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Resumen

Esta investigación presenta un enfoque alternativo para calcular el contenido de carbono orgánico 
total utilizando registros de cable y técnicas de aprendizaje automático; específicamente, imágenes 
resistivas de pozo, su resistividad promedio y registro de rayos gamma son empleados para entrenar 
un modelo regresivo. La metodología se aplicó en la Formación La Luna, la cual ha sido reportada 
como una de las principales rocas generadoras de Colombia y el oeste de Venezuela. El objetivo de 
este trabajo es enseñar a una máquina como reconocer patrones entre rasgos fractales en imágenes 
de pozo y su contenido de carbono orgánico total. El aprendizaje automático implementado se basa 
en técnicas de aprendizaje por conjuntos, en este caso, un conjunto de árboles de decisión conocido 
como bosques aleatorios. Los datos empleados tienen un total de 960 mediciones de registros, los cu-
ales fueron divididos aleatoriamente en 80% para entrenamiento y 20% para validación. El resultado 
es equivalente a la curva obtenida con una regresión semilogarítmica del carbono orgánico medido 
en el núcleo contra valores de registro de densidad. La precisión de este método es suficientemente 
alta para ser considerada durante evaluaciones petrofísicas, mostrando un error medio cuadrático de 
0.44% y un coeficiente de correlación de Pearson de 0.88. La metodología depende de la calidad 
de la imagen y cualquier anomalía en estos datos aumentará el error. El modelo generado debe ser 
recalibrado para otras formaciones, pozos horizontales, desviados y cuando se empleen registro de 
imágenes durante la perforación.
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abstraCt

This research presents an alternative approach to computing the content of total organic carbon 
using wireline logs and machine learning techniques. Specifically, borehole resistivity imaging, its 
average resistivity, and gamma rays log are employed to train a regression model. The methodology 
was applied in La Luna Formation, which has been reported as one of the principal source rocks 
for Colombia and western Venezuela. This work aims to teach a machine how to recognize patterns 
between fractal features in borehole images and their content of total organic carbon. Implemented 
machine learning is based on ensemble learning techniques, in this case, an ensemble of decision 
trees known as random forest. The working data set totalizes 960 wireline log measurements, ran-
domly split into 80% for training and 20% for validation. The outcome is equivalent to the curve 
obtained using a semi-log regression of organic carbon measured in core against density log values. 
The accuracy of this method is high enough to be considered during petrophysics evaluations, show-
ing a root-mean-square error of 0.44% and Pearson’s correlation coefficient of 0.88. The methodol-
ogy depends on image quality, and anomalies in these data increase the error. The generated model 
must be recalibrated for other formations, for horizontal and deviated wells, and when logging while 
drilling imaging is employed.

Key words: La Luna Formation, total organic carbon, borehole resistivity imaging, random forest, 
fractal analysis and unconventional reservoirs. 

introdUCtion

In the last two decades, unconventional reservoirs have become one of the ultimate frontiers in hy-
drocarbon exploration. These reservoirs have been mainly developed in the late Cretaceous of North 
America, and similar geological settings are gradually catching the attention in other petroliferous 
regions around the world. One of the most critical parameters to be considered during oil shale and 
gas shale exploitation is the amount of total organic carbon (TOC). TOC is defined as the weight 
of organic carbon in a unit weight of rock, commonly expressed in weight percentage (wt.%) in 
borehole logs. Applications of quantifying TOC can range from evaluating source rock petroleum 
production to kerogen typing (Steiner et al., 2016).

The late Cretaceous La Luna Formation has been reported as a high potential unconventional reser-
voir in northern South America (Liborius and Slatt, 2014; Ceron et al., 2013). In western Venezuela, 
this formation is the principal source rock for the prolific Lago de Maracaibo Basin (Escalona and 
Mann, 2006). In Colombia, several basins such as Catatumbo, Cesar-Rancherias, Middle Magda-
lena, Guajira, and Guajira Offshore also have La Luna Formation as the main source rock (Gonzalez 
et al., 2009). Like other organic-rich formations, TOC in La Luna is obtained from lab geochemical 
tests or it can be estimated from density, acoustic, and resistivity logging.

