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RESUMEN

Antecedentes. La contaminacion del agua por nitrato y antibidticos ha ido creciendo a lo largo de los afios,
por lo que el proceso desnitrificante puede ser una buena alternativa para la eliminacion simultanea de
ambos compuestos. Objetivo. Mostrar el papel de la desnitrificacion en la eliminacion de antibidticos, asi
como los efectos de estos compuestos sobre la fisiologia y cinética del proceso respiratorio, los genes y las
poblaciones microbianas desnitrificantes. Resultados. Existen estudios sobre la eliminacion de diferentes
antibidticos bajo condiciones desnitrificantes, sin embargo, en la mayoria de los trabajos, el destino de la
materia carbonada y nitrogenada consumida se desconoce. Antibi6ticos como las sulfonamidas y tetracicli-
nas provocan efectos negativos sobre el proceso desnitrificante al disminuir la eficiencia de eliminacion de
nitrato, su velocidad de consumo y propiciar la acumulacion de nitrito. Se reportaron géneros desnitrificantes
como Thaueray Pseudomonas como resistentes y/o tolerantes ante la presencia de diferentes antibiticos
pertenecientes a las fluoroquinolonas, macrolidos, tetraciclinas y p-lactamicos, asi como mezclas de éstos.
La disminucién de la abundancia y expresion génica de genes que participan en la desnitrificacion como
nirSy nosZ, fue observada en presencia de sulfonamidas, efecto que podria causar la acumulacion de nitrito
y Oxido nitroso, ocasionando un posible cuello de botella en el proceso desnitrificante. En microorganismos
desnitrificantes expuestos a antibiéticos han sido detectados genes de resistencia a antibiéticos, los cuales
podrian actuar como mecanismos de defensa ante su presencia. Gonclusiones. La informacion contenida
en la presente revision contribuye al conocimiento sobre el proceso desnitrificante, proponiendo su uso para
llevar a cabo una eliminacion mas eficiente y estable de nitrato y antibidticos presentes en aguas contami-
nadas.

Palabras clave: Genes desnitrificantes, genes de resistencia a antibiéticos, mineralizacion, oxidacion de
antibiéticos, reduccion de nitrato.

ABSTRACT

Background. Water pollution by nitrate and antibiotics has been growing over the years, so the denitrifying
process can be a good alternative for the simultaneous removal of both compounds. Objective. Show the
role of denitrification in the elimination of antibiotics, as well as their effects on the physiology and kinetics
of the respiratory process, genes, and denitrifying microbial populations. Results. There are studies on the
elimination of different antibiotics under denitrifying conditions, however, in most of them, the fate of the car-
bonated and nitrogenous matter consumed is unknown. Antibiotics such as sulfonamides and tetracyclines
cause negative effects on the denitrifying process by decreasing the nitrate removal efficiency, its rate of con-
sumption, and promoting the accumulation of nitrite. Denitrifying genera such as Thauera and Pseudomonas
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were reported as resistant and/or tolerant to the presence of different
antibiotics belonging to fluoroquinolones, macrolides, tetracyclines, and
B-lactams, as well as mixtures of antibiotics. Decreased abundance and
gene expression of genes involved in denitrification such as nirS and
nosZ, was observed in the presence of sulfonamides, this effect could
cause nitrite and nitrous oxide accumulation, producing a possible bo-
ttleneck in the denitrifying process. Antibiotic resistance genes have
been detected in denitrifying microorganisms exposed to antibiotics,
which could act as defense mechanisms to the presence of these com-
pounds. Gonclusions. The information contained in this review contri-
butes to the knowledge about the denitrifying process and proposes
its use to carry out more efficient and stable disposal of nitrate and
antibiotics present in contaminated waters.

Keywords: Antibiotic oxidation, antibiotic resistance genes, denitrifica-
tion genes, mineralization, nitrate reduction.

NOMENCLATURA
PTAR: Planta de tratamiento de aguas residuales
3D-BER:Reactor tridimensional bioelectroquimico

UASB: Reactor anaerobio de lecho de lodos y flujo ascendente (Up-

flow Anaerobic Sludge Blanket)
SBR:  Reactor de lotes secuenciados (Sequential batch reactor)
CAS:  Lodo activado convencional
STR:  Reactor de tanque agitado (stirred tank reactor)
PT: Planta de tratamiento
MBR:
EGSB:

Reactor de membrana

Reactor granular de lecho expandido (Expanded Granular Slu-
dge Bed)

GRA:  Genes de resistencia a antibidticos

NT: Nitrégeno total

NI: Nitr6geno inorganico
NH,*: Amonio

NO,:  Nitrito

NO,= Nitrato

SDZ:  Sulfadiazina

SMX:  Sulfametoxazol
SMZ:  Sulfametazina

AMP:  Ampicilina

AMOX:  Amoxicilina

TET: Tetraciclina
OTC:  Oxitetraciclina
CTC:  Clortetraciclina

CIP: Ciprofloxacino
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NOR:  Norfloxacino
OFL:  Ofloxacino
MOX:  Moxifloxacino

ENR:  Enrofloxacino

AC PIP: Acido pipemidico
AC PIR: Acido piromidico.
ERY:  Eritromicina
ROX:  Roxitromicina
STRP:  Estreptomicina
TYL:  Tilosina

INTRODUCCION

Debido al crecimiento poblacional y las necesidades humanas, tanto la
cantidad de desechos generados como la contaminacion ambiental se
han incrementado (Gambhir et al., 2012). Se contaminan los suelos, el
aire y el agua de este planeta, afectando la flora y fauna (Boxall, 2004;
Qin et al., 2015). Se estima que gran parte del agua potable en el mun-
do esta contaminada, siendo la principal causa de diversas enfermeda-
des (Nabeela et al., 2014; WHO, 2019). Compuestos quimicos como los
clorados, pesticidas, acidos, metales pesados, entre otros, son residuos
de actividades industriales, que constituyen una fuente principal de
contaminantes que afectan a los ecosistemas macro y microbiologicos
del agua (Brown et al., 2006).

