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Resumen

En la actualidad los métodos de descomposicion
de dominio (DDM, por sus siglas en inglés) mas
eficientes como instrumento de paralelizacion
son los métodos sin traslape (non-overlapping).
Su alta eficiencia es debida a la independencia
muy significativa que logran los problemas
locales planteados en subdominios que no
se traslapan. Sin embargo, los métodos de
discretizacién estandar que habian usado hasta
ahora los DDM, aun los sin traslape, utilizan
sistemas de nodos en que algunos de ellos
son compartidos por varios subdominios de
la descomposicién. Esta es una caracteristica
limitativa del estado del arte actual de este
tipo de procedimientos y, muy probablemente,
mayores niveles de independencia de los
problemas locales podrian lograrse si se le
eliminara. I. Herrera y sus colaboradores
han atacado este problema, para lo cual han
introducido una nueva manera de formular los
DDM que no tiene esta limitacién: el método
DVS. Un rasgo conspicuo de esta forma de
abordar la descomposicién de dominio es que
se utiliza un método nuevo de discretizacion
de las EDPs, también introducido en la linea de
investigacion a la que pertenece este articulo,
conocido con el nombre de ‘discretizacion sin

traslape’ (non-overlapping discretization),
en el cual cada nodo de la discretizacion
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pertenece a uno y solo uno de los subdominios
de la descomposicion del dominio. Aunque
los métodos DVS ya se han desarrollado
considerablemente, para que rindan frutos
plenamente es indispensable contar con cdédigos
que permitan su implementacién eficiente. A
eso precisamente esta dedicado este articulo:
presentar y poner a prueba software de tales
caracteristicas. El software aqui reportado
muestra que los algoritmos DVS son los mas
adecuados para desarrollar software que
permita la aplicacion efectiva de equipo de
computo avanzado, altamente en paralelo,
a la solucién de las ecuaciones diferenciales
parciales de los modelos de la ciencia y la
ingenieria. Aunque el software que aqui se
presenta trata especificamente problemas
de elasticidad lineal, los algoritmos DVS son
muy eclécticos y pueden ser aplicados a una
gran diversidad de ecuaciones diferenciales
parciales, después de que las mismas han
sido discretizadas. Ademas, ahora se continla
con trabajo adicional de investigaciéon para
desarrollar cédigos de propdsito general
basados en los algoritmos DVS.

Palabras clave: Software en paralelo para EDPs,
procesamiento en paralelo de elasticidad,
computo de alto rendimiento, HPC, elasticidad
estatica, coOmputo en paralelo, métodos de
descomposicién de dominio.
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Abstract

At present, the most efficient domain
decomposition methods (DDM) are non-
overlapping methods. The improved efficiency
of such methods is due to the significant
independence achieved by local problems
when the subdomains are non-overlapping.
However, standard discretizations applied
up to now in non-overlapping DDMs use
systems of nodes in which some of the nodes
are shared by more than one subdomain of
the domain decomposition. This is a limiting
feature of the present state-of-the-art in these
techniques and apparently further increases
of the independence of local problems should
be expected if this limiting characteristic was
eliminated. In previous work, I. Herrera and
co-workers have developed a new approach
to domain decomposition methods: the ‘DVS
framework’ that addresses this problem
introducing a new discretization method, the
‘non-overlapping discretization method’, in
which a non-overlapping system of nodes is
used in the discrete formulation of the problem.

Introduction

Mathematical models occurring in science
and engineering, lead to systems of partial
differential equations (PDEs) (Herrera and
Pinder, 2012), whose solution methods are
based on the computational processing of
large-scale algebraic systems and the advance
of many areas, particularly Earth Sciences,
depends on the application of the most powerful
computational hardware to them (Presiden’ts
Information Technology Advisoty Committee,
2005).

Parallel computing is outstanding among
the new computational tools, especially at
present when further increases in hardware
speed apparently have reached insurmountable
barriers.

As it is well known, the main difficulties
of parallel computing are associated with the
coordination of the many processors that carry
out the different tasks and the information-
transmission. Ideally, given a task, these
difficulties disappear when such '‘a task is
carried out with the processors working
independently of each other’. We refer to this
latter condition as the ‘paradigm of parallel-
computing software’.

The emergence of parallel computing
prompted on the part of the computational-
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Although the DVS algorithms have already
been developed significantly, to profit from
such advances it is essential to have available
effective codes that permit their efficient
implementation. As a further contribution in
this line of research, in this paper we present
and test software of such characteristics. The
results here reported indicate that the DVS
algorithms are very suitable for developing
software that permits to apply effectively the
most advanced hardware in parallel available
at present to the solution of partial differential
equations. Although the software here reported
specifically treats static elasticity only, the DVS-
algorithms are very eclectic and can be applied
to a great diversity of problems after they have
been discretized. Additional research work is
being carried out oriented to develop general
purpose codes based on the DVS algorithms.

Key words: Parallel software for PDEs, parallel
processing of elasticity, high performance
computing, HPC, elastostatics, parallel
computing, domain decomposition methods
(DDM).

modeling community a continued and
systematic effort with the purpose of harnessing
it for the endeavor of solving the mathematical
models of scientific and engineering systems.
Very early after such an effort began, it
was recognized that domain decomposition
methods (DDM) were the most effective
technique for applying parallel computing to
the solution of partial differential equations
(DDM Organization 1988-2014), since such an
approach drastically simplifies the coordination
of the many processors that carry out the
different tasks and also reduces very much
the requirements of information-transmission
between them (Toselli and Widlund, 2005)
(Farhat et al., 2000).