During unconventional reservoir evaluation, the most common techniques to calculate TOC from 
borehole logs are the methods proposed by Schmoker (1983) and Passey (1990). Schmoker and 
Hester (1983) proposed a method based on regression of density logging versus TOC measured in 
core; the method was applied in the Mississippian and Devonian Bakken Formation in the United 
States portion of the Williston Basin. Passey's method, also known as ΔLogR technique, employs the 
overlaying of a scaled porosity log (generally the sonic transit time) on a deep resistivity curve (Passey 
et al., 1990); the method is applied to assess TOC in both clastic and carbonate environments.
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This work aims to provide an alternative procedure to compute TOC contents using wireline-ac-
quired resistivity imaging and total gamma-ray log. To achieve this goal, a predictive model based 
on random forest algorithm was developed. This model recognizes patterns in binary and grayscale 
images, likewise in resistivity and gamma-ray data; using these patterns model computes TOC values 
along the logged sequence. The available data set has a total of 960 log measurements; these data 
were randomly divided into 768 samples (80%) for training and 192 for validation (20%). The ac-
curacy of final results is evaluated through residual error, Pearson’s correlation coefficient, and root-
mean-square error.

The random forest, like any other supervised machine algorithm, has been successfully applied to 
reservoir characterization (Ao et al., 2018, Krasnov et al., 2017, Baraboshkin et al., 2019). Among 
the innovations presented in this work, is the application of fractal elements to train and feed a 
random forest model, focusing on how to supply information in the upstream oil and gas industry. 
Furthermore, once the predictive model is trained, this research presents a new option to calculate 
accurate TOC contents using only borehole imaging and gamma-ray data, providing additional 
value to regular borehole image interpretations.

Figure 1 presents the methodology workflow divided into two main stages, known as the training 
and regression (or prediction) stages. During training of supervised machines, the model utilizes a 
labeled dataset (independent variables), and it learns from seen results (dependent variable). Said 
otherwise, supervised learning is a way to use input variables (x) and an output variable (Y) to train 
an algorithm to learn the mapping function from the input to the output {Y = f(X)}. The goal is to 
approximate the best possible mapping function from input data (x) being able to predict the output 
variables (Y). It is called supervised learning because the process of learning from the training data 
set can be thought as a teacher supervising the learning process. The correct answers are known; the 
algorithm iteratively makes predictions on the training data and is corrected by the teacher. Learn-
ing stops when the algorithm achieves an acceptable level of performance (Brownlee, 2016). Finally, 
during the regression stage, the trained model must be able to figure out the dependent variable. In 
this case, TOC content equivalents to the TOC obtained through a semi-log regression of organic 
carbon measured in cores against density logging.

geologiCal setting

Bralower and Lorente (2003) reported that La Luna Formation was originally named the La Luna 
limestone in 1926 after the Quebrada La Luna in the Perijá range. However, this unit was formally 
called formation in 1937; the formation consists of thin-bedded and laminated dense dark gray to 
black carbonaceous-bituminous limestone and calcareous shale. The limestone beds vary from a few 
centimeters to less than a meter in thickness. The unit is particularly characterized by hard black 
ellipsoidal and discoidal limestone concretions ranging from a few centimeters to almost a meter in 
diameter (Bralower and Lorente, 2003).

Common lithofacies in core and outcrops include planktonic and benthic bituminous biomicrites 
with mudstone, wackestone, and packstone fabric. Upwards, La Luna increases the strata phosphatic 
content and unleashed a silicification process into those beds (Sarmiento et al., 2015). These fea-
tures arrangement are settled in normal marine conditions, clearly offshore, and in restricted marine 
environments. The relatively high sea-level event of the Turonian to Santonian in Colombia and 
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Figure 1. Methodology workflow in training and regression stages
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Venezuela originated the deposition of large amounts of organic matter contained in the offshore 
deposits of La Luna Formation (Ceron et al., 2013). The Turonian to Santonian interval of the Cre-
taceous Colombian basin was deposited during a relatively fast sea level rise (transgressive systems 
track) and following high sea level or highstand system (Guerrero, 2002).