Los compuestos nitrogenados inorganicos (NI) como el NH,*, NO,
y NO, (amonio, nitrito y nitrato, respectivamente), son contaminantes
que se encuentran en aguas no tratadas, ya sea de origen doméstico,
agricola e industrial. Particularmente, el NO,” puede provenir de dife-
rentes procesos industriales como mataderos, destilerias, complejos
azucareros, produccion de levaduras, almidones, textiles y fertilizantes,
entre otros (Avila & Sansores, 2003). La presencia de nitrato tanto en
suelos como en acuiferos ha aumentado principalmente debido al uso
excesivo de fertilizantes, asi como al aumento de los residuos humanos
(Larios-Ortiz, 2009). Se han reportado concentraciones de nitrato desde
0.01 y hasta 3,644 mg/I en efluentes de ganaderia, hospitalarios y de
plantas de tratamiento de aguas residuales (PTAR), mientras que de
nitrégeno total (NT) se han reportado concentraciones entre 0.00002 y
18 mg/I (Tabla 1, material suplementario). Los compuestos NI y NT cau-
san entre otros problemas, efectos toxicos en organismos acuaticos, la
acidificacion de lagos (Camargo & Alonso, 2007), asi como eutrofiza-
cion de cuerpos acuaticos, la cual promueve la formacion de grandes
cantidades de biomasa, el consumo excesivo del oxigeno disponible en
los sistemas acuaticos y afectaciones en la fotosintesis al evitar el paso
de la luz (Ansari et al., 2010). La ingesta de concentraciones altas de
nitrato repercute en la salud humana, causando metahemoglobinemia
en nifios menores de 3 afios (Fewtrell, 2004). También se ha reportado
que los productos generados del contacto del nitrato utilizado como
conservador de alimentos con la saliva, asi como de |a acidificacion en
el estémago de las aminas presentes en algunos alimentos (Moreno et
al., 2015), pueden causar enfermedades como diabetes, Parkinson y
Alzheimer (De la Monte et al., 2009).
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Por otro lado, la cantidad de antibi6ticos presentes en diferentes
tipos de aguas residuales, como hospitalarias 0 ganaderas, también
ha ido en aumento, debido a su uso en el tratamiento de infecciones
bacterianas y a su uso excesivo en actividades veterinarias durante la
produccion de animales de granja (Ahmad et al., 2014). Aproximada-
mente 200,000 toneladas de antibitticos se utilizan en el mundo por
afio (Hou et al., 2015; Yin et al., 2017), de las cuales 52-70% son cana-
lizadas para usos veterinarios (Cuong et al., 2018; Zhang et al., 2019) y
el resto para uso humano y agricola, es decir, tratamiento de plagas en
plantas. En todos los casos, entre un 30-90% de los antibiéticos consu-
midos se absorben en el organismo y el resto se desecha por la orina
y heces, donde el antibiético sigue siendo activo (Xia et al., 2012; Hou
et al., 2015). La excesiva presencia de antibidticos en los diferentes
ambientes y ecosistemas tiene diversos efectos, por ejemplo, provoca
la muerte de microorganismos y cambios en las poblaciones bacteria-
nas, asi como un aumento de genes de resistencia a antibiéticos (GRA)
(Zuccato et al., 2010; Tsiaka et al., 2013; Fraqueza, 2015).

Como se ilustra en la Tabla 1, una amplia variedad de grupos de
antibi6ticos, como los antibidticos sintéticos: sulfonamidas y fluoroqui-
nolonas; antibidticos de origen microbiano y semisintético: tetraciclinas
y B-lactamicos; se han detectado en diversos tipos de aguas residuales.
Todos ellos son antibidticos de amplio espectro ampliamente usados
en medicina humana y veterinaria, asi como en el area agricola (Hoff &
Kist, 2009; Amorim et al., 2014; Etebu & Arikekpar, 2016; Vicente & Pé-
rez-Trallero, 2010). De manera general, en los efluentes de las PTAR se
alcanzan concentraciones de distintos antibiéticos entre 0.005-31x10°
pg/l (Tabla 1) (Brown et al., 2006; Kiimmerer, 2009; Watkinson et al.,
2009; Hu et al., 2018; Kovalakova et al., 2020). Es notorio que en las
aguas residuales hospitalarias la concentracion de antibidticos es mas
alta (0.013 a 5x10° pg/l), sequida de las aguas ganaderas (0.002 a 2100
ug/l). Los antibidticos que estan en mayor concentracion son las tetra-
ciclinas seguidas de las fluoroquinolonas, sulfonamidas, -lactamicos
y finalmente se encuentran los macrdlidos con una menor presencia.
Es importante resaltar que en estas aguas residuales de origen urbano,
agricolas, de rastros y ganaderos, ademas de estar contaminadas con
antibi6ticos, también se encuentran presentes diferentes concentracio-
nes de nitrato. Por lo que es necesario eliminar ambos compuestos.

Aunque existen diferentes procesos fisicoquimicos para eliminar
materia nitrogenada de forma eficiente, son altamente costosos y la
mayoria de las veces generan una contaminacion colateral (Boyer,
2014). Por otro lado, hay diversos procesos bioldgicos que eliminan
completamente diferentes compuestos nitrogenados. Estos procesos
son amigables con el medio ambiente y tienen una buena relacion cos-
to-efectividad (Mozumder & Hossain, 2020). Dentro de estos procesos,
se incluyen la nitrificacion, el anammox y la desnitrificacion. El proceso
bioldgico de la desnitrificacion cobra relevancia, ya que es un proce-
so andxico de oxido-reduccion donde el nitrato se reduce a nitrégeno
molecular, a través de la accion de diferentes enzimas reductasas y
simultaneamente, la materia carbonada se oxida a HCO,, al utilizarla
como fuente de electrones (Cuervo-Lopez et al., 2009). La temperatura,
pH, oxigeno y relacion carbono/nitrégeno (C/N), afectan el desempe-
fio de la desnitrificacion, observandose efectos sobre la velocidad de
consumo Yy crecimiento celular, inhibicion de algunas de las enzimas
desnitrificantes, pérdida de la actividad desnitrificante, asi como una
desnitrificacion incompleta. Estos factores deben ser controlados de
forma que se evite una acumulacion de sustratos e intermediarios y se
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presente una disminucion en las eficiencias de consumo y conversion
de los sustratos utilizados (Knowles, 1982; Cuervo-Lopez et al., 2009;
Martinez et al., 2017).