When a DDM is applied, firstly a
discretization of the mathematical model is
carried out in a fine-mesh and, afterwards,
a coarse-mesh is introduced, which properly
constitutes the domain-decomposition. The
'‘DDM-paradigm’, a paradigm for domain
decomposition methods concomitant with
the paradigm of parallel-computing software
(Herrera et al., 2014), consists in 'obtaining
the global solution by solving local problems
exclusively’ (a local problem is one defined
separately in a subdomain of the coarse-mesh).
Stated in a simplistic manner, the basic idea is
that, when the DDM-paradigm is satisfied, full
parallelization can be achieved by assigning
each subdomain to a different processor.
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When intensive DDM research began much
attention was given to overlapping DDMs, but
soon after attention shifted to non-overlapping
DDMs. When the DDM-paradigm is taken into
account, this evolution seems natural because
it is easier to uncouple the local problems when
the subdomains do not overlap. However, even
in this kind of methods different subdomains
are linked by interface nodes that are shared
by several subdomains and, therefore, non-
overlapping DDMs are actually overlapping
when seen from the perspective of the
nodes used in the discretization. So, a more
thorough uncoupling of the local problems and
significant computational advantages should
be expected if it were possible to carry out the
discretization of the differential equations in
a 'non-overlapping system of nodes’ (Herrera
et al., 2014); i.e., a set of nodes with the
property that each one of them belongs to one
and only one subdomain of the coarse-mesh
(this is the mesh that constitutes a domain
decomposition). In (Herrera et al., 2014), as
in what follows, discretization methods that
fulfill these conditions are referred to as non-
overlapping discretizations.

In a line of research, which this paper
belongs to, I. Herrera and co-workers
addressed this problem and to cope with
it have developed a framework -the 'DVS-
framework’- thoroughly formulated using a
non-overlapping discretization of the original
partial differential equations. Due to the
properties of non-overlapping discretizations
in such algorithms the links between different
processors are very much relaxed, and also the
required information-transmission between
them is reduced. Such properties, as well as
preliminary analysis of the algorithms, indicate
that they should be extremely adequate to
program the treatment of partial differential
equations occurring in science and engineering
models by the highly parallelized hardware
of today. Although the DVS-algorithms have
already been significantly developed and
some examples have been previously treated
(Herrera et al., 2014 and Carrillo-Ledesma et
al., 2013), up to now no software that took
full advantage of the DVS-algorithms had been
developed. Clearly, to profit fully from such
advances it is essential to develop software,
carefully coded, which permit applying
effectively the DVS-algorithms to problems
of interest in science and engineering. As a
further contribution to these advances, in this
paper, for the first time we present and test
software of such characteristics.

Overview of DVS-software

The derived-vector-space framework (DVS-
framework) deals with the matrix that is
obtained after the partial differential equation
(PDE), or system of such equations, has
been discretized by means of a standard
discretization procedure (i.e., an overlapping
discretization). The resulting discrete system of
equations is referred to as the original-system.

The DVS-procedures follow the next steps:

1. The partial differential equation, or
system of such equations, is discretized by any
standard method that satisfies the axioms of
the theory (here stated in section how to build
non-overlapping discretizations) in a mesh
-called the fine-mesh- to obtain a discrete
problem that is written as

MU=F (2.1)

This is called the original-problem, while
the nodes of the fine-mesh are called original-

nodes. The notation )? will be used for the whole
set of origina/-nodes; any function defined on

the set X by definition is an original-vector.

Finally, the notation W will be used for the
linear space spanned by the original-vectors,
which in turn is called original-vector space;

2. A coarse-mesh is introduced, which
constitutes a non-overlapping decomposition
of the problem-domain. The system of original-
nodes turns out to be overlapping with respect
to the coarse-mesh;

3. A system of non-overlapping nodes (the
derived-nodes), denoted by X, is constructed
applying the procedure explained in previous
articles (see also preliminary notions and
notations). The functions defined in the whole
set X are by definition the derived-vectors and
the notation W is used for the whole linear
space of derived-vectors, which constitutes the
derived-vector space;

4. The theory of the DVS-framework supplies
a formula that permits transforming the
original-discretization into a non-overlapping
discretization. Applying this formula the
non-overlapping discretization is obtained.
This is another discrete formulation that is
equivalent to the original-problem, except that
it constitutes a non-overlapping discretization;
and
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5. Thereafter, each one of the coarse-mesh
subdomains is assigned to a different processor
and the code is programmed separately in each
one of the processors.

The theoretical DVS-framework is very
elegant; in it, the algebraic operations can
be carried out systematically and with great
simplicity. Furthermore, many simplifying
algebraic results have been obtained in previous
work (Herrera et al., 2014 and Herrera and
Yates, 2011). To optimize the communications
and processing time a purely algebraic critical-
route is defined, which profits much from such
algebraic results previously obtained. Then,
this algebraic critical-route is transformed into
a computational code using C++ and several
well-established computational techniques
such as MPI.

Following the steps indicated above, in
the present paper software for problems of
isotropic elastic solids in equilibrium has been
developed and tested experimentally. The high
parallelization efficiency of the software so
obtained has been verified experimentally. To
be specific, only the DVS-BDDC algorithm has
been implemented for this problem. However,
by simple combinations of the routines already
developed the other DVS-algorithms can be
implemented.

The standard discretization

Following the steps succinctly described in
overview of DVS-software, software that
constitutes a tool for effectively applying
massively parallel hardware to isotropic
elastic solids in equilibrium was constructed.
In particular, it permits to treat the following
boundary value problem (BVP):

(A+u)Vveu+upu=f - (3.1)
Subjected to the Dirichlet boundary
conditions:

u=0, on 0Q (3.2)

By simple modifications of the code, other
boundary conditions can also be accommodated.

