

d(x,x+hv)—d(x,x)

h ]
(Rockafellar, 1970) es continua, entonces la d-longitud
de un arco C(a,b) d-rectificable esta dada por

F) =i

I, (C(a, b)) = [ F(x(s), X(5))ds, 1)

donde x: [4, b] — R" es una representacién paramétrica
clase C! de C(a,b). Puesto que d cumple la propiedad de
identidad, d(x,x) = 0 para todo xeR", la derivada direc-
cional unilateral F se puede escribir como

F(x,v) = lim a(x,x+vh)

h—0"

para todo x,veR". (2)

Un arco d-geodésico es un arco C(a,b) tal que la distancia
desde a hasta b es un minimo,

d(a,b) = min f F(x(s),%(s))ds a, beR".

xeQ,y a
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Por las propiedades de las integrales, la longitud de un
arco formado por dos o més subarcos es igual a la suma
de las longitudes de sus subarcos. Ademas, por la desi-
gualdad del tridngulo todo subarco de un arco d4-geodé-
sico es un arco 4-geodésico.

Es inmediato que un arco C(a,b) es 4-geodésico, siy
sélo si, la restricciéon de d a C(a,b) cumple la igualdad del
tridngulo respecto del punto final b,

Ad(x(s),b)=d(x(s),x())+d(x(t),b) a<s<t<b, (3)

donde x: [a, /] - R" es una representacién paramétrica
de C(a,b).

Una d-geodésica es un arco con la propiedad de que
sus subarcos suficientemente pequefios son arcos 4-geo-
désicos, y que no estd contenido propiamente en otro
arco que cumple esta propiedad. Por tanto, una d-geodé-
sica no esta contenida propiamente en otra 4-geodésica.
Ademads, en una d4-geodésica cualquier triada de puntos
suficientemente préximos estan conectados por un arco
d-geodésico. Observar que un subarco de una d-geodési-
ca puede no ser un arco 4-geodésico.

Una premétrica d es (geodésicamente) completa si para
todos los puntos existe un arco d-geodésico que los une.

Toda premétrica completa con derivada direccional
unilateral continua puede ser modelada mediante un
problema de célculo de variaciones. En términos forma-
les, se tiene el siguiente teorema:

Teorema 1
(Existencia de una funcién fundamental F,
correspondiente a una premétrica )

Para toda premétrica d: R x R* — R completa, cuya deri-
vada direccional unilateral F: R” x R"—R dada por (2) es
continua, entonces existe al menos una funcién F:
R R"* — R tal que

xXe

d(a,b) mﬂirbl] j;PO (x(s),x(s))ds
4)

para toda a, b € R".

En particular, la derivada direccional unilateral de 4
cumple (4), es decir,

b

d(a,b) = min | F(x(s),%(s))ds

xeQ,y

para toda a, b € R”,

teniéndose que F(x, v) es una funcién homogénea posi-
tiva de grado en uno en x para todo v € R", y es convexa
en v para todo xeR".

Demostracién

Se sabe que si una premétrica 4: R” x R* — R tiene una
derivada direccional unilateral F: R” x R" — R continua,
entonces todo arco C(a,b) clase C' es d-rectificable y su
d-longitud estéd dada por (1). Puesto que 4 es completa,
existe una d-geodésica clase C! de a a b que resuelve

b

H}in F(x(s), %(s))ds,
XELAap) A

que por definicién de arco d-geodésico es igual a la dis-
tancia d(a, b). Por tanto F cumple (4). Resta probar que
F(x, v) es una funcién homogénea positiva de grado
uno en x para todo veR", y ademds convexa en v para
todo xeR", lo cual se prueba directamente:

Para o > 0,

F(x,av) = hlirr}

d(x,x+ohv)
h

. d(x,x+ahv)
= llm B —
h—o" CX]’Z

y por tanto F(x, v) es una funcién homogénea positiva
de grado uno en x para todo veR".

De la ecuacién (2) y por ser F(x, v) una funcién ho-
mogénea positiva de grado uno en X, para todo veR?,

F(x,ov+(1-a)w) :hh]%} d(X7X+(av;(1—a)w)h)

Shhrg} d(x,x+ovh) +d(x+ oc;llh,x+ ovhi+(1-o)wh)

=F(x,av) +F(x,(1-0)w) =aF(x,v) +(1-a)F(x,v),

y por tanto F(x, v) es una funcién convexa en v para to-
do xeR".