According to EIA (2015), northern South America has prospective shale gas and shale oil potential 
within the Cretaceous fossiliferous calcareous mudstone of La Luna Formation, particularly in the 
Middle Magdalena Valley, and the Maracaibo/Catatumbo basins of Venezuela and Colombia (Figure 
2). The organic-rich Cretaceous shale of La Luna Formation averages 5% of TOC, and it sourced 
much of the conventional oil and gas produced in the Middle Magdalena basin of Colombia and 
western Venezuela. This formation is similar in age to the Eagle Ford and Niobrara shale plays in the 
United States (EIA, 2015).

Figure 2. Prospective oil and gas shale plays of northern South America (Modified from EIA, 2015)
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soUrCes and type of data

 resistivity imaging and average pad resistivity

The resistivity imaging can be acquired in water or oil-based muds, showing a two-dimensional pseu-
do image of the wellbore wall. In conductive environments, as in the case of this work, the vertical 
resolution of image tool is 5 mm, with 80 % of coverage in wells with 21.59 cm of diameter. Borehole 
imaging is applied for electrofacies classification, structural analysis, fracture characterization, thin 
layer identification, and direction of main horizontal stresses, among other applications. Typically, 
two processed images are presented from resistivity normalization, called the dynamic and static im-
ages. The dynamic image provides details, allowing recognition of sedimentary structures and classifi-
cation of textural features; the static image is utilized, but not limited, to highlight resistivity changes 
usually related to unconformities, fluids contacts, faults, and fractures. Figure 3 shows an example of 
dynamic and static images in a section with limestone concretions of La Luna Formation.

Image tools are composed of assemblies of pads and electrodes, normally 20 or 24 electrodes per pad. 
The electrodes measure resistivity simultaneously every 5 mm along the borehole wall; the simple 
average of these measurements is used as a high-resolution resistivity curve (IMG_Res, Figure 3). 
This curve is utilized for thin layers analysis and can further be employed for petrophysical evalua-
tions as a shallow resistivity log.

 total gamma rays (gr)

The resistivity imaging is acquired together with a GR log; this log measures the natural emission of 
gamma rays from radioactive elements in the formation. In Figure 3, the GR log is presented in track 
3 on a linear grid and in API units (American Petroleum Institute). GRs in sedimentary sequences 

Figure 3. Borehole images (in heated scale), and additional logs employed in this work
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are mainly emitted by radioactive elements of the uranium group, thorium group, and potassium. 
The total GR log gives the radioactivity of the three elements combined (Rider, 2000). Among 
sedimentary rocks, shales have the strongest radiation, and hence the highest gamma-ray response 
because of the concentration of radioactive minerals. However, clean sandstone (i.e., with low shale 
content) might also produce a high gamma-ray response if the sandstone contains potassium feld-
spars, micas, glauconite, or uranium-rich water (Asquith and Krygowski, 2004). GR log is further 
applied to identify depth mismatching between logs acquired separately in wells.

 bUlK density logs

The bulk density (ρb or RHOB) is the density of the entire formation as measured by the logging 
tool in g/cm3 (Figure 3). This tool has a shallow depth of investigation, and it is held against the 
borehole during logging to maximize its response. Formation bulk density is a function of rock-
matrix density, porosity, and fluid density in the pores; therefore, density log is used to quantify 
porosity, matrix characterization, and TOC evaluation in unconventional reservoirs. Most of the 
density tools are comprised of a medium-energy gamma rays source, usually cobalt 60, cesium 137, 
or in some newer designs, an accelerator-based source (Asquith and Krygowski, 2004).

 target or dependent variable

The target or dependent variable refers to the variable to be predicted; in the case of this study this 
variable is equivalent to the TOC obtained using the equation (1):

 TOCRHOB=10(-15.408×RHOB+40.569) (1)

Where RHOB represents the bulk density from density logging; equation (1) was found through lab 
geochemical tests, using a semi-log regression between TOC in core samples against density logging 
values. TOC in the lab was obtained through oxidation of organic matter in core samples of La Luna 
Formation. Equation (1) provides a precise procedure when TOC contents need to be known from 
wireline logs (TOC_RHOB in Figure 3).