Para realizar la desnitrificacion, es posible utilizar como donadores
de electrones compuestos organicos como etanol, acetato, glucosa, en-
tre otros (Cuervo-Lopez et al.,1999; Elefsiniotis & Li, 2006) 0 inorganicos
como hidrégeno, compuestos de azufre o metano, por lo tanto, organis-
mos litotrofos y organotrofos pueden estar involucrados en el proceso
respiratorio (Ma et al., 2020). En los ultimos afios, el interés cientifico
ha crecido y se ha centrado en el uso de la desnitrificacion organotrofica
para la eliminacion y/o degradacion de antibiéticos. Tal es el caso de
los estudios realizados bajo condiciones desnitrificantes con diferentes
sulfonamidas como SDZ, SMX, SMZ (Sun et al., 2017; An & Qin, 2018;
Hou et al., 2019a; Zhang et al., 2020a; Zheng et al., 2020; Li et al.,
2021); con B-lactamicos como AMP y AMOX, y tetraciclinas como TET y
OTC (Islas-Garcia et al., 2017; Rahman et al., 2018; Semedo et al., 2018;
Feng et al., 2020; Li et al., 2020; Yu et al., 2021). Incluso, se ha estudiado
la eliminacion de otro grupo de antibiéticos como las fluoroquinolonas,
tal es el caso de CIP y OFL bajo condiciones desnitrificantes (Tong et al.,
2019; Hassan et al., 2020; Ruan et al., 2020). Aunque en la literatura se
encuentran estudios sobre el uso de la desnitrificacion para eliminar an-
tibidticos presentes en las aguas residuales, es dificil saber qué ocurre
con el proceso respiratorio bioldgico, es decir si es posible eliminar el
antibidtico y mineralizarlo por desnitrificacion, ya que las variables de
respuesta como eficiencias de consumo de sustratos, rendimientos de
formacion de productos y velocidades de consumo de sustrato y for-
macion de producto no siempre son reportadas. El utilizar este tipo de
variables de respuesta permitiria demostrar qué sucede con el proceso
desnitrificante, asi como el destino de los antibi6ticos que son degra-
dados por esta via biologica y asi proponer este proceso respiratorio
como un proceso bioldgico eficiente y amigable con el ambiente para la
depuracion de aguas residuales. Asimismo, en presencia de antibidticos,
aun no se ha realizado la asociacion de variables bioldgicas como abun-
dancia relativa de comunidades desnitrificantes, genes desnitrificantes
y de resistencia, con variables fisiologicas y cinéticas, por lo que seria
deseable generar mas informacion sobre estos temas.

El objetivo del presente documento es proporcionar una revision de
los estudios que se han realizado en los Ultimos afios bajo condiciones
desnitrificantes a fin de ahondar sobre el papel de la desnitrificacion en
la biodegradacion de los antibi6ticos, asi como identificar los efectos
de los antibicticos sobre la fisiologia, cinética y comunidad microbiana
desnitrificante.

DISCUSION

Eliminacion de antibidticos y su efecto sobre el proceso desnitri-
ficante. La eliminacion de antibiéticos del medio ambiente es un tema
de preocupacion en la comunidad cientifica, por lo que los estudios
para su eliminacion mediante procesos bioldgicos han ido aumentando.
La desnitrificacion es un ejemplo de éstos y se destaca porque elimina
el nitrégeno y la materia carbonada simultaneamente. Algunos estudios
en los que se reproducen las concentraciones de antibitticos encon-
tradas en aguas residuales y en el medio ambiente, muestran que en
condiciones desnitrificantes utilizando diferentes tipos de reactores y
condiciones de operacion, es posible la eliminacion de diferentes anti-
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bidticos, ya sea de forma individual y/o en mezcla, en concentraciones
desde pg/l hasta mg/l (Tabla 2, material suplementario).

Los antibidticos pueden ser eliminados por tres formas principal-
mente: por adsorcion, accion quimica y accion biologica (Oberoi et al.,
2019). La adsorcion es un proceso en el que los antibidticos presentes
en el agua contaminada se adhieren a los microorganismos depurado-
res, que se encuentran ya sea en forma de biopelicula, aglomerados
granulares o floculares. Qué tanto se adsorban los antibidticos a los
lodos depuradores dependera de diferentes factores, entre ellos de sus
interacciones con iones metalicos como Ca?* y Mg?* presentes en la
matriz del lodo y del pH del medio, como sucede con las fluoroquino-
lonas (Li & Zhang, 2010; Cao et al., 2019) y sulfonamidas (Wang et al.,
2015), antibiéticos de los que, bajo condiciones desnitrificantes, se ha
reportado su eliminacion por adsorcion desde un 7.7 y hasta un 70%
(Tabla 2). La composicion de las sustancias exopoliméricas (EPS) que
conforman los agregados microbianos también juega un papel deter-
minante en la adsorcion de antibiéticos (Cao et al., 2019). En general, el
tipo de antibidtico, su concentracion, la cantidad de biomasa presente,
asi como la composicion de las EPS y su capacidad de adsorcion, son
entre otros, los factores que determinan la adsorcion de antibi6ticos
(Xiang et al., 2019). Debido a esto, el intervalo de eliminacion de anti-
bidticos por adsorcion resulta ser muy variable. Asimismo, la elimina-
cion y/o degradacion de antibiGticos puede favorecerse por la accion de
determinados factores ambientales como la temperatura, la luz o el pH,
0 bien por oxidacion quimica (Ding et al., 2016).