QED.
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En la ecuacién (4) la funcién Fy: R"x R" — R es una fun-
cién dada a priori llamada funcién fundamental de d.

Teorema 2
(Premétrica definida a partir de una funcién
fundamental)

Sea Fy: R"x R" — R una funcién homogénea positiva de
grado uno con Fy(x, 0) = 0 para todo xeR", y tal que
cumple la siguiente condicién de solubilidad: para cada
par ordenado a, beR" existe un camino x: [4, b]>R" de
a a b clase C! que resuelve el problema de célculo de
variaciones

b

xrggn Fy(x(s),x(s))ds. ®)

Sea d: R"x R" — R la funcién dada por (4). Entonces:

a) d es una premétrica sobre R", la cual es completa si F
es la derivada direccional unilateral de 4.

b)F, es la derivada direccional unilateral de 4 si y
solamente si Fy(x, v) es convexa en v.

Demostracién

La homogeneidad positiva de F implica que toda trans-
formacién continua que preserva la orientacién de un
camino x: [a, b] = R" que resuelve (4) es un camino que
también resuelve (4), teniendo ambos caminos la mis-
ma imagen.

Por tanto, dados a y b, cada solucién de (4) depende
sélo del arco y no de la eleccién particular de su repre-
sentacién paramétrica. Entonces la funcién 4 dada por
(4) estd bien definida.

(a) Por las propiedades de las integrales, la funcién 4 da-
da por (4) cumple la propiedad de identidad y la desi-
gualdad del tridngulo, y por tanto 4 es una premétrica.
SiF = F, entonces para cada par ordenado de puntos a
y b existe un arco C(a,b) que cumple d(ab) =
1,(C(a,b)), y por definicién C(a,b) es un arco d-geodési-
co. Asf que 4 es una premétrica completa.

(b) «<: La homogeneidad positiva de F, implica que la
convexidad de F, se reduce a

Fo(x, v +v,) < Fy(x,v,) + Fy(x,v,) para todo vy, v, eR".
Por tanto, la convexidad de F; implica que la derivada
direccional unilateral F de la funcién 4 dada por (4) es la
propia funcién Fy:
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F(x,v) = 1'1111[1 min XT} (x(s),)'((s))dstFo(x, v).

h—o™* /1 *<Qx x+vh]
X

La Gltima igualdad se puede explicar como sigue. En el
limite cuando & — 0%, x(s) se puede considerar constan-
te, y por tanto el integrando dF, (x(s), X(s)) sélo depende
de x(s). Debido a la convexidad de Fy, la integral alcanza
su valor minimo si x(s) tiene la direccién de v en todos
los puntos a lo largo del arco que va de x a x + vh. Por
tanto, el integrando £ (x(s), X(s)) permanece constante
a lo largo del arco que va de x a X + v/ y toma el valor
Fy(x, v). =: Reciprocamente, supéngase que la funcién
F que define a d a través de (4) es igual a la derivada di-
reccional unilateral de d, F = F. Por (a) 4 es una premé-
trica, es decir, 4 cumple la desigualdad del tridngulo. Por
la Gltima afirmacién del teorema 1, F; es una funcién
convexa.

QE.D.
Obtencion de las d-geodésicas

Bajo ciertas condiciones, el problema variacional (4) se
resuelve mediante las ecuaciones de Euler Lagrange:

OF oF
Lo 4% 5 13 (6)
Ox; ds ox,

Las soluciones de (6) son las 4-geodésicas asociadas a la
premétrica d: R"xR"—R, las cuales contienen los arcos
d-minimos que resuelven (4). La distancia 4(a,b) se de-
termina sustituyendo en el integrando de la ecuacién
(4) una d-geodésica que vade a ab.