fraCtal proCessing

 fraCtals

Benoit Mandelbrot coined the term fractal in 1975, from Latin fractus or irregular. Fractals refer 
to objects generated by process of repetition, characterized by having details in any observed scale, 
infinite length, and fractional dimension. Fractal analysis is a well-established scientific method to 
study natural or artificial objects that have characteristics of repetition in some form (Mandelbrot, 
1983). In a statistical sense, fractals are inherent in geology domains like stratigraphy, geochemistry, 
and fractured rock systems; based on this property some authors have proposed the use of fractals to 
describe regular patterns in these domains (Schlager, 2004; Park et al., 2010; Sadeghi et al., 2014; 
Ayad et al., 2019). Additionally, borehole logs represent variations in rock physical properties along 
the wells, and it has been documented that they can also be described through fractal parameters 
(Vivas, 1992; Turcotte, 1997; Arizabalo et al., 2006; Leal et al., 2016, Leal et al., 2018).
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Like any other image, fractality of a resistivity image can be evaluated through its lacunarity and 
fractal dimension; both parameters computed after converting the image into binary (black and 
white). In addition to lacunarity and fractal dimension, multifractal processing of grayscale images 
can provide further measurements of dimension. From these analyses can be extracted variables or 
attributes that can later be employed as independent variables to train and feed a machine learning 
regression model.

 laCUnarity

Lacunarity analysis is a method for describing patterns of spatial dispersion. It can be used with both 
binary and quantitative data in one, two, and three dimensions. Although originally developed for 
fractal objects, the method can be used to describe nonfractal and multifractal patterns (Plotnick et 
al., 1996). Lacunarity can be considered as a measure of the relationship between not filled spaces 
in images. According to Quan et al., (2014), low lacunarity indicates homogeneous objects; whereas 
objects of high lacunarity are related to heterogeneous spaces. Allain and Cloitree (1991) proposed 
a method to compute the lacunarity of binary images using a gliding-box based algorithm, summa-
rized as follows:

• Take an image of side M × M (e.g., an image of 300 pixels large by 300 pixels width), and place 
a box of size r x r in the upper left corner (with r < M).

• Count the number of black pixels in the box (box mass).

• Move the box one pixel to the right and calculate the new box mass.

• Repeat this process for all possible boxes over all columns and rows of the image matrix.

• The number of gliding boxes of size r containing P occupied sites is taken as n(P,r), and the total 
number of gliding boxes of size r is taken as N(r); being M the matrix size in the equation (2):

 N(r)=(M-r+1)2 (2)

• The gliding-box masses frequency distribution can be converted into a function by dividing the 
gliding box count by the total number of gliding boxes. As shown the function Q(P,r) in the 
equation (3):

 Q P r n P r
N r
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 =  (3)

• The first Z(1) and the second Z(2) moments of this distribution can be calculated employing the 
equations (4) and (5), respectively:
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• Finally, the lacunarity λ of the image for a gliding box of size r × r can be computed with the 
equation (6):
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 fraCtal dimension

Fractal dimension (FD) is an effective measure for complex objects (Li et al., 2006), representing 
the space-filling capacity of a pattern. The FD quantifies a subjective feeling about how densely the 
object occupies the metric space in which it lies (Barnsley, 1993). A method to estimate FD of binary 
images is the box-counting algorithm; the detailed procedure can be described as follows:

• The study image must be inserted in a box of side r.

• This box should be divided into four boxes with side r/2, and the number of boxes covering any 
part of the figure N(r) must be counted.

• Resulted boxes are divided again into four boxes, and the number of boxes N(r) containing any 
part of the figure must be recounted.

• The procedure is repeated, counting the number of boxes with some part of the figure.

• Afterward, plot the inverse of box size against the number of boxes with any part of the figure, 
with the Xj axis equal to Log(1/rj) and Yj axis equal to Log(Nj).

• Finally, the slope m of the regression is the FD of the image computed with the equation (7):

 m
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 mUltifraCtal analysis

Multifractal analysis has been recognized as a powerful tool for characterizing textures in images. 
Several studies have shown the possibilities offered by multifractal analysis in image processing, 
particularly during classification of complex textures (Harrar and Khider, 2014). In this work multi-
fractal analysis was applied to grayscale images, following the methodology proposed by Huang and 
Chen (2018). These authors propose to extract a set of features to characterize the image considering 
global (in the whole image) and local parameters (just in a part of the image). The global parameters 
provide the capacity dimension, information dimension, and correlation dimension; whereas local 
parameters provide the singularity exponent and a local fractal dimension, this last in a section of 
the image.

 independent variables generated by fraCtal proCessing

The independent variables refer to the required data to train and feed a predictive model; initially, 
a total of 49 independent variables are available for these tasks. Forty-seven of them are related to 
fractal variables, and the two remaining are the GR and IMG_Res, respectively. Fractal-related vari-
ables were computed using the dynamic image, employing images that represent borehole sections 
of 0.6 m high and 21.59 cm in diameter; these dimensions are represented with images of 300 pixels 
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high by 360 pixels width (360° around borehole circumference). Calculations were made on the dy-
namic image every 300 pixels from bottom to top to create a log per each variable.