The software that we have developed
treats in parallel the discrete system of linear
equations that is obtained when the standard
discretization method used to obtain the
original discretization of the Dirichlet BVP
defined by Egs. (3.1) and (3.2) is the finite
element method (FEM). In particular, it was
obtained applying the well-known variational
principle:
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JQ {A+u)(veu)vew) +uyu:ywhdr=
_[Q fﬂtwdx (3.3)

with linear functions.

Such system of equations can be written as

MU=F (3.4)

Here, it is understood that the vectors U
and F, are functions defined on the whole set
of original-nodes of the mesh used in the FEM
discretization, whose values at each node are
3-D vectors. They can be written as QE(QP)E
(Upi) and 1‘_75(1’_71))E (Fp,.). As for the matrix M,
the notation T

M=(M,)=M (35)

piqj )

is adopted. Above, the range of p and ¢ is the
whole set of original-nodes, while i and j may
take any of the values 1, 2, 3.

Preliminary notions and notations

The DVS-approach is based on non-overlapping
discretizations, which were introduced during
its development (Herrera et al., 2014). A
discretization is non-overlapping when it
is based on a system of nodes that is non-
overlapping; to distinguish the nodes of such a
system from the original-nodes, they are called
derived-nodes. In turn, a system of nodes is
non-overlapping, with respect to a coarse-
mesh (or, domain-decomposition), if each one
of them belongs to one and only one of the
domain-decomposition subdomains. In the
general DVS-framework, the derived-vector
space (DVS) is constituted by the whole linear
space of functions whose domain is the total
set of derived-nodes and take valuesin R” . In
the present paper, where problems of elasticity
that are governed by a system of three PDEs
are treated, we take n = 3. Usually, when the
basic mathematical model is governed by a
single differential equation, n is chosen to be
equal to 1.

Generally, when the coarse-mesh s
introduced some of the nodes of the fine-mesh
fall in the closures of more than one subdomain
of the coarse-mesh. When that is the case, a
general procedure for transforming such an
overlapping set of nodes into a non-overlapping
one was introduced in previous papers (see
Herrera et al., 2014). Such a procedure
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consists in dividing each original-node into
as many pieces as subdomains it belongs to,
and then allocating one and only one of such
pieces to each one of the subdomains. For a
case in which the coarse-mesh consists of only
four subdomains, this process is schematically
illustrated in Figures 1 to 4.

Then, the final result is the system of non-
overlapping nodes shown in Figure 4. Each
one of the non-overlapping nodes is uniquely
identified by the pair (p, ), where p is the
original-node it comes from and a is the
subdomain it belongs to. Using this notation,
for each fixed f=1, ..., E, it is useful to define
X# = X as follows: The derived node (p, «)

belongs to X?, if and only if, o = f.

In what follows, the family of subsets{X',
..., XE} just defined will be referred to as the
non-overlapping decomposition of the set of
derived-nodes. This because this family of
subsets of X possesses the following property:

An important property implied by Eq. (4.1)
is that the derived-vector space, W, is the
direct-sum of the following family of subspaces
of Wi {W!, ..., WE}; i.e.,

W=wao.ow" (4.2)
Here, we have written
w*=wX*),x=1,...,.E (4.3)

The notation W(X%), introduced previously
(see, for example Herrera et al., 2014), is
here used to represent the linear subspace
of W whose vectors vanish at every derived-
node that does not belong to X¢. An important
implication, very useful for developing codes in
parallel, is that every derived-vector we& W can
be written uniquely in the form

E
w= Zv_va, withw" e W*  (4.4)
o=l

As it is customary in DDM developments
_ o _ v B ’
X‘UX and J=X"NX whenoc;t%‘r 1 in the DVS-approach a classification of the
a=1 .
-l s 2 o3 &% @l Q] ol g 2 43 il .592
0 6 o 7 o8 S o0 1" ;.6 & 7 48 5 o0
11 12 13 14 15 \h\ 12 13 14 15
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Figures 1 to 4.
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nodes used is introduced. We list next the most
relevant subsets of X used in what follows:

I internal nodes

I" interface nodes

7 primal nodes

A dual nodes

I1 = lur ‘extended primal’ nodes
> = [UA ‘extended dual’ nodes

Also, we observe that each one of the
following set-families are disjoint: {I,I'}, {I, «,
A}, {I1, A} and {Z, 7}, while

X=I1UT'=1UgUA =ITUA =2 Uwxm
(4.6)

Next, we highlight some of most important
notation and nomenclature used in the DVS-
framework; for further details the reader
is referred to previous works of this line of
research (in particular (Herrera et al., 2014),
where additional references are given). When
considering any given derived-node, which is

identified by the pair of numbers (p, o), the
natural number p (which corresponds to an
original-node) is called the ‘ancestor’ of the
derived-node, while o (which ranges from 1
to E) identifies the subdomain it belongs to.

Furthermore, for every original-node pe X,
the notation Z(p)cX will be used to represent
the set of derived-nodes that derived from
it. Then, the ‘multiplicity of p’, m(p), is the
cardinality of Z(p).