Para el caso n = 2, las coordenadas de cada punto se
denotan por (x, y), y (6) se escribe como

oF (0°F,). (&°F,\. (0°F,). [0°F,).
| X V| =5 ¥ == |7 =0
ox | oxox Oxdy ox’ ox 0y
)

oF (0’F, . (0°F,). (0’F, ). (0°F,).
| o Y o U 2 | e [P0
oy | Oyox oyoy 0y Ox oy’

y en este caso, (4) se puede escribir como

b
d(a,b) = rr}%n J.Fo(x,y,a'c,y)ds para todaa,beR?>.
xeQy .
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Si Fy se expresa en términos de una variable indepen-
diente, entonces (9) resulta

b
d(a,b) = in[n jFo(x,y,y' )dx paratodaa,beR’. (10)
YeQ,y A

Para el problema (10) las ecuaciones de Euler Lagrange
(7) y (8) vienen a ser

_d(oh) (FR) . (OR ) (ER) o gy
dx\oy') \oy? dy'oy ay'ox )

Geodésicas de una suma de premétricas

Es inmediato que cualquier suma de premétricas en R"
es una premétrica en R". El siguiente teorema indica que
si un arco es una geodésica de varias premétricas en R,
entonces este arco es una geodésica de la suma de esas
premétricas.

Teorema 3
(Geodésicas de una suma de premétricas)

Sean d, y d, dos premétricas sobre R", y sea C una geo-
désicaded, y d,. Entonces C es una geodésica de 4, +d,.

Demostracién
Sea d una premétrica definida por,
d(a,b) =4,(a,b) + d,(a,b) para toda a, beR".
Si C es una geodésica de d, y d,, es decir, 4, y 4, satisfa-

cen (3), entonces la suma d = 4, + 4, también satisface
(8), y por tanto C es una geodésica de 4.

Q.ED.
Corolario del teorema 3

Sea dy una premétrica sobre R” y sea d,, la premétrica co-
rrespondiente a una funcién real valuada /: R*—R.
Entonces las geodésicas de d; y las geodésicas de
d =d, + dp son las mismas.

Premétrica asociada a una funcién real
Sea h: R"—>R una funcién real valuada. La funcién bina-

ria d,: R" x R"—R definida por 4,(a,b) = #(b) — h(a) para
toda a, beR”,

satisface la igualdad del triangulo,
d,(a,b) =d,(a,c) + d,(c,b) para toda a, b, ceR”,

y también satisface la propiedad de identidad. Por tan-
to, 4, es una premétrica, denominada preméirica asocia-
da ala funcién real h. Esta premétrica satisface la propie-
dad de antisimetria, d(a,b)=-d(b,a), para toda a,
beR". Todos los arcos de a a b tienen la misma longitud
respecto de la premétrica 4,(a,b), y por tanto, todos los
arcos de a a b son arcos d,-geodésicos. Esta premétrica
es completa atn cuando 4, sea una funcién binaria
discontinua.

Sila funcién 4 es diferenciable, entonces la derivada
direccional unilateral de 4, es

4, (%, X+ XAs) X + XAs) —h(x)

. . . h
F, (x,x) = lim A = lim ( A
As—o" S As—o" S

=(Vh)-x paratodoxeR" ) xe€S§",

donde V/ es el gradiente de la funcién /1 y - denota el
producto punto. Entonces, la longitud con respecto a la
premétrica 4, de cualquier arco x que va de a a b estd da-
da por

/(%) :T (Ah)-kds =h(b) —h(a) =d, (a,b),

para toda x €Q o que confirma que todos los arcos
de aa b tienen [a misma longitud con respecto a la pre-

métrica, d,, h(b) — h(a).

Modelado de funciones distancia: modelado
de premétricas sobre R? con interpretaciéon
fisica

En esta seccién obtendremos la funcién fundamental F
y su correspondiente premétrica 4 para el movimiento
de un objeto deslizandose sobre una superficie rugosa.
La fuerza externa aplicada a tal objeto debe vencer la
gravedad y la friccién. El dominio de la funcién distan-
cia (premétrica d) a considerar es el plano horizontal R?,
y la “longitud” de un arco que va de aeR? a beR? estd
definida como la energia gastada a lo largo del arco debi-
da a las fuerzas de gravedad y de friccién. Por tanto, la
“distancia” de a a b es la minima energfa gastada para
mover el objeto desde a hasta b.
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El objeto se desliza “lentamente”, de modo que las fuer-
zas inerciales son despreciables comparadas con las de la
gravedad y la friccién.

Por el teorema 1, toda premétrica completa con deri-
vada direccional unilateral continua se puede modelar a
partir de una funcién fundamental F(x,v) homogénea
positiva de grado uno y convexa en v, lo cual requerird
resolver el problema de célculo de variaciones en (4). Re-
ciprocamente, por el teorema 2, si F(x,v) es homogénea
positiva de grado uno y convexa en v (y por tanto F es la
derivada direccional unilateral de 4) y ademds F cumple
que para cada par ordenado de puntos a, b en R? existe
un camino de a a b clase C! que resuelve el problema de
célculo de variaciones (5), entonces la premétrica dada
por (4) es una premétrica completa.