Fractal variables were defined according to their relations with lacunarity, fractal dimension, and 
multifractal analysis. For lacunarity, a group of variables was derived from the frequency distribu-
tion produced by calculating lacunarity using different r values. The rest of the lacunarity-related 
variables were computed using the geometric and statistical descriptions of patterns in scatter plots of 
lacunarity versus r; the scatter plots were for both linear and logarithmic scales. The same procedure 
was applied for FD variables, but in this case, the image size was varied to perform the frequency 
distribution and scatter plots. To evaluate the spectra of lacunarity, FD, and the geometrical relation 
between them, a total of 15 values of r and 15 image sizes were experimentally selected. Two impor-
tant reasons to highlight for this selection:

• As the image size and r value increase, patterns in both scatter plots and frequency distributions 
are the same; just changes in slope and correlation coefficient (R) of linear patterns are observed.

• The gliding-box and box-counting algorithms are a pixel-by-pixel review of a matrix; conse-
quently, these processes with large gliding boxes or large images are computationally expensive. 
In other words, it will increase computation time resulting in no practical procedures.

 Variables obtained from lacunarity processing

• Variable 1: The image sections of 300 × 360 were transformed into sections of 300 × 300 (with 
size in pixels, and using morphologic transformation of image processing techniques). Then, the 
lacunarity was computed using the gliding-box algorithm (Allain and Cloitree, 1991), with r = 
60 pixels. This procedure was applied over the dynamic image every 0.6 m along the well.

• Variables 2-10: As shown the Figure 4, these variables represent the statistical description of 
lacunarity using several r values (r in pixels, Figure 4).

• Variables 11-22: These variables are computed using the scatter plot of Lacunarity vs r. Figure 5A 
for a log scale (Var. 11-16), and Figure 5B for a linear scale (Var. 17-22).

 Variables obtained from fd processing

• Variable 23: As in the case of Variable 1, the image sections were transformed into arrays of 
300 × 300, and FD was computed using the dynamic image every 0.6 m employing the box-
counting algorithm.

• Variables 24-32: This set of variables is related to the statistical measures of FD distribution. The 
analyzed section of image was resized according to the sizes in Figure 6.

• Variables 33-40: These variables are computed using the scatter plot of FD vs. Image Size. Figure 
7A for a log scale (Var. 33 and 34), and Figure 7B for a linear scale (Var. 35-40).

• Variables 41-42: These variables are extracted from the scatter plot of FD vs. Lacunarity, as 
shown the Figure 8.
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Figure 4. Frequency distribution – Lacunarity

Figure 5. Lacunarity Vs r (Gliding Box Size)
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Figure 6. Frequency distribution - Fractal dimension (FD)

Figure 7. FD Vs Image Size
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 Variables obtained from multifractal processing

To compute variables between 43 and 47, image sections were transformed into arrays of 300 × 300 
(like variables 1 and 23); then, they were converted from the heated scale into grayscale images. 
Afterward, multifractal variables were calculated every 0.6 m along the well, according to the meth-
odology proposed by Huang and Chen (2018); these variables are described as:

• Variable 43: capacity dimension

• Variable 44: information dimension

• Variable 45: correlation dimension

• Variable 46: singularity exponent

• Variable 47: local fractal dimension

 random forest

Random forest (RF) is one of the most powerful algorithms of machine learning available today. 
The RF is a kind of supervised learning algorithm; it uses labeled data to learn how to classify un-
labeled data (Schott, 2019). This method is further categorized as an ensemble learning algorithm, 
due to it trains a group of decision trees and searches for the best answer among a random subset 
of features (Geron, 2019). A decision tree consists of just tests on features in the decision nodes, 
values of features on the branches, and output values on the leaf nodes (Russell and Norvig, 2010); 
leaf nodes are the answer or solution provided by the algorithm (Figure 9). The RF can be applied 
for regression and classification problems, and its processing is fast compared with other machine 
learning techniques; moreover, the algorithm can easily handle outliers and missing data. Common 
hyperparameters to be tuned in RF are the number of trees, maximum depth, and minimum samples 
leaf (Figure 9).