We observe that the multiplicity of p is
defined as a property of each original-node,
p. There is another kind of multiplicity that is
used in the DVS-framework, which is defined
as a property of each pair (p, q) of original-
nodes and is also used in the DVS-framework
theory. To introduce it, we define

,oo=1,.. E; and

12 .
0, otherwise (4.7)

Lif pgeQ
6“5{ if pgeQ,

Then, the multiplicity of the pair (p, q)
-written as m(p, q)- is defined to be

E
m(p.q) = 2,;5; 4.8

When u is a derived-vector, so that u
is a function defined on X, u(p, a) stands
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for the value of u at the derived-node (p,
a). In particular, in applications of the DVS-
framework to elasticity problems, those values
are -vectors and the real-number u(p, a, i) - i
=1, 2, 3- will be the i—th component of the
vector u(p, a). The derived-vector space is
supplied with an inner product, the 'Euclidean
inner-product’, which using the above notation
for every pair of derived-vectors, u and w, is
defined by

UeW= 2 iu(P,aai)W(p’a’i):
(p.a)exX i=l
E 3

2 X Qulpoi)w(pei)

a=1 (p’[z)gxa i=1 (49)

For the parallelization of the algorithms the
relation

E
o o o o
Z‘V_szz w ,wheneverg W EWa
a=1
(4.10)

will be useful, because the vector-components
corresponding to different subdomains will
be handled by different processors when
implementing them.

Let pe X, be an original-node and ueWw
a derived-vector. Then, u€W is said to be
‘continuous at p’ when u(p, ) is independent of
a, and it is said to be of ‘zero-average at p’when

> u(p,o)=0 (4.11)

aeZ(p)

When the correspogding properties are

satisfied for every pEX, the derived-vector
u is simply said to be ‘continuous’ or ‘zero-
average’. The linear subspaces W , and W, of
W, are constituted by the continuous and the
zero-average vectors of W, respectively. These
two subspaces are orthogonal complements
of each other. The matrices a and J are the

orthogonal projections on W, and on W,
respectively. They satisfy:

([RS

+j=1 (4.12)

I~

where [ is the identity matrix. For any weW,
the explicit evaluation of v =aw is given by:
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|
vipoy=—— > w(p.p)

m(p) . prezp) (4.13)

Using this equation, the evaluation of jw is
also straight forward, since Eq. (4.12) implies

jw=w-—aw (4.14)

The natural injection of W into W, written
as R:-W—W, is defined for every u € W by

(Ru)(p.or)=u(p). ¥ (p.ot

When u €W, (R )erz necessarily. We

)eX (4.15)

observe that RW =W, ,. Furthermore, it can
be seen that R has a unlque inverse in W_;

R W - W is well-defined. .

How to build non-overlapping discretiza-
tions

This Section explains how to transform a
standard (overlapping) discretization into
a non-overlapping discretization. The DVS
procedure here explained permits transforming
an overlapping discretization into a non-
overlapping discretizations and yields directly
preconditioned algorithms that are subjected
to constraints. It can be applied whenever the
following basic assumption is fulfilled:

m(p,q)=0=>M, =0 (5.1)

Here, the symbol = stands for the logical
implication and it is understood that M is the
matrix occurring in Eq. (2.1).

We define the matrix g' by its action on any

vector of W: when u€ W, we have

I

!
U=u, +u,+au, (5.2)
We observe that the action of a can be

carried out by applying the operatgr at the
primal-nodes exclusively. Then, we define the
‘constrained space’ by

w’ EQ'W (5.3)

Clearly, W'cW s a linear subspace of W and
forany uew, c_z‘u is the projection of i, on W',

Now, we define
1, when m(p,q) =0

s\p-q)=
( ) m(p,q),whenm(p,q);to (5.4)

For y=1, ..., E, we define the matrices

M
MyE(MZq)With MZ(JE ( pq)az};q (5.5)
o S\P-q .

Next, we define the matrices:

4 (A(W qﬂ)wzthA(pa )= M8, 8
(5.6)
and
E
A EZéV (5.7)
=T 4=
Then, we define
éE 'étc_z‘ (5.8)

IR

The following result was shown in previous
papers (Herrera et al., 2014):

Theorem 5.1.- Let UeW and u€W be
related by u =RU, while f €W, is defined by

[=R(m"E) (5.9)

Here, @ is a diagonal matrix that transforms
W into itself, whose diagonal-values are m(p),

~—1
while here its inverse is denoted by m . Then,

the discretized version of static elasticity of
Eqg.: (3.4):

U=F (5.10)

IS

is fulfilled, if and only if

adu= f and ju=0 (5.11)
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Proof.- See for example (Herrera et al.,
2014).

The preconditioned DVS-algorithms with
constraints

There are four DVS-algorithms (Herrera et al.,
2014), and two of them are the DVS-BDDC
and the DVS- FETI-DP. These are DVS versions
of the well-known BDDC (Dohrmann, 2003),
(Mandel et al., 2005) and FETI-DP (Farhat and
Roux, 1991), (Farhat et al., 2000). As for the
other two, nothing similar had been reported
in the literature prior to the publication of the
DVS-algorithms. By now, it is well known that
BDDC and FETI-DP are closely related and the
same can be said of the whole group of four
DVS-algorithms.

The DVS-Schur-complement is defined by
~1

S=4 -4 A (6.1)

= =AA =AIl (él’[l’[) =IIA

We also define

J—FA = ZA - ém (énr{ )~1 Zn (6.2)

Then, writing u = u_ + u, it has been shown
(Herrera etal., 2014) that Eqg. (5.11) is fulfilled
if and only if

aSu,=f,, ju,=0 (6.3)

and

Up = (énn )Nl (an_ éHAzA) (6.4)

The general strategy followed in the DVS
approach, is to find u,€W(A) first and then
apply Eq. (6.4) to obtain the remaining part,

u, € W(II), of u. For this strategy to be effective
it is essential that the application of ( Hn)~1

be computationally cheap. Different DVS-
algorithms are derived by seeking different
pieces of information such that u, € W(A) can
be derived from it in a computationally-cheap
manner. In particular, the four DVS-algorithms

mentioned before seek for: u, jiﬂA’ glig%
and §ZA, respectively. Drawing from (Herrera
et al., 2014), they are here listed.