Aunque la eliminacion de antibi6ticos por adsorcion o via quimica
puede ser alta, la eliminacion de estos compuestos por accion biologica
y bajo condiciones desnitrificantes en ocasiones puede ser el proceso
mas importante, alcanzando valores de hasta un 100% bajo estas con-
diciones (Tabla 2). Si bien no en todos los casos se reporta la elimina-
cion del compuesto nitrogenado, la biodegradacion de los antibiéticos
se puede asociar con el consumo del NO,” presente en las aguas por
desnitrificacion heterotrofica (Matéju ef al., 1992). Al respecto, en en-
sayos donde se encuentra un (nico antibidtico y segun el tipo de éste,
se han reportado diferentes porcentajes de eliminacion por biotransfor-
macion. Por ejemplo, tanto SMX como SMZ se eliminan parcialmente,
entre un 13 'y 21%, mientras que, dependiendo de la concentracion de
CIP, es posible eliminar entre 20 y hasta 93% del compuesto (Suarez et
al., 2010; Liu et al., 2013; Hassan et al., 2020). Esta documentada una
eliminacion total de AMP asociada completamente al consumo total de
nitrato por el proceso desnitrificante (Islas-Garcia et al., 2017). Asimis-
mo, se ha reportado la eliminacion por desnitrificacion de diferentes
concentraciones de AMP, desde 5 y hasta 100 mg/I totalmente asociada
a la reduccion de nitrato (Banda et al., 2022). Existen también repor-
tes sobre la eliminacion de mezclas de antibi6ticos bajo condiciones
desnitrificantes. Tal es el caso de la eliminacién parcial de mezclas de
antibiéticos como CIP, NOR, OFL, MOX; ERY y ROX, de entre 1y 20%, en
otro ejemplo con AMP, SMX, SDZ, TET, CTC y OTC donde la eliminacion
varié entre el 77-99%. En todos estos casos, se asocié con el consumo
de nitrato (Tabla 2). Sin embargo, hay que tener en cuenta que la pre-
sencia de mas de un antibiético puede provocar interacciones farma-
codinamicas, ya sean sinérgicas (suma de los efectos de los distintos
antibi6ticos) o antagdnicas (inhibiendo o bloqueando los efectos bac-
tericidas) (Roose-Amsaleg et al., 2021), repercutiendo en el consumo
del propio antibiético. Por ejemplo, se ha informado que una mezcla de
distintas tetraciclinas (Chen et al., 2020), tiene efectos antagonistas en
la digestion aerobia, disminuyendo el consumo de la materia orgénica.
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La variabilidad en los porcentajes de eliminacion tanto de antibioti-
cos como de nitrato podria estar asociada con la relacion C/N estable-
cida (Cuervo-Ldpez et al., 2009). En este sentido, Hassan et al. (2020)
utilizando CIP y relaciones C/N entre 0.5y 3.5, observaron que a la C/N
de 0.5, la biodegradacion del antibidtico y la eliminacion de NO, fueron
del 50 y 20% respectivamente, mientras que a una C/N mayor que 1.5,
la biodegradacion de ambos sustratos fue mayoritaria. Esto apunta a
que, al establecer relaciones C/N estequiométricas o cercanas a ellas,
se incrementa la posibilidad de obtener una eliminacion de antibi6ticos
cercana al 100%, como lo reportado por Islas-Garcia et al. (2017) y
Banda et al. (2022). Otro punto puede ser que el antibi6tico esté en la
presencia de una fuente carbonada facilmente degradable. Al respecto,
existen trabajos en los que el consumo de CIP (Hassan et al., 2020) y
AMP (Islas-Garcia et al., 2017) se ha logrado en presencia de aceta-
to de sodio. Los autores proponen que estos resultados podrian estar
asociados con procesos cometabdlicos, donde el acetato de sodio es la
fuente de carbono que funciona como principal donador de electrones
y promueve el crecimiento microbiano. También se ha informado que
bajo condiciones desnitrificantes litotrdficas es posible eliminar NO,"y
el 21% de SMX utilizando azufre como fuente donadora de electrones.
Cabe mencionar que el proceso desnitrificante litotréfico es poco utili-
zado, por lo que hace falta generar informacion sobre este proceso en
presencia de antibiéticos. La informacion presentada muestra la viabi-
lidad de utilizar el proceso desnitrificante para tratar aguas residuales
contaminadas con antibiéticos. Sin embargo, dado que factores como
el tipo de antibiético, concentracion y nimero de antibi6ticos presen-
tes en las aguas residuales, asi como la concentracion de compuestos
nitrogenados presentes, afectan la eliminacion de ambos compuestos,
se necesita mas investigacion al respecto para corroborar que la elimi-
nacion del antibidtico esté acoplada a la eliminacion de nitrato por el
proceso desnitrificante.

Destino de los antibioticos y del nitrogeno. Son pocos los estudios
que han reportado los productos finales provenientes de la respectiva
oxidacion y reduccion de la fuente de carbono y nitrgeno bajo condi-
ciones desnitrificantes. El destino de los antibidticos y nitrato elimina-
dos es un punto importante por responder, puesto que los productos
formados no necesariamente son CO, y N,, los productos carbonados
generados podrian ser mas recalcitrantes y/o toxicos que el antibioti-
co de origen, y el nitrato podria ser reducido parcialmente y quedarse
como NO,” y/o N,0 (Moraes et al., 2012), es decir, los productos podrian
causar mas dafo al medio ambiente.

En algunos estudios se ha realizado la asociacion del proceso
desnitrificante con el consumo simultaneo de antibiéticos, asi como
el seguimiento de los productos de la ruta carbonada y nitrogenada.
Por ejemplo, Islas-Garcia et al. (2017) observaron que la AMP se mine-
ralizo completamente a HCO, y el NO,” se redujo totalmente a N, con
una formacion transitoria de NO,. Esto demostrd que la AMP se puede
eliminar y mineralizar por completo en condiciones desnitrificantes. En
algunos estudios, se ha observado una mineralizacion parcial de anti-
hidticos. Banda et al. (2022) observaron que dependiendo de la concen-
tracion de AMP utilizada como Unica fuente de electrones, es posible
la eliminacion completa del antibiético o bien su mineralizacion parcial
a HCO, y a dos intermediarios carbonados, mientras que el NO, fue
reducido parcialmente a N,y N,0, por lo que, bajo ciertas condiciones
desnitrificantes, es posible eliminar AMP, pero no mineralizarla comple-
tamente. Cabe destacar que en otros estudios se observa la minerali-
zacion parcial de antibioticos, pero no se habla del destino del nitrato.
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Por ejemplo, Liu et al. (2013) detectaron dos intermediarios como posi-
bles productos de la biotransformacion de CIP. Asimismo, Hassan et al.
(2020) observaron que bajo condiciones desnitrificantes y al establecer
una relacion C/N de 1.5, surgen cuatro intermediarios carbonados pro-
cedentes de la biotransformacion de CIP; para este caso en particular,
los autores proponen a los cuatro intermediarios como posibles pasos
de reacciones independientes para la degradacion del antibidtico. Al
utilizar SMX se observo la formacion transitoria de un intermediario
(Barbieri et al., 2012), en otro ensayo con SMX se observo la formacion
de cuatro intermediarios de carbono (Zhang et al., 2020a), para este
caso en particular, los autores proponen a los cuatro intermediarios
como posibles reacciones dependientes, por lo que se proponen dos
posibles rutas de degradacion de SMX. Por dltimo, se encuentran los
casos donde solo se observo el destino de la materia nitrogenada. Liu et
al. (2013) con CIP observaron una reduccion parcial del nitrato ya que el
26% del nitrato consumido se redujo completamente a N, y el 52% se
redujo a nitrito. Si bien no en todos los casos se forman intermediarios
carbonados o nitrogenados bajo condiciones desnitrificantes, se podria
decir que su aparicion depende del antibidtico evaluado, asi como de la
disponibilidad del nitrato presente.