Among the RF advantages applicable to this works, and considering we are dealing with just 960 log 
measurements, is that RF is based on the bagging algorithm and uses ensemble learning. It creates 

Figure 8. FD Vs Lacunarity
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many trees on the subset of the data and combines the output of all the trees. In this way, it reduces 
the overfitting problem, reduces the variance, and therefore improves the accuracy; even with a low 
number of samples (Kumar, 2019). Moreover, no feature scaling is required (standardization and 
normalization) because it uses a rule-based approach instead of distance calculation. As the main 
drawback, this method requires much computational power and resources during training, as it 
builds numerous trees to combine their outputs. However, the relatively low number of samples 
employed in this work helps to cope with this issue.

The accuracy of the RF was measured using Pearson’s correlation coefficient and the root-mean-
square error, both metrics after comparing predicted and actual values. Additionally, the distribution 
of residual error was employed to evaluate performance.

 pearson’s Correlation CoeffiCient (r)

Pearson’s correlation coefficient (R) measures the strength of linear association between two vari-
ables. The coefficient is measured on a scale with no units and can take a value from -1 to +1. If the 
sign of R is positive, then a positive correlation exists; otherwise, exists a negative correlation (Sedg-
wick, 2012). Given a pair of random variables (x,y), R is obtained using the equation (8):

 R
x y

x y
x y

( . )
cov ,

=
( )

σ σ
 (8)

Where cov represents covariance, σx and σy are the standard deviation of x and y, respectively.

root-mean-sqUare error

The root-mean-square error (RMSE) is widely employed to calculate the error in a set of predic-
tions. The metric is sometimes called mean square error or MSE, dropping the root part from the 

Figure 9. Diagrams of decision tree and random forest
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calculation and the name. RMSE is calculated as the square root of the mean of the square differ-
ences between actual outcomes and predictions. Squaring each error forces the values to be positive, 
and the square root returns the error metric to the original units for comparison (Brownlee, 2017). 
The RMSE of predicted values ŷi, for samples i of dependent variables yi with n number of observa-
tions, is computed with the equation (9):

 RMSE
y y

n

i ii
n

=
−

=∑ ˆ
1

2

 (9)

 featUre seleCtion.

Some of the fractal variables may be providing the same kind of information to the predictive model. 
This duplication can increase the processing time because of high dimensionality. R is used to know 
the linear relationship between variables or how similar two features are; therefore, when two vari-
ables have a high correlation, one of them can be dropped from the model. In order to perform cor-
relation analysis between variables, a cutoff must be established, and following randomly remove one 
of the variables with a high correlation above this cutoff.

A total of 99 RF models were executed, ranging R from 0.1 to 0.99 and removing a variable every it-
eration. The RMSE of each result was plotted against R, showing that the lowest RMSE corresponds 
to a cutoff of 0.72 (Figure 10); by applying this procedure, 32 independent variables were removed.

 featUre importanCe.

Another quality of RF is that it makes it easier to measure the relative importance of each variable 
concerning the target (Geron, 2019). RF performs feature selection when it splits nodes on the most 
important variables. In this study, feature importance is used to decrease even more the number of 

Figure 10. Correlation Cutoff Vs RMSE
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independent variables and keep only the most relevant features. Extra variables can decrease perfor-
mance, because they may confuse the model by giving it irrelevant data (Koehrsen, 2018).

The feature importance function was first executed to know the ranking of the remaining indepen-
dent variables. Following, 16 RF models were tested to select the set of variables that produce the 
lowest RMSE. The less important variable was removed in each iteration, in a similar way that previ-
ous feature selection processing; after this procedure, only one variable was removed. Table 1 shows 
a summary and brief description of the remaining features according to their relative importance. 
These variables will be the input to the final RF regression model.

resUlts and disCUssion

After the feature importance review, the doughnut chart in Figure 11 shows the relative importance 
and amount of information gain provided by each variable to the predictive model. The inner ring 
shows the percentage of information provided for each fractal analysis; the gamma-ray and average 
pad resistivity are presented as a whole group in this ring. The outer ring graphically depicts the 
information provided for each independent variable according to their relation to lacunarity, fractal 
dimension, and multifractal processing; additionally, this ring shows information provided for the 
gamma rays and average pad resistivity separately. The exact values of information gain for each vari-
able are presented in the table next to the doughnut chart.