Un objeto deslizandose sobre una superficie
rugosa bajo la influencia de la
gravedad y friccién

En esta seccién, la premétrica 4 tiene un significado fisi-
co. La “distancia” de a a b representa la energia minima
necesaria para deslizar un objeto de masa m sobre una
superficie z=f (x, y) desde (a, f(a)) eR® hasta (b, (b)) eR®,
donde a y b son las proyecciones del punto inicial y fi-
nal, respectivamente, sobre el plano horizontal. El do-
minio de la premétrica 4 es el plano horizontal. Se supo-
ne que f: R?>>R es una funcién diferenciable. En gene-
ral, el coeficiente de friccién p(x, y, x, y) es una funcién
de la posicién (x, y) y la direccién (x, ), pero por simpli-
cidad p se considera constante. La magnitud de la fuer-
za de gravedad es mg, y la magnitud de la fuerza de fric-
cién es pmgcosd, donde 6 es al dngulo de inclinacién del
plano tangente a fen (x, y, f (x,y)) con respecto al plano
horizontal, y g es la aceleracién de la gravedad. Se consi-
dera que la velocidad es suficientemente pequefla como
para que la fuerza de inercia sea despreciable con respec-
to a las fuerzas de gravedad y de friccién. La dltima con-
sideracién implica que los segmentos de recta son arcos
d-geodésicos.

Puesto que
_ _ ey o
tan 0 =Af (x,y)] = (axj (ayJ
entonces
cosO = [1+ (of/ox)? + (of/ o). (13)

Se supone que el objeto se mueve desde (x, y, [ (x,1))
hasta (x+Ax, y+Ay, f(x+Ax,y+Ay)) sobre la superficie,
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donde Ay y Ay son suficientemente pequefias, de modo
que: a) la proyeccién de la trayectoria sobre el plano ho-
rizontal es el segmento de recta que va desde (x,y) hasta
(x+Ax, y +Ay); b) el objeto se desliza sobre el plano tan-
genteafen (v, y,f (x,y)). Por tanto,

fx+Ax,y+Ay) =f(x, y)+Ax—f+Ayaf
Ox oy

Entonces el cuerpo se desliza sobre la superficie f a lo
largo del segmento de recta que va desde (x, y, f(x,)))
hasta (x+Ax, y + Ay, f(x,y) + Ax Of /Ox + Ay 0f / dy). Este
segmento estd contenido en el plano tangente a f en
(x, v, flx,y)) y tiene una longitud euclidiana dada por

(AN? =(Ax)? +(Ay)° +(Ax6f+Ay6f] _
Ox oy

La cantidad de energia necesaria para vencer la fuerza de
gravedad es

AW, =mgAf = mg(Ax a—f + Ay afJ
oy

y la energfa necesaria para vencer la fuerza de friccién es

1/2
AW, =pmg cos 6{(Ax)2 +(Ay)? +(Ax f afj } .
Ox 6y

Por simplicidad se considera mg = 1. Tomando en cuen-
ta la ecuacién (13), la energfa total es

o, o AUCATD
AW = Axa+Ayay+u[1+(ax) [ayj}

2 1/2
s s (A Of O
[(Ax) +Ay) +[Ax6x+Ay6y] } .

La funcién fundamental F(x,y,x,)) en este caso esta da-
da por

ooy ) = lim S5

donde As es la proyeccién de Al sobre el plano horizon-
tal. F(x,y,x,y) es el factor por el cual 4s debe ser multi-
plicado para obtener la energia dW necesaria para mover
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el objeto una distancia ds sobre el plano horizontal. En
el limite, la distancia ds corresponde a la distancia 4/ so-
bre la superficie f. Tomando en cuenta que x° +y° =1, la
funcién fundamental F viene a ser

... .0 .0
Fo(xzylxiy) :xi—"—yi—"_u
ox oy

P -1/2 9 1/2
of Y (eof _of . of
[“[a,J 2) } [“("aﬂayj }

La suma de los dos primeros términos del lado derecho
de (14) es el gradiente de f. Por (12), la premétrica d;aso-
ciada con la funcién f estd dada por

(14)

=f(b) — f(a) para toda a, beR?,

la cual es una premétrica antisimétrica que puede ser
calculada directamente de f.