The DVS-BDDC algorithm

This algorithm seeks for U, It is:
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af"'aSu, = a§"'f andju, =0 (65)

The DVS-primal-algorithm

We set ZAE§~IZ§HA
consists in searching for a function yAEWA,
which fulfills:

S jSjv,=8"jSjS" f, and aSv,=0
- = == (6.6)

and the algorithm

Once v, € W(A) has been obtained, then

sy on) e

The DVS-feti-dp algorithm

This algorithm seeks for A = JSu,. Thus, the
algorithm is: “Given f €aW , find &AE W, such
that

JSjS A =-jSjS" f, andai =0 (6.8)

Once A€W, has been obtained, u,€ aW,
is given by: =

u,=aS"(f,+2) (6:9)

The DVS-dual-algorithm

In this case one seeks for U= SuA using the
relation:

SaS™'ay = Sa$” f and ]S*E o(6 10)

Once u €W(A) has been obtained,
u,€W(A) is given by:

gA=£_l‘u (6.11)

The elementary pieces of DVS-software

All the DVS-algorithms are iterative algorithms
and can be implemented with recourse to
Conjugate Gradient Method (CGM), when the
matrix is definite and symmetric, as is the case
of elasticity problems here considered, or some
other iterative procedure such as GMRES, when
that is not the case. At each iteration step,
depending on the DVS-algorithm that is applied,
one has to compute the action on an arbitrary
derived-vector of one of the following matrices:
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as™'as, jSjS™, $7jsj or SaS™'a. In turn, such
matrices are different permutations of S, 5™,
a and j. Thus, a code for implementing any

of the D_VS—aIgorithms can be easily developed
when codes for carrying out the action of each
one of such matrices are already available.

To produce such codes will be the goal of
the next Section, while the remaining of this
one is devoted to obtain some auxiliary results
that will be used there and were previously
presented in (Herrera et al., 2014). The first
one of such results is:

S=Al,-A (a'Aa) a'A,

=" =AA =All \= =IIlll=

Q
IIN]

A
(7.1)

The second one is: When w&W, the
following identity holds

§N1W:(ANIWA)A (7.2)

Here the notation (éNlmA )A stands for the
-1
component on W(A) of é Wh .
The third and fourth results required refer
to the pseudo-inverses that occur in Egs. (7.1)

and (7.2). They are:

-1
Let we W'(Il) and V = (énn) W, then

Let wEW’and Vv = éle, then

= \=m =rX\=XX ==

a'(A’ A (A )44’ )yﬂz

-1
w,—A (A ) wy,and jv,=0
_77:2(—22) )y A (7.5)

together with

v =(Ah) (ws-4Lv) 06

These two results permit applying iterative
algorithms, in which the CGM is used, when

~1 _
the actions of (énn) and é 1, respectively,
are computed.

Construction of the DVS-software

All the DVS-algorithms presented in the Section
on the preconditioned DVS-algorithms with
constraints are iterative, as is the case with
most DDM algorithms, and to implement them
it is only necessary to develop parallelized
codes capable of computing the action of

each one of the matrices §, gl, aor 1 on an
arbitrary derived-vector, as it was foreseen in
(Herrera et al., 2014).

In the code here reported, all system-of-
equations’ solutions that were non-local were
obtained with the help of the CGM algorithm.
Due to this fact, actually the following

subprograms were required: S, §” and (gg‘
as ", Furthermore, the application of

-1
S=4, - A, (d'Ae) a4, 61

~1
requires to compute the action of (g'é;ng')

whichisnon-local. Thus, an efficient subprogram
to carry-out this operation efficiently in parallel
was required and was developed.

The communications required by DVS-
algorithms are very easy to analyze. Indeed,
when a different processor is allocated to each
one of the coarse-mesh subdomains (i.e., to the
subsets of derived-nodes, X“ a =1, ..., E, of
the non-overlapping partition of X) -as it was
done in the work here reported- transmission
of information between different processors
occurs only when the global Euclidean inner-
product is computed, or either the matrix a

or the matrix c_z' is applied. Furthermore, in

these operations the amount of information
transmitted is very small.

In a first tentative version of the
software, a master-processor was also used.
However, using such a master-processor as
a communications center is very time-costly
and when the master-processor is not used
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as a communications center the work done by
it is so small that it can be eliminated easily.
When this is done, the performance of the
DVS-algorithm became extremely good as it
is explained and discussed in the Section on
Numerical Results.

Only the DVS-BDDC algorithm was
implemented. Although the implementation
of the other three DVS-algorithms is very
similar, and their expected parallel efficiency
as well, their implementation would have taken
additional time and effort that we preferred to
save for future work.

Construction of the local DVS-software

A fundamental property of ét, as defined by
Eq. (5.7) is that it is block-diagonal, in which
each one of the blocks is é“, for each aa =1,
..., E, is a linear-transformation of W% into
itself. This property simplifies very much the
parallelization of the codes to implement the
DVS-algorithms.

To this end, each one of the subsets X* of
the non-overlapping decomposition of X, is
assigned to a different processor and the set of
processors is humbered accordingly. The fact
that every vector w€W can be written in a
unique manner as

E
= Ev_va, with w, EW* (9.1)

is used for this purpose. The processor y
handles only the w, component of every vector
w€eW. Then, all thé operations of the processor
y transform w, into a vector that also belongs
to W”; even the operators a and a transform

w, into a vector of W7, except that a and a

reqU|re information from of a few ne|ghbor|ng
processors. However, it is important to make
sure that such information be updated at the
time it is gathered.