In decision trees, information gain is based on the decrease in entropy after the data set is split on a 
node; in other words, information gain due to a feature summed across all the levels of decision tree 
determines its feature importance. This can also be seen from the fact that at every node splitting is 
done on the feature which maximizes information gain (Singh, 2019). In accordance with Figure 
10, the most important independent variable is the gamma rays log (63.3%); this is an expected 

No. Selected Variables Description

1 GR GR log acquired along with borehole imaging
2 Var. 43 Capacity dimension (Multifractal Analysis)
3 Var. 11 |Slope| - Pattern # 1 in Figure 5A
4 Var. 9 Kurtosis of lacunarity distribution (Figure 4)
5 IMG_Res Average resistivity curve computed with pads of image tool
6 Var. 47 Local fractal dimension (Multifractal Analysis)
7 Var. 44 Information dimension (Multifractal Analysis) 
8 Var. 15 R - Pattern # 2 in Figure 5A 
9 Var. 1 Lacunarity of dynamic image each 0.6 m (r = 60 x 60 pixels)
10 Var. 23 FD of dynamic image each 0.6 m
11 Var. 38 R – Patter # 2 in Figure 7B
12 Var. 40 Fractal dimension using picture size of intersection (Figure 7B)
13 Var. 25 FD maximum value (Figure 6)
14 Var. 33 |Slope| in Figure 7A
15 Var. 13 |Slope| - Pattern # 3 in Figure 5A
16 Var. 20 R – Patter # 2 in Figure 5B

Table 1. Summary and description of final independent variables
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result and makes geological sense because of the high uranium content in the organic matter of La 
Luna Formation. The following set of variables is related to lacunarity processing, which is providing 
15.7% of information to the regression model.

When a section of a borehole image is binarized, the lacunarity measures relationships between high 
resistivity spaces in that section of the image. As was seen in the description of La Luna Formation, 
concretions and calcareous beds are common high resistivity features of this unit; such features ap-
pear as white spaces after the image is converted into black and white for lacunarity processing. An-
other fact to highlight is the amount of hydrocarbon and organic matter in these rocks; organic-rich 
lithologies produce light tones when borehole imaging is presented using a heated scale. Therefore, 
image sections in this material will be increasing the number of white pixels after binarization. These 
statements explain why lacunarity processing plays an important role in pattern recognition in La 
Luna Formation. Figure 12A shows a linear trend confirming this interpretation; in this example 
the micronormal resistivity log (MNRL) was compared against the variable 11 (the most important 
lacunarity variable).

On the other hand, multifractal analysis is employed in this work to identify patterns in the transi-
tion from white to black or vice versa; being the capacity dimension the most important variable of 
this set (Var 43 with 7.4% of information gain). The capacity dimension is part of the global pa-
rameters used to describe spatial complexity, reflecting features from an overall perspective (Huang 
and Chen, 2018). This dimension is likewise computed using the box-counting algorithm, but in 
this case, the intercept is fixed to zero to avoid values greater than 2 (abnormal values). The capac-
ity dimension is bound to be greater than the information dimension and both greater than the 
correlation dimension; in this work, that condition is accomplished along all logged sections. The 
main observations to point out about the capacity and information dimensions are the linear trends 

Figure 11. Importance and information gain provided for each independent variable
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presented in Figures 12B-12C. Negative slopes in these figures suggest that multifractal parameters 
are complementing the information provided by lacunarity in a contrary direction, in other terms, 
they are related to conductivity. Multifractal parameters are describing patterns in not-resistive shelly 
sections or other conductive structures in the borehole image.