Es importante subrayar que muchos de los intermediarios carbona-
dos detectados no han sido identificados, por lo que, en la mayoria de
los casos, se desconocen los efectos o grado de toxicidad que podrian
ocasionar a los microorganismos presentes en el ambiente o a la sa-
lud humana. Otro punto que esta poco abordado son las posibles rutas
metabdlicas de degradacion de los antibidticos, asi como las enzimas
involucradas en dichos procesos. Con la informacion presentada se ob-
serva la falta de medicion y/o verificacion de la mineralizacion de anti-
biéticos. Contar con esta informacion permitiria constatar su oxidacion
total o parcial. Asimismo, hay poca evidencia que muestre la capacidad
de los lodos desnitrificantes para mineralizar completamente otros an-
tibidticos de uso comdn, por lo que atin se desconoce la posibilidad de
que los antibidticos actualmente utilizados puedan oxidarse bajo con-
diciones desnitrificantes.

Efectos de antibidticos sobre el proceso desnitrificante. Se ha re-
portado que, como consecuencia de la exposicion de los lodos des-
nitrificantes a un unico antibidtico, pueden ocurrir diversos efectos
fisioldgicos, tales como una disminucion en la eficiencia de consumo
de nitrato (Li et al., 2021), asi como una acumulacion de compuestos
nitrogenados ya sea en forma de nitrito, 6xido nitroso 0 ambos (Ahmad
et al., 2014; Yin et al., 2017). También se han documentado efectos
cinéticos sobre el proceso desnitrificante (Hou et al., 2015; Islas-Garcia
et al, 2017; Banda et al., 2022), tal es el caso de la disminucion en
una o varias de las velocidades especificas (q) del proceso, ya sea en
el consumo de nitrato o del propio antibidtico (q,,,, g antibiético), o bien
de la formacion de los productos de la desnitrificacion, como el bidxido
de carbono y/o bicarbonato (q,, d,c,) Nitrdgeno molecular (,,) y/o
intermediarios como el nitrito (q,,,) y el 6xido nitroso (q,,,,)- Eiemplos de
estos efectos sobre el proceso desnitrificante se muestran en la Tabla 3
(material suplementario). La evidencia cientifica ha permitido corrobo-
rar que, bajo condiciones desnitrificantes, la presencia de antibiéticos
usados como fuente organica o donador de electrones, ya sea de forma
individual 0 en mezcla, provoca mas de un efecto cinético o fisioldgico
en los lodos.

En algunos casos, la exposicion de lodos desnitrificantes a diferen-
tes concentraciones de CIP no afectd el consumo de NOS', resultando
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en altas eficiencias de consumo del compuesto nitrogenado (Li ef al.,
2021). Es posible que este resultado esté asociado con la C/N utili-
zada de 3.7. En este sentido, Hassan et al. (2020) observaron que en
presencia de CIP y cuando se establecen relaciones C/N mayores a la
estequiométrica, el consumo de NO,"es mayoritario y no se ve afectado.
Sin embargo, esto no quiere decir que se pueda usar CIP como fuente
organica donadora de electrones sin causar repercusiones en el proce-
so desnitrificante puesto que se han observado en lodos con actividad
desnitrificante, otros efectos fisioldgicos como la acumulacion de nitrito
y cinéticos, como una disminucion en la velocidad de consumo de NO,".

Son diferentes factores los que determinan qué tanto disminuye
la eficiencia de consumo de NO,, entre ellos se pueden citar al tipo
de antibidtico y su concentracion. Por ejemplo, concentraciones de 10
mg/I de CIP, AMOX o CTC parecen no tener efecto sobre la eficiencia
de consumo de NO,” en comparacion a un ensayo control, ya que son
cercanas al 100% en ambos casos. Sin embargo, con 10, 50 y 100
mg/I de B-lactdmicos, sulfonamidas y tetraciclinas como AMOX, SMX
y CTC respectivamente, la eficiencia de consumo de NO," disminuye
en las 3 concentraciones (10, 50 y 100 mg/l) un 71.2, 42.62 y 74.43%
respectivamente, al aumentar la concentracion de los antibi6ticos y en
comparacion con un ensayo control sin ellos (Li et al., 2021). Aunque la
disminucion de la eficiencia de consumo de NO, es similar con AMOX y
CTC, existio un efecto mayor (98 al 26.8% y 90.89 al 16.46% respec-
tivamente) cuando se utilizo SMX (50.6 al 7.98%). De hecho, diversos
estudios coinciden en que la disminucion de consumo de nitrato ocurre
con mas frecuencia cuando se usan algunas sulfonamidas o tetracicli-
nas (Zhang et al., 2022).

Por otra parte, las fluoroquinolonas, -lactdmicos, sulfonamidas y
tetraciclinas han causado la acumulacién de diferentes intermediarios
nitrogenados como el caso del nitrito (Ahmad et al., 2014; Li et al.,
2021). Este efecto ha sido asociado con la disminucion de la actividad
de las enzimas reductasas, con modificaciones celulares estructurales
sobre las comunidades desnitrificantes en los lodos, asi como cambios
en las comunidades desnitrificantes debido al efecto bactericida de
los antibidticos (Katipoglu-Yazan et al., 2016). En ensayos con Pseu-
domonas stutzeri se observé que, bajo condiciones desnitrificantes, la
actividad de las enzimas 6xido nitroso, oxido nitrico y nitrito reductasa
disminuia en presencia de SMX, provocando acumulacion de interme-
diarios nitrogenados como N,0, NO y NO, (Gui et al., 2017). La infor-
macion de la literatura sugiere que la acumulacion de nitrito depende
de la concentracion del antibidtico, por ejemplo, se observa una ten-
dencia decreciente de nitrito acumulado con respecto al aumento en la
concentracion de antibiéticos como AMOX, SMX y CTC. Cabe destacar
que, hasta el momento, no se han encontrado reportes en ensayos con
mezclas de diferentes antibidticos, en los que se muestren afectaciones
en variables fisiologicas como la eficiencia de consumo de NO, y la
acumulacion de nitrito, por lo que falta realizar mas estudios con lodos
bajo condiciones desnitrificantes y mezclas de antibiéticos.