When evaluating the action on a vector of
any of the matrices considered, processor y will
be responsible of constructing the y component

of such a vector; in particular, (Sw) ' (Sqw) ,

(C_lm)y, or (jw) depending on the matrix that
is being apEIied. In what follows it is assumed
that, from the start, the nodes of the set X”
have been classified into I: internal, m: primal,
and A: dual. Other node-classes of X’ that will
be considered are: II: extended-primal, and X
extended-dual. Without any further notice, the
following relation will also be used:

48 VoLuME 55 NumBer 1

Wr = W(D@W(m)@WH(A) =

Wi (IT) @W"(A)= W(2)@W ()
(9.2)

The application of a, a' and j

To start with, we evaluate (C_lw)y when we W,
As it will be seen, the application of a to any

vector of W" requires exchange of information
between processor y and other processors.
Indeed, recalling Eq. (4.13) we have

> wp.p) (9.3)

(gw)y aw(p.r)= m(P)(pﬁ)EZ(p)

Thus, this operation requires information
from the processors that possess derived-nodes
belonging to Z(p); therefore, its computation
involves communications between different
processors, which may slow the processing.
In view of Eq. (9.3), it is clear that except for
this exchange of information, the evaluation

of (aw) , is very simple Once aw, has been
obtained, the relation ]W
to compute the action of ]. As for the action
of a', we recall that a' is obtained when the
appllcatlon of a is restricted to primal-nodes.

aw can be used

Before going ahead, some final comments
are in order. The application of @, and hence
that of a', also requires transmission of
information between the processors. Thus,
for enhancing the efficiency of the codes it is
essential that the application procedures be
designed with great care. As it will be seen,
with a few exceptions, all the exchange of
information required when the DVS-algorithms
are implemented is when the transformations
a and a' are applied.

The DVS-software for S and §N1

It should be observed that in view of the
definition of the matrix A’ and the submatrices

occurring in the foIIowin=g decomposition:

AT AT A7
=l =In=IA
Ay — AY AY AY
= =nl =nn =nrA
AT AT A
=Al =An =nA

(9.4)
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for any they transform vectors of W(X") into
vectors of W(X"). Therefore, the local matrix Q
is defined to be

(I~

= éy (9.5)

where A’ is the matrix defined in how to build
non-ove_rlapping discretizations, by Eq. (5.6).
In this equation the index y is omitted in the
definition of @, because y is kept fixed. Due
to the comments already made, it is clear that
Q is a well-defined linear transformation of

W’ into itself. In par icular, when w"e€W’, the
computation of (QM ,can be carried out in an

autonomous manner, at processor ¥, without
exchange of information with other processors.
This is a fundamental difference with a, c_z' and

Jj, and implies that at each processor either the
matrix @ is constructed, or internal software

capable=of evaluating its action on any vector
of W”is made available.

In view of Eq. (9.4), the matrix Q will be
written in two forms
Q.
Q.

gu gm gm II IA
= gmgm gm Al —AA

(e,2.)( e, ) (ee. ) e,

()

(9.6)

The following expressions, which are clear
in view of Eq. (9.6), will be used in the sequel:

0= =nngnA _ gzzgzn 9.7)
= | 4.4, 0.2,
Here:
ee. Q.
S éﬂgm £ 2. g
0, =2 )e =)
and

Q0 Q

=Il=IA =In
Q

sy 0 0 s 0

=AI =AA =An

(-}
Il

0,.~(2,2.)2.=(¢]

=Y =nl =nA =nn

A. The Local DVS-software for S

Let w, €W, and recall Eq. (7.1); then:

( ) =0 Wp — gAl‘l (énn)ng'gnAWA

=AA

In this equation the meaning of the

terms Q w, and Q wA are clear since
=AA
both QO

=AA
transformations of W” into itself. Something

and O are well-defined linear
=IIA

~1
similar happens when the operator (énn)

is applied to a'Q w,, since this is also a
global linear trans?oArmatlon. It must also be
understood that, when it is applied, the local
vector (a 0O w ) has already been stored
at processo_rH;A/ andy at each one of the other
processors. Due to the global character of
the operator (ém_[)~1 special software was
developed for it.
A.1. The local DVS-software for (énn )Nl

The local software that was developed is based
on the next formula:

-1
"Let w, €W'(Il)and v, = (ém) w,, then

a4, -4, (4,)" 4, ). -

—A (A’ )lel, and iy,r:O

—r =rl \=1I

(9.11)
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together with
J— At -l At
Y’ _(=11) (ml_=]ﬂ‘_}7r) (9.12)

To apply this formula iteratively, at each
processor y it was necessary to develop local
software capable of carrying out the following
operations:

vle -0 (o) 0, fumw-ae (o) m

and, once convergence has been achieved, the
following autonomous operation is carried out:

y,=(Q )~1(w1—gmzn) (9.14)

We see here that except for c_z' all the linear

transformations involved are autonomous and
can be expressed by means of local matrices
defined in each processor. In the DVS-software
that is the subject of this paper, such matrices
were not constructed but we recognize that in
some problems such an option may be more
competitive,

B. The Local DVS-Software for L_S"l

The local software that was developed is based
on the next formula: "When w, € W(A), then

S'w=(A"w,) (9.15)

Therefore, if vEW" is defined by the
condition Av=w, and it is written in the form

v=y+y, +v, then QN'E =v,. A more explicit
form of the condition vEW’is jv_ =0. This

latter condition together with the equation
Ay =w, gives rise to a global problem whose

solution, in the parallel software we have
developed, was based on the iterative scheme:

‘Let w,€W(A) and v, = glwA = (é~lWA )A’
then at processor y:

i

=nr =3¥ =X

|2.-2.(e.) 2, |u-

=3

0o (e,) w and . =0
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Once v has been obtained, v L Is given by

S'w, =y, = ((222)4 (Ezz - gi”y”)l
(9.17)

At processor y that is being considered, Egs.
(9.16) and (9.17) are:

a'lQ9 -9

=nr =X

(sz)~1 Q. %=

=¥

and

a ((gzz)Nl (w2 - 22”2”)1(9-19)

respectively.