Finally, similar to multifractal parameters, the FD processes are related to conductive features; Fig-
ure 12D shows a negative slope supporting this interpretation. Likewise, this is an expected result 
because FD was computed using the box-counting algorithm, but without fixing the intercept to 
zero. It is important to notice that information provided by FD processes is not duplicating the in-
formation provided by multifractal variables. According to feature selection processing, these groups 
of variables are statistically different; the main reason is that FD was computed using binary images 
instead of grayscale images as in the case of multifractal processing.

Figure 12. A) Shows a linear trend between Var. 11 (related to lacunarity) and a micronormal resistivity log (MNRL). 
B), C), and D) likewise show linear trends between several high-ranked independent variables related to conductivity in 
borehole imaging.
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Once all required independent variables are identified, the hyperparameters for the RF predictor 
must be established. In this study, the model hyperparameters were tuned using a grid-searching ap-
proach. Grid-searching is the process of scanning the data to configure optimal hyperparameters for 
a given model. Grid-searching builds a model on each hyperparameter combination provided and 
stores a model for each combination (Lutins, 2017). The grid-searching shows an optimal hyperpa-
rameters combination of 140 trees with a maximum depth of 35 levels and minimum samples leaf 
of 1. Lastly, with the optimal hyperparameters already established, the RF model was executed using 
the test data set, composed of 192 unseen samples. The final performance showed an R of 0.88 and 
RMSE of 0.44 %, as indicated by the regression in Figure 13A.

According to the central limit theorem, the residual error of a regression model must follow a normal 
distribution with constant variance and zero means (Martin et al., 2017). The residual error pro-

Figure 13. A) Scatter plot (TOC_RHOB Vs. TOC_RF); B) residual error distribution, and C) example of a composite 
log with borehole dynamic imaging, the RF input variables, and comparison between the final result (TOC_RF) and 
actual TOC data (TOC_RHOB).
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duced by the RF model in this work presents a normal distribution as shown the Figure 13B, with 
a mean of 0.02 and a variance of 0.44 (equivalent to RMSE). Figure 13C shows a graphic example 
of input variables, dynamic image, and TOC curves (TOC_RF from the regression model and 
TOC_RHOB from the density log).

In order to compare the outcome of this works with other methods commonly applied to compute 
TOC using borehole logs, the standard deviation value is utilized. Schmoker and Hester (1983) 
reported an average standard deviation of 2.7 wt.% in 266 analyzed samples; these samples come 
from the upper and lower member of the Bakken Formation in the Williston Basin of North Amer-
ica. In another hand, Passey et al. (1990) reported an average standard deviation of 1.2 wt.% in 112 
analyzed samples, coming from six wells drilled in organic-rich lithologies in clastic and carbonate 
environments. Figure 13B presents a lower standard deviation compared with these works (0.66 
wt.%), which can be interpreted as less dispersion in the final results. This finding along with the R 
and RMSE previously explained confirms that this result can be employed during TOC evaluation 
in La Luna Formation.

ConClUsions

The methodology presented in this research provides an alternative to evaluating TOC content soon 
after the image log is acquired. Only a dynamic normalized image, the total gamma rays, average 
pad resistivity, and fractal variables derived from image pixels are required for the entire processing. 
This RF predictor presents RMSE less than 0.5%, about the TOC obtained through the equation 
(1); furthermore, this procedure shows a lower standard deviation compared with the most common 
methods applied when TOC content needs to be assessed from borehole logs.

The performance of this method is sensitive to image quality, and therefore quality control of imag-
ing data is recommended. Wireline imaging tools are based on several kinds of pad/flap configura-
tions, and their proper operability will depend on the pad's contact with the formation. In this sense, 
irregular borehole sections (e.g., with breakout or washout) will produce poor-quality images, which 
increases the RMSE of estimated values.

The presented model was developed for vertical wells, using resistivity imaging acquired with wire-
line in water-based mud. Thus, the model must be recalibrated in case it is used in oil-based mud 
environments, in deviated or horizontal wells, and when logging while drilling imaging is employed. 
Further calibrations are required when it is utilized in other unconventional plays different from 
La Luna Formation; once recalibrated, its results can be used for choosing candidates in hydraulic 
fracturing programs.

The methodology presented in this work demonstrates that accurate numerical values can be de-
coded from the intensity of pixels in a set of images. Further research in this field is recommended; 
this procedure might be applied to estimate any other petrophysics attribute, such as porosity, per-
meability, resistivity, and saturations, among other variables.
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