El efecto de los antibicticos sobre algunas variables cinéticas como
velocidades de consumo de nitrato y formacion de productos (HCO,,
N,0 y N,) se muestra en la Tabla 3. En el caso de antibigticos perte-
necientes al grupo B-lactamico, se observa una mayor afectacion en
la velocidad especifica de consumo de NO, en presencia de 18 mg de
AMP y acetato (Islas-Garcia et al., 2017) que con 10 mg/I de AMOX (Li
etal., 2021), mientras que en un ensayo realizado con AMP como Unica
fuente de electrones, las velocidades de consumo de NOS', de mine-
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ralizacion a HCO," y reduccion a N, fueron menores a las reportadas
cuando el proceso desnitrificante es realizado con acetato (Banda et al.,
2022). En algunos casos, se han reportado las velocidades de consumo
de nitrato y formacion de dxido nitroso, por ejemplo, al evaluar con
SMZ (Hou et al., 2015) y con una mezcla de antibicticos conteniendo a
SMZ (Yin et al., 2017). Se observd que la disminucion de la velocidad
de consumo de NO, fue de 38% con SMZ 'y 44% con la mezcla que
contenia ERY, NOR, SMZ y OTC. Los autores sugieren que la velocidad
de consumo se ve afectada por el efecto sinérgico de la presencia de
los otros antibidticos y de la SMZ (Yin et al., 2017). Ademas, Yin et al.
(2017) asi como Hou et al. (2015), reportaron que el aumento de 3.77 y
39 veces en la velocidad de formacion de N,O fue debido a la presencia
del antibictico, este efecto también se ha observado con sulfonamidas,
tetraciclinas y fluoroquinolonas como SMX, TET y OFL (Roose-Amsaleg
et al., 2021), donde se muestran efectos sinérgicos en la liberacion
de N,0. Por Ultimo, se encuentran estudios donde se ha reportado la
disminucion en la velocidad de consumo de nitrato, en los cuales se ob-
serva que al ser comparadas contra un ensayo control en ausencia de
antibidticos, el porcentaje de disminucion de la velocidad de consumo
de nitrato aumenta con respecto a la concentracion de distintos antibio-
ticos como CIP, AMOX, SMZ, SMX y CTC. Es importante resaltar una vez
mas, que el tipo y concentracion de antibiético provoca efectos diferen-
tes, de hecho, con concentraciones entre 10-100 mg/| de estos anti-
bidticos, el orden de afectacion en la velocidad de consumo de nitrato
fue el siguiente: SMX>CTC>AMOX>CIP. La informacion presentada
muestra los efectos de los antibiéticos sobre el proceso desnitrificante,
donde los factores antes mencionados, juegan un rol importante para
llevar a cabo la desnitrificacion. Es importante resaltar que la utilizacion
de variables fisioldgicas y cinéticas permitiria una mejor evaluacion de
los efectos de los antibidticos sobre la desnitrificacion.

Efectos de antibioticos en las comunidades desnitrificantes. Se
ha reportado la dinamica de las comunidades microbianas bajo con-
diciones desnitrificantes expuestas a diferentes antibiéticos de forma
individual o en mezcla, observandose una gran diversidad de géneros
presentes. Esta gran diversidad de géneros reportados es posiblemen-
te debida a las condiciones experimentales establecidas, asi como al
tipo de ensayo realizado, en lote o en continuo, o bien, a la concentra-
cion, tipo y ndmero de antibiéticos utilizados, entre otras. En la Tabla 4
(material suplementario) se muestra el efecto de algunos antibiéticos
sobre la abundancia relativa de géneros bacterianos presentes en las
comunidades microbianas bajo condiciones desnitrificantes. Esta va-
riable de respuesta es utilizada para evaluar la biodiversidad, es decir,
determinar el porcentaje de cada género con relacion al total de los
géneros que conforman la comunidad microbiana. Se dice que los gé-
neros bacterianos resistentes se definen como aquellos que tienen la
capacidad de crecer y sobrevivir ante el efecto del antibiético (Brauner
etal.,2016), lo cual se ve reflejado como un aumento en su abundancia
relativa durante la exposicion a antibiéticos; mientras que los géneros
bacterianos tolerantes, son aquellos que subsisten durante el tiempo
en que el antibiético esté presente (Brauner et al., 2016), por lo que es
posible observar una disminucion en su abundancia relativa. Algunos
de estos géneros, incluyen microorganismos desnitrificantes completos
y bacterias que contienen una 0 mas enzimas que forman parte de la
via desnitrificante. Aunque las comunidades microbianas son diversas,
algunos géneros desnitrificantes como Thauera, Comamonas, Pseudo-
monasy Thiobacillus son los mas frecuentemente encontrados cuando
éstas se exponen a antibiéticos (Liu et al., 2016; An & Qin, 2018; Tong et
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al., 2019; Zhang et al., 2019; Hassan et al., 2020; Zhang et al., 2020a;
Zhang et al., 2020b; Li et al., 2021).

Entre los géneros bacterianos tolerantes a antibioticos como
B-lactamicos, sulfonamidas, fluoroquinolonas, macrdlidos y tetracicli-
nas se encuentran Thaueray Comamonas. Con AMOX, la abundancia
relativa disminuye un 32 y 12%, respectivamente (Li et al., 2021); ante
100 mg/I de SMX la abundancia relativa de éstos disminuye un 28 y
9%, respectivamente (Airong et al., 2005; Liu et al., 2016; Feng et al.,
2020; Zhang et al., 2020b), mientras que dependiendo de la concentra-
cion utilizada de CIP su abundancia relativa disminuye entre 10 a 24%
y 7%, respectivamente (Tong et al., 2019; Zhang et al., 2019; Hassan et
al., 2020; Zhang et al., 2020a; Li et al., 2021). Un fendmeno similar se
observa en presencia de STRP y TYL; en tanto que con CTC la abundan-
cia relativa de Comamonas disminuye un 7% (Li et al., 2021). El efecto
en Thauera'y Comamonas, sigue el siguiente orden: AMOX>SMX>CI-
P>STRP>TYL>CTC. Chen et al. (2017) observaron que la actividad des-
nitrificante disminuia con el aumento de la concentracion de SMX, lo
cual podria estar fuertemente relacionado con la afectacion a diferentes
géneros desnitrificantes. Es importante resaltar que, el mecanismo de
accion de los antibioticos citados es diferente, a saber: inhibidores de la
sintesis de la pared microbiana (B-lactamicos), en la sintesis de folato
(sulfonamidas), en la actividad de la ADN girasa (fluoroquinolonas) o
sintesis proteica (macrdlidos y tetraciclinas).