El tercer término de la ecuacién (14), que se denota
por F,

1-1/2

b= 2] L]
@]}

es una funcién convexa y homogénea positiva de pri-
mer grado enx y y, y no depende explicitamente del pa-
rdmetro s. Por la ecuacién (9), la premétrica 4, asociada
a I, estd dada por

d, (a,b) = mm J.F (x,y,%,y)ds paratodaa,beR’.

Por el corolario del teorema 3, las geodésicas de 4, coin-
ciden con las geodésicas de la premétrica dy = d; + d,,.
Por tanto, la premétrica d; asociada a la funcién funda-
mental F, dada por (14) es

dr(a,b) = d;(a,b) + 4, (a,b) para toda a, beR?,

donde la premétrica d; se calcula a partir de la funcién f,
y la premétrica d,, se calcula a partir de las correspon-
dientes ecuaciones de Euler Lagrange.

Sustituyendo F, en la ecuacién (10), y considerando que
d, es una premétrica de R?, se obtiene

b
, (a,b) = min [ul1+G@f /0x)’ 177 {1+(0)

+(of / ox)+y'(6f / By)* 1V* Ydkx,
donde dx es igual a x ds y el camino x est4 dado por la
funcién y(x). Esta premétrica se resuelve a través de la
ecuacién de Euler-Lagrange (11), donde la funcién F, se
reemplaza por F,.

Se ilustra nuestro modelo con dos ejemplos. En el
primero, la superficie f es un plano inclinado, y en el se-
gundo, f es una semiesfera.

Ejemplo 1
Objeto que se desliza sobre un plano
inclinado

En este caso, el objeto del desarrollo precedente se desli-
za sobre un plano rugoso con un dngulo de inclinacién 6
con respecto al plano horizontal, 0 < 8 <n/2. El coefi-
ciente de friccién p se considera constante. Por comodi-
dad se toma como eje x la interseccién de ambos planos
y como eje y la direccién en la cual aumenta la pendien-
te. Asi, Of/0x = 0 y 8f/6y = tan®.

Puesto que x” +p> =1, la expresién (14) se puede es-
cribir como

Fy(x,y,x,y)=F, +F, =ytan6
(15)

+u(x? cos? O+ )2,

Las geodésicas correspondientes a £, =y tan 6 son todos
los arcos en el plano horizontal. Las geodésicas de
E, =u(x’ cos’ 0+y°)"? se obtienen resolviendo las
ecuaciones de Euler Lagrange (11). Estas geodésicas son
los segmentos de recta. Por tanto, por el corolario del
teorema 3, las geodésicas correspondientes a la funcién
fundamental F, dada por (15) son los segmentos de rec-
ta sobre el plano. Asi, para un par de puntos dados (4, b)
y (x, ), la geodésica de 45y que va de (a, b) a (x, y) es la
recta que conecta estos dos puntos. Entonces,

x=(x—a)/lyy=y-b)/]
donde / = ((x —a)? + (y — b)?)/? es la distancia euclidiana

entre los puntos (a, &) y (x, y), los cuales estan en el pla-
no horizontal. Sustituyendo x y y en (15) e integrando a
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lo largo de la geodésica que va de (4, /) a (x, y), se obtie-
ne la premétrica dy, correspondiente a la funcién funda-
mental F:

dp ((a,0),(x,y))

/ b 2 b 2 1/2
=I V=Y an0+p (ﬂj cos’ 9+(y_j ds,
1 ! ]

d,, ((a,0),(x,))

=(y—b)tanO+p[(x —a)’ cos® O+(y—b)*1"7.

(16)

La premétrica obtenida en (16) es uniforme, pero es asi-
métrica debido al término antisimétrico (y — &) tan6.

Sitan © > p, entonces (16) da distancias negativas:
parax=ayb>y,

d, ((a,0),(x,y))
=(y—b) tan 0 +ply—b = (y—b)(tan 6 —p) <0.

En este caso, la premétrica dy, es uniforme, y no satisfa-
ce las condiciones de no negatividad y defini- toreidad.