C. Applications of the Conjugate Gradient
Method (CGM)

There are three main instances in which
CGM was applied: i) to invert én ; 1) to invert
A; 1ii) to solve iteratively the_g)?)ba/ equation
Zsuch equation may be: either Eq. (6.5), Eq.
(6.6), Eq. (6.8) or Eqg. (6.10), depending on the
DVS-algorithm that is applied-. Furthermore,
it should be mentioned that the inverses of
the local-matrices: Q and Q22 can either be

=II
obtained by direct or by iterative methods; in
the DVS-software here reported, this latter
option was chosen and CGM was also applied
at that level.

Numerical Results

In the numerical experiments that were carried
out to test the DVS-software, the boundary-
value problem for static elasticity introduced in
the standar discretization was treated. In this
paper only the DVS-BDDC algorithm has been
tested. Work is underway to test the other DVS-
algorithms, albeit similar results are expected
for them. The elastic material was assumed to
be homogeneous; so, the Lamé parameters
were assumed to be constant and their values
were taken to be
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Table 1. Numerical Results

Number of DoF. Nodes Primal  Processing Parallel Speed up Norm of
Subdomains by Nodes Time efficiency T(po) error
= Subdomain in seconds . S=—r
Number of {ﬁ' S\ x100 7(Pa) H€| L
processors
8 22,244,625 941,192 583 14,959 1 1 0.0263
27 21,904,152 274,625 2,312 5,882 75% 2.543 0.018
64 22,244,625 117,649 5,211 2,676 70% 5.59 0.029
125 21,904,152 59,319 9,184 1,212 79% 12.342 0.011
216 22,936,119 35,937 14,525 703 79% 21.280 0.010
343 22,244,625 21,952 20,628 406 86% 36.845 0.010
512 23,641,797 13,824 27,391 242 97% 61.814 0.011
729 23,287,176 10,648 36,800 183 90% 81.74 0.010
1000 23,641,797 8,000 46,899 136 88% 109.992 0.009
1331 22,936,119 5,832 57,100 96 94% 155.823 0.010
1728 20,903,613 4,096 66,671 89 78% 168.078 0.009
2197 21,904,152 3,375 80,352 64 85% 233.734 0.008
2744 22,244,625 2,744 94,471 51 86% 293.313 0.009
Ev number of derived-nodes and corresponding

A= ——————=29.6412x10’ iz
(1+v)(1-2v) m

N
u = 27.3611x109W

T2 +v)

These values correspond to a class of cast
iron (for further details about such a material
see, http://en.wikipedia.org/wiki/Poisson’s_
ratio) whose Young modulus, E, and Poison
ratio, v, are:

E = 68.95)(109£2 and v=0.26
m

The domain QcR? that the homogeneous-
isotropic  linearly-elastic solid considered
occupies is a unitary cube. The boundary-value
problem considered is a Dirichlet problem, with
homogeneous boundary conditions, whose
exact solution is:

u = (sinzxsinmysinnz, sinzxsinzysinzz, sinzxsinzysinnz)

(10.1)

The fine-mesh that was introduced consisted
of (193)3 = 7,189,057 cubes, which yielded
(194)3 = 7,301,384 original-nodes.

The coarse-mesh consisted of a family of
subdomains {€2, ..., £}, whose interfaces
constitute the internal-boundary I. The
number E of subdomains was varied taking
successively the values 8, 27, 64, 125, 216,
343, 512 and so on up to 2,744. The total

number of degrees-of-freedom are around 7.5 X
10° and 2.5 x 108, respectively. The constraints
that were imposed consisted of continuity at
primal-nodes; in every one of the numerical
experiments all the nodes located at edges
and vertices of the coarse mesh were taken as
primal-nodes. In this manner, the total number
of primal-nodes varied from a minimum of 583
to a maximum of 94,471. Thereby, it should be
mentioned that these conditions granted that
at each one of the numerical experiments the

matrix é was positive definite and possessed a
well-defined inverse.

All the codes were developed in C++
and MPI was used. The computations were
performed at the Mitzli Supercomputer
of the National Autonomous University of
Mexico (UNAM), operated by the DGTIC. All
calculations were carried out in a 314-node
cluster with 8 processors per node. The cluster
consists 2.6 GHz Intel Xeon Sandy Bridge E5-
2670 processors with 48 GB of RAM.

As it was exhibited in the analysis of the
operations, the transmission of information
between different processors exclusively
occurs when the average-operators a and a'

are applied. In a first version of the software
reported in the present paper such exchange
of information was carried out through a
master-processor, which is time expensive.
However, the efficiency of the software (as a
parallelization tool) improved very much when

JANUARY - MARcH 2015 51



I. Herrera and I. Contreras

the participation of the master-processor in the
communication and exchange of information
process was avoided. In its new version, the
master-processor was eliminated altogether.
A Table summarizing the numerical results
follows.