Se ha reportado que uno de los géneros desnitrificantes mas re-
sistente tanto a fluoroquinolonas como CIP y macrélidos como STRP
es Pseudomonas (Hancock & Speert, 2000), debido posiblemente a las
mutaciones en las enzimas blanco como girasas y topoisomerasas que
se han reportado en diferentes especies de Pseudomonas, asi como a
su resistencia intrinseca a macrdlidos (Jalal et al., 2000; Bruchmann et
al., 2013; Morita et al., 2014). Aunque se ha reportado a Pseudomonas
como tolerante a OFL y TYL, es mas frecuentemente reportado como
género desnitrificante resistente (Tong et al., 2019; Zhang et al., 2019).
Cuando se usan concentraciones en pg/I de SMX, Thaueray Thiobaci-
llus son resistentes. Caso que difiere con SDZ, ya que al menos Rho-
dopseudomonas y Thiobacillus permanecen en el medio. Mientras que
en presencia de tetraciclinas como TET y OTC, se observa la resistencia
de Thauera aumentando su abundancia relativa entre un 17 'y 22% (Liu
etal., 2016; Li et al., 2021). Por Ultimo, cuando los lodos desnitrifican-
tes se encuentran expuestos a mezclas de antibidticos, Comamonas
aparece como género desnitrificante resistente. Esto es posiblemente
debido tanto a la concentracion como al tipo de antibicticos presentes.
Es importante notar que, para tener un mejor entendimiento sobre los
cambios poblacionales en las comunidades desnitrificantes expuestas
a diferentes antibidticos, éstos deberian ser complementados con el
seguimiento de las variables fisiologicas y cinéticas de la desnitrifica-
cion, asi como con el estudio del cambio en los genes de la desnitrifi-
cacion, ya que existen otros factores como el tiempo de exposicion y
la transferencia horizontal de genes, que podrian inducir la resistencia
a antibidticos.

Deteccion de genes desnitrificantes en comunidades microbianas
expuestas a antibioticos. Los efectos de los antibidticos sobre los lo-
dos desnitrificantes se han evaluado al cuantificar los diferentes genes
responsables de la desnitrificacion: narG, napA, nirS, nirk, cnorB, gnorB
y nosZ, encontrandose cambios en la abundancia de éstos. Ejemplos
de estos cambios se presentan en la Tabla 5 (material suplementario).
Las condiciones experimentales establecidas, el uso de diferentes anti-
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bidticos como fuente organica donadora de electrones, concentracion y
origen de los lodos, asi como el tiempo de exposicion a los antibi6ticos,
son variables de importancia que influyen en la abundancia de diversos
genes desnitrificantes.

Diferentes autores han observado que una posible causa por la que
disminuye la abundancia de los genes desnitrificantes es por el efecto
negativo de los antibi6ticos sobre los hospederos que los contienen
(Wu et al., 2017; Feng et al., 2020). La disminucion tanto del nimero
de copias como de la abundancia relativa de los genes nirSy nosZ se
ha observado ante la exposicion de diferentes tetraciclinas (TET u 0TC),
sulfonamidas (SMT) o bien mezclas de estos antibiéticos, disminuyendo
entre el 17-48% y 50-65% respectivamente. Este fendmeno ha sido
igualmente observado con diferentes concentraciones de OTC, posible-
mente debido al tiempo de exposicion y concentraciones de antibi6tico
ensayadas (Hou et al., 2015; An & Qin, 2018; Semedo et al., 2018; Yu
et al., 2021). Asimismo, se ha observado la inhibicién de la expresion
del gen nirS, que controla el paso de reduccion de NO,” a NO y del gen
nosZ, que controla el paso de la reduccion de N,0 a N,, por la presencia
de sulfonamidas y tetraciclinas. Se ha reportado una disminucion en
la expresion de genes nirSy nosZ expuestos a SMX de 0.030 y 0.036
FC respectivamente (An & Qin, 2018; Li et al., 2021) asociada también
con la acumulacion de intermediarios nitrogenados (Tabla 5). De esta
forma, las sulfonamidas no solo afectan la concentracion de los genes
desnitrificantes sino también su actividad (Gao et al., 2012; Zhang et
al., 2022). Hasta el momento, solo se ha observado la disminucion en
la abundancia de los genes de la enzima nitrato reductasa nargy napA
(el 37 y 50% respectivamente) en presencia de OTC (Yu et al., 2021).
Igualmente, la variacion en la abundancia de los genes desnitrificantes
podria ser posiblemente debida al tipo y concentracion de antibiéticos,
asi como al tiempo de exposicion.

Es importante notar que no todos los antibidticos inhiben la expre-
sion de los genes de la desnitrificacion, ya que existen antibiéticos que
la promueven, hecho que se ha asociado con la presencia de bacterias
hospederas resistentes (Li et al., 2021). De esta forma, en diferentes
estudios realizados bajo condiciones desnitrificantes con antibi6ticos
como OFL, TYL, OTC y mezclas de sulfonamidas como SFD y SMX, se ha
observado el aumento del nimero de copias de los genes narG, napA,
nirS, nirK, cnorB, qnorB'y nosZ entre 1y 5 érdenes de magnitud o bien
entre 10 y 100% en su abundancia relativa (Sun et al., 2017; Tong et
al., 2019; Zhang et al., 2019; Feng et al., 2020; Yu et al., 2021). Tam-
bién se ha observado un aumento en la expresion de los genes nirSy
nosZ en un cultivo axénico con fluoroquinolonas como CIP (Ruan et al.,
2020). Hasta el momento se desconoce el efecto de antibidticos como
B-lactamicos u otros tipos de sulfonamidas, tetraciclinas, fluoroguinolo-
nas, asi como macrélidos sobre la abundancia y expresion de los genes
desnitrificantes, aunque si se sabe que han tenido efectos negativos
sobre el comportamiento cinético de la desnitrificacion. El hecho de
utilizar consorcios microbianos dificulta la obtencion de resultados, por
lo que se requiere mas investigacion sobre estos temas en presencia
de otros antibidticos.