Notar que si (2) se aplica a la premétrica (16), se ob-
tiene la derivada direccional unilateral F de dp, la cual
resulta igual a la funcién fundamental F, (15):

F(x,%) = lim d(x, X+ XAs)
7 As—0" As

1/2

— lim pAs tan 0+ p[(xAs)? cos® 0+ (pAs)? ]

As—0" As

=ptanO+pu(x’ cos® O+p° )%,
Ejemplo 2
Objeto que se desliza sobre una media esfera

Supdngase ahora que el objeto se desliza sobre una se-
miesfera rugosa. Primero se considera que el objeto no
se encuentra bajo la influencia de la gravedad, la cual se
incluye después. Sea una semiesfera de radio r, f(x, y) =
(r* — x? — )12 cuyo dominio es el disco abierto D dado
por x?+ y?<r?. En este caso, el integrando en (10) se pue-
de expresar como

E(x,p, ) =[1+y?%+ (P = x> = y2) U x +y y)? V2
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Sustituyendo esta dltima igualdad en la ecuacién de Eu-
ler Lagrange (11), se obtienen las 4-geodésicas sobre el
disco abierto x? + y?< r?. Estas d-geodésicas son las pro-
yecciones de los grandes semicirculos en la semiesfera
flx,y) = (r* — x? —y?) /2 sobre el disco abierto D. Por tan-
to, la distancia de acR? a beR? en el disco abierto D, es
la longitud euclidiana del gran semicirculo que une
(a, f(a)) v (b, f(b)) en la semiesfera. Seana=(a;,4,) y b
= (b4, by) dos puntos en el disco abierto D. La distancia
dpde (ay, a,, (rP—a>=a,*)'?) a (by, by, (r*—b>-b,2)1/?) es la
longitud euclidiana del gran semicirculo que conecta es-
tos dos puntos en la semiesfera, r 6, donde

E):cos{albl +a,b, +\/r2 —al -a] \/rZ —b} -0} J

’,2

Por tanto, la premétrica 4y es
d,(a,b)=rcos™

[ﬂlbl +a,b, +\/r2 —al -a} \/rz -b} -} ]

17)

1’2

La premétrica (17) satisface las propiedades de las mé-
tricas, sin embargo, esta métrica no es uniforme: supo-
niendo r=1, 4((0,0), (0,0.8))=0.93= 4((0.5,0), (0.5,0.8)) =
1.003.

Para tomar en cuenta la gravedad, sea la premétrica
dada por (12), d, (a,b) = h(b) — h(a), la cual representa la
energfa potencial. Por tanto, la suma d; + 4, es la pre-
métrica 4 dada por

d(a,b) =h(b) —h(a) +rcos™
(18)

2 2 2 2 2 2
a, b, +a,b, +\/r -a, —a, \/r b —b,

2
r

Por el corolario del teorema 3, las geodésicas en el disco
abierto D correspondientes a la premétrica (18) y las
geodésicas correspondientes a la premétrica (17) son las
mismas.

Sih en (18) es una funcién no constante, entonces la
premétrica 4 dada por (18) es asimétrica y puede ser no
positiva definida y violar la propiedad de definitoreidad.
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Conclusiones

El método propuesto permite modelar funciones dis-
tancia generalizadas, que llamamos premétricas, que
cumplen la propiedad de identidad y la desigualdad del
tridngulo, pero a diferencia de las métricas Lp y sus
combinaciones lineales positivas usadas tradicional-
mente, pueden ser asimétricas, no uniformes y no posi-
tivas definidas. Por tanto, la “distancia” desde un punto
hasta otro puede representar la minima energfa gastada,
el minimo costo, el minimo tiempo de recorrido, etc.
Nuestro método consiste en formular una funcién
F(x, v), llamada funcién fundamental, la cual depende
de dos pardmetros, el punto x y la direccién v en ese
punto. La distancia desde a hasta b es el minimo de la
integral de F sobre todos los arcos suaves que van de a a
b, por lo que se obtiene un problema de célculo de varia-
ciones. Se demostré que esta integral representa la lon-
gitud de los arcos respecto de la premétrica 4 sélo si F(x,
v) es convexa en v. Mediante dos ejemplos ilustramos el
método propuesto; las funciones distancia obtenidas re-
sultaron no simétricas, no positivas definidas, y no uni-
formes, las cuales no podrian modelarse mediante los
métodos tradicionales de ajuste de pardmetros de las
métricas Lp.
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