It should be noticed that the computational
efficiency is very high, reaching a maximum
value of 96.6%. Furthermore, the efficiency
increases as the number of processors
increases, a commendable feature for software
that intends to be top as a tool for programming
the largest supercomputers available at
present.

Conclusions

1. This paper contributes to further develop
non-overlapping discretization methods and
the derived-vector approach (DVS), introduced
by I. Herrera and co-workers (Herrera et al.,
2014), (Herrera and Rosas-Medina, 2013),
(Carrillo-Ledesma et al.,, 2013), (Herrera
and Yates, 2011), (Herrera, 2007), (Herrera,
2008), (Herrera and Yates, 2010) and (Herrera
and Yates, 2011);

2. A procedure for transforming overlapping
discretizations into non-overlapping ones has
been presented;

3. Such a method is applicable to symmetric
and non-symmetric matrices;

4. To illustrate the procedures that are
needed for constructing software based on
non-overlapping  discretizations,  software
suitable to treat problems of isotropic static
elasticity has been developed; and

5. The software so obtained has been
numerically tested and the high efficiency,
as a parallelization tool, expected from DVS
software has been experimentally confirmed.

The main general conclusion is that the DVS
approach and non-overlapping discretizations
are very adequate tools for applying highly
parallelized hardware to treat the partial
differential equations occurring in systems of
science and engineering.

Acknowlegement
Wethank DGTIC-UNAM for the extensive support

we received to perform the computational
experiments presented in Table 1.

52 VoLuME 55 NumBer 1

References

Carrillo-Ledesma A., Herrera I.,, de la Cruz
Luis Miguel, 2013, Parallel Algorithms
for Computational Models of Geophysical
Systems”. Geofisica Internacional, 52, 3,
pp., 293-309.

DDM Organization, Proceedings of 22
International Conferences on Domain
Decomposition Methods www.ddm.org,
1988-2014.

Dohrmann C.R., 2003, A preconditioner for
substructuring based on constrained energy
minimization. SIAM J. Sci. Comput., 25, 1,
246-258.

Farhat Ch., Roux F.,, 1991, A method of finite
element tearing and interconnecting and
its parallel solution algorithm. Internat. J.
Numer. Methods Engrg., 32:1205-1227.

Farhat C., Lessoinne M., Pierson K., 2000, A
scalable dual-primal domain decomposition
method, Numer. Linear Algebra Appl., 7, pp
687-714.

Farhat C., Lessoinne M., LeTallec P., Pierson
K., Rixen D., 2001, FETI-DP a dual-primal
unified FETI method, Part I. A faster
alternative to the two-level FETI method.
Int. J. Numer. Methods Engrg., 50, pp
1523-1544,

Herrera 1., New Formulation of Iterative
Substructuring Methods without Lagrange
Multipliers: Neumann-Neumann and FETI,
NUMER METH PART D E 24(3) pp 845-878,
2008 (Published on line Sep 17, 2007) DOI
10.1002/num 20293.

Herrera I., Theory of Differential Equations in
Discontinuous Piecewise-Defined-Functions,
NUMER METH PART D E, 23(3), pp 597-639,
2007. DOI 10.1002/num 20182.

Herrera I., de la Cruz L.M., Rosas-Medina A.,
Non Overlapping Discretization Methods
for Partial, Differential Equations. NUMER
METH PART D E, 30: 1427-1454, 2014, DOI
10.1002/num 21852. (Open source)

Herrera 1., Pinder G.F.,, 2012, Mathematical
Modelling in Science and Engineering: An
axiomatic approach, John Wiley, 243p.

Herrera 1., Rosas-Medina A., 2013, The
Derived-Vector Space Framework and Four
General Purposes Massively Parallel DDM



GEOFisICA INTERNACIONAL

Algorithms”, EABE (Engineering Analysis
with Boundary Elements), 37, pp-646-657.

Herrera I., Yates R.A., The Multipliers-Free Dual
Primal Domain Decomposition Methods for
Nonsymmetric Matrices” NUMER. METH.
PART D. E. 27(5) pp. 1262-1289, 2011.
(Published on line April 28, 2010) DOI
10.1002/num.20581.

Herrera 1., Yates R.A., The Multipliers-free
Domain Decomposition Methods, NUMER.
METH. PART D. E. 26: 874-905 July 2010
(DOI 10.1002/num. 20462)

Herrera I., Yates R.A., The Multipliers-Free Dual
Primal Domain Decomposition Methods for
Nonsymmetric Matrices, NUMER. METH.
PART D. E. 27(5) pp. 1262-1289, 2011. DOI
10.1002/Num. 20581.

Mandel J., Tezaur R., 1996, Convergence of
a substructuring method with Lagrange
multipliers. Numer. Math, 73, 4, 473-487, .

Mandel J., Dohrmann C.R., 2003, Convergence
of a balancing domain decomposition
by constraints and energy minimization,
Numer. Linear Algebra Appl., 10, 7, 639-
659.

Mandel J., Dohrmann C.R., Tezaur R., 2005,
An algebraic theory for primal and dual
substructuring methods by constraints,
Appl. Numer. Math., 54, 167-193.

President’s Information Technology Advisoty
Committee: PITAC, Computational Science:
Ensuring America’s Competitiveness,
Report to the President June 2005. 104 p.
www.nitrd.gow/pitac

Toselli A., Widlund 0., 2005, Domain
decomposition methods- Algorithms and
Theory, Springer Series in Computational
Mathematics, Springer-Verlag, Berlin, 450p.

JANUARY - MARcH 2015

53