Deteccion de genes de resistencia a antibioticos (GRA) en comu-
nidades desnitrificantes expuestas a antibiéticos. Se ha reportado
la presencia de GRA en lodos desnitrificantes expuestos a diferentes
concentraciones de antibidticos y tiempos de exposicion, asumiéndose
que actiian como mecanismos de defensa a la presencia de estos com-
puestos. Se ha registrado la presencia de diferentes GRA, por ejemplo:
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sul, cuando lodos desnitrificantes son expuestos a sulfonamidas, erm
en presencia de macrélidos y fet en presencia de tetraciclinas (Hou et
al.,, 2015; Zhang et al., 2019; Li et al., 2020) (Tabla 6, material suple-
mentario). EI aumento de la abundancia de GRA se ha observado por
distintas causas, ya sea por la proliferacion de bacterias resistentes a
antibiéticos (Zhou et al., 2017), por la presencia de altas concentra-
ciones de antibidticos (Zhao et al., 2021) o bien como mecanismo de
proteccion de los microorganismos a la presencia del antibiético (Yu et
al., 2021). En presencia de tetraciclinas se ha observado el aumento de
la abundancia relativa de diferentes genes tet desde un 32% y hasta 5
veces de su valor inicial (Feng et al., 2020). Asimismo, se ha observa-
do en presencia de SMZ, TYL y TET el aumento del nimero de copias
de los GRA como sul1, sul2, tetA, tetC, tetX'y ermQ entre 1y hasta 5
érdenes de magnitud (Hou et al., 2015; Zhang et al., 2019; Li et al.,
2020). Es notorio que en presencia de TYL se ha reportado un aumento
en el nimero de copias de GRA como tet, sul'y erm, es decir, la sola
presencia de un antibiotico estimula el aumento de diferentes GRA. En
este sentido, Zhao et al. (2021) reportan la predominancia de GRA pro-
pios del antibidtico utilizado, ademas de detectar la presencia de otros
tipos de GRA, efecto referido de igual manera por Wu et al. (2017). Se
ha observado que el aumento en la deteccion de los GRA esta relacio-
nado con su actividad para promover la resistencia a antibioticos. En
un estudio realizado en una planta piloto con etapa desnitrificante, se
encontro que la expresion génica de los GRA era igual para los dife-
rentes genes de resistencia detectados, indicando que la actividad de
resistencia estaba en funcionamiento (Hou et al., 2019b), lo cual posi-
blemente puede contribuir a la diseminacion de la resistencia. También
se ha registrado la disminucion de la abundancia de GRA asociada a la
disminucion del nimero de microorganismos hospederos de los GRA; a
la disminucion de factores que favorecen la transferencia horizontal de
genes (Shin et al., 2020), asi como a la disipacion del antibidtico (Sun et
al., 2017). En este sentido, se ha reportado la disminucion del nimero
de copias de entre 1y 4 érdenes de magnitud de diferentes GRA (Sun
etal., 2017; Zhang et al., 2019), asi como la disminucion del 16 al 50%
de diferentes genes fet, en presencia de tetraciclina (Yu et al., 2021).
Hasta el momento, en diferentes estudios se ha registrado la tendencia
creciente de deteccion de GRA en lodos desnitrificantes, lo cual podria
ser un problema en el futuro, ya que la resistencia a antibiéticos se
puede prolongar a bacterias patégenas, requiriéndose de la generacion
de nuevos antibidticos, los cuales, a su vez, continuaran aumentando
la contaminacion de aguas, siendo ésto un ciclo interminable. Las in-
vestigaciones se deben enfocar en la eliminacion de antibiéticos de las
aguas bajo condiciones desnitrificantes, asi como en la blsqueda de
tratamientos para la eliminacion de los GRA.

Conclusiones principales y perspectivas. La creciente contamina-
cion de las aguas residuales por nitrato y antibiéticos es un problema
que ha ido incrementando con el paso del tiempo. Ante esta situacion,
el proceso bioldgico de la desnitrificacion puede ser una buena alterna-
tiva para la eliminacion simultanea de estos dos compuestos presentes
en aguas residuales, ya sean de origen municipal, o provenientes de
residuos agricolas o de rastros. El proceso respiratorio desnitrificante
puede realizarse en diferentes sistemas operativos, como los llevados
a cabo en lotes o bien, en sistemas dinamicos como los reactores SBR
y reactores alimentados en continuo, como UASB y EGSB, entre otros.
Bajo condiciones desnitrificantes, la concentracion, tipos de antibioti-
cos y mezclas de estos presentes en el agua, afectan el comportamien-
to fisioldgico de los lodos depuradores, en términos de la eficiencia de
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eliminacion del nitrato y de los antibi6ticos, asi como su desempefio
cinético en términos de velocidades especificas. De esta forma, la eli-
minacion de antibidticos puede variar desde un 1 hasta un 93%. Se
debe prestar mayor atencion al control de la relacién C/N y a la posible
adicion de fuentes carbonadas que potencien o permitan obtener un
mejor desempefio del proceso desnitrificante y, por tanto, mayores efi-
ciencias de eliminacion de los antibiéticos. Es importante resaltar que
bajo condiciones desnitrificantes y en la mayoria de los casos, se des-
conoce la mineralizacion y/o el grado de oxidacion de los antibiéticos, la
generacion de intermediario(s), asi como su posible efecto toxico o in-
hibitorio. De igual manera, se desconoce el efecto de otros antibiéticos
comunmente utilizados sobre el proceso desnitrificante. La informa-
cion revisada ha destacado que la presencia de antibiéticos ejerce una
presion sobre la diversidad microbiana desnitrificante presente en el
medio ambiente. También se ha reportado que, dependiendo de la con-
centracion y tipo de antibidtico, géneros desnitrificantes como Thauera
y Comamonas pueden ser sensibles, resistentes y/o tolerantes a AMOX,
SMX, CIP, STRP, TYL y CTC mientras que Pseudomonas es resistente a
fluoroquinolonas y macrdlidos. Hasta el momento solo se ha reporta-
do que la exposicion de lodos desnitrificantes a diferentes tetraciclinas
(TET u OTC), sulfonamidas (SMZ) o bien a mezclas de estos antibidticos,
disminuye el niamero de copias entre un 17-48% y 50-65% respecti-
vamente de genes desnitrificantes como nirS 'y nosZ. Asimismo, se ha
reportado una disminucion en la expresion génica de nirSy nosZ. Esto
podria ser un cuello de botella en el desempefio cinético de las enzimas
desnitrificantes y causar la acumulacion de nitrito u 6xido nitroso. Es
importante remarcar que, como un posible mecanismo de defensa a
la presencia de antibi6ticos, se ha detectado tanto en lodos desnitri-
ficantes como no desnitrificantes, la existencia de diferentes GRA, lo
cual podria ser benéfico para la realizacion del proceso desnitrificante
y a la vez llegar a ser un problema ambiental y ecoldgico importante.
Finalmente, es necesario realizar mas estudios sobre los efectos ciné-
ticos, fisioldgicos, asi como los efectos en las poblaciones y genes de
los lodos desnitrificantes expuestos a diferentes antibioticos, a fin de
contribuir en la obtencion de una eliminacion mas eficiente y estable de
estos contaminantes del agua mediante la desnitrificacion.
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