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Abstract 

An inversion algorithm is developed to 
simultaneously estimate the fault plane 
geometry and the parameters pertaining to 
either densities or depths of multiple geologic 
formations within the hanging wall system of 
a strike-limited listric fault from the observed 
gravity anomalies. Fault planes of the structures 
are described by polynomial functions of 
arbitrary but specific degree. The applicability 
of the algorithm is demonstrated on both 
synthetic and real field gravity anomalies. In 
the synthetic example, pseudorandom noise is 
added to the gravity anomalies of the structure 
prior to inversion. From the inversion of gravity 
anomalies produced by a synthetic structure it 
was found that the estimated parameters more 
or less mimic the true parameters even in the 
presence of random noise.  The estimated 
densities and depths of the formations from 
independent inversion of real-world gravity 
anomalies from the margin of the Chintalpudi 
sub-basin in India correlate well with the 
available drilling information.

Key words: listric fault morphology, finite 
strike, arbitrary density-density variations, 
gravity anomaly, inversion.

Resumen

Se desarrolló un algoritmo de inversión para 
estimar simultáneamente la geometría de 
plano de falla y los parámetros que pertenecen 
a cualquiera de las densidades o profundidades 
de múltiples formaciones geológicas, con el 
sistema de colgado en la pared, en un plano 
de fractura limitada de las anomalías de 
gravedad observadas. Se describen planos de 
falla de las estructuras mediante funciones 
polinómicas de grado arbitrario pero específico. 
La aplicabilidad del algoritmo se demostró 
tanto en las anomalías artificiales y reales 
de la gravedad de campo. En el ejemplo de 
síntesis se añadió ruido pseudoaleatorio a las 
anomalías de gravedad de la estructura antes 
de la inversión. En la inversión de anomalías 
de gravedad, producidos por una estructura 
sintética, se encontró que los parámetros 
estimados más o menos imitan los parámetros 
obtenidos, incluso en presencia de ruido 
aleatorio. Las densidades y profundidades 
estimadas de las formaciones de inversión 
independiente de anomalías de gravedad del 
mundo real desde el margen de la subcuenca 
Chintalpudi en la India se correlacionan bien 
con la información disponible de la perforación.

Palabras clave: morfología de fallas lístricas, 
falla finita, variaciones arbitrarias de densidad-
densidad, anomalía de gravedad, inversión.
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Introduction

Listric faults are curved normal faults in which 
the fault surface is concave upwards because 
the main detachment fracture follows a curved 
path rather than a planar path. Because of 
the non-planar nature of listric fault planes 
it is often difficult to estimate the amount of 
extension from surface geological observations 
of dip and throw of the faults (Mckenzie, 
1978). On the other hand, the displaced rock 
masses on either side of such fault planes can 
create lateral contrasts in subsurface densities 
and accordingly generate detectable step-like 
gravity anomalies across the fault planes. 
These anomalies can be appropriately analyzed 
to quantify the fault morphology.

Although fault morphologies more often 
than not possess non-planar fault planes 
(Brady et al. 2000; Goussav et al. 2006; 
McKenzie and Jackson 2012), many existing 
algorithms assume planar surfaces for the 
fault planes to analyze the gravity anomalies. 
For example, Thanassoulas et al. (1987) 
developed a method and a computer program 
in Basic, Murthy and Krishnamacharyulu 
(1990) devised an algorithm and a relevant 
code in Fortran to estimate the parameters 
of fault structures from the observed gravity 
anomalies. Abdelrahman et al. (1989) proposed 
a method to determine the dip angle of a fault 
plane from the maximum positive and negative 
amplitudes of gravity anomalies, where the 
relative movement between two semi-infinite 
horizontal slabs was confined to a planar 
surface. Rao et al. (2003) used generalized 
inversion and single value decomposition 
techniques to analyze the gravity anomalies 
of fault structures. Abdelrahman et al. (2003) 
presented two approaches to determine the 
depth and amplitude coefficient, related to 
the density contrast and the thickness of a 
buried faulted slab using numerical horizontal 
derivative anomalies obtained from 2D gravity 
data. On the other hand, Stavrev and Reid 
(2010) used the concept of extended Euler 
homogeneity of potential fields to analyze 
the gravity anomalies of a thick faulted slab. 
Recently, Essa (2013) developed an algorithm 
that make use of numerical first horizontal 
derivatives computed from the observed 
gravity anomaly to estimate the depth and the 
dip angle of a buried fault structure, whereas 
Toushmalani (2013) proposed a technique 
using particle swarm optimization to interpret 
the anomalies.

The above 2D strategies find limited 
application when analyzing the gravity 
anomalies of listric fault morphologies because 

i) the fault planes associated with these 
structures are often non-planar in nature, and 
ii) the density of the sedimentary load within 
the hanging wall is rarely uniform (Maxant 
1980; Moral et al. 2000; Rybakov et al. 2000; 
Nagihara and Hall, 2001; Adriasyah and 
McMechan, 2002; Gómez-Ortiz 2005). Realizing 
the fact that the density of sedimentary rocks 
varies with depth, Rao (1985) used a quadratic 
density function, Sundararajan and Brahmam 
(1998) adopted a linear density function, and 
Chakravarthi and Sundararajan (2004) used 
a parabolic density function to analyze the 
gravity anomalies of fault structures, again 
treating the fault structures as 2D with fault 
planes as planar surfaces.

Martín-Atienza and García-Abdeslem (1999) 
developed a technique using a quadratic density 
function to compute the gravity anomalies of 
geologic sources bounded either laterally or 
vertically by continuous functions. Though this 
method can be used to simulate the geometries 
of listric fault sources to compute gravity 
anomalies, it is efficient only for 2D sources. 
Based on the fact that the fault structures on 
the continental regions often possess finite 
strike lengths (Peirce and Lipkov 1988), 
Chakravarthi (2011) developed an automatic 
inversion to interpret the gravity anomalies of 
2.5D strike listric fault sources, where the fault 
planes are described by polynomial functions 
of arbitrary degree and the variation of density 
within the hanging wall by a parabolic density 
function. This technique is effective when the 
density contrast of sedimentary load within 
the hanging wall decreases monotonically 
with depth. On the other hand, Chakravarthi 
(2010) devised a strategy with a relevant code 
in Fortran to compute the gravity anomalies of 
strike limited listric fault morphologies, where 
the hanging wall was assumed to consist 
in several geologic formations of differing 
densities and thicknesses. To realize forward 
modeling, this method requires the coefficients 
of the polynomial (used to describe the fault 
plane geometry) and the parameters pertaining 
to both thickness and densities of formations 
within the hanging wall as part of input, which in 
reality are not known a priori. Therefore, a need 
exists to develop an appropriate algorithm to 
estimate these parameters from the observed 
gravity anomalies (inverse process).

In the present paper, we develop a gravity 
inversion technique using ridge regression 
to estimate the parameters of a listric fault 
structure from the observed gravity anomalies, 
where the structure is assumed as a 2.5D 
source with the detached hanging wall consists 
in several geologic formations; each one 
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possesses its own density and thickness. The 
forward modeling algorithm of Chakravarthi 
(2010) is used to compute the gravity 
response of a listric fault structure whereas 
the business logic of the present inversion 
estimates the unknown parameters based on 
the differences between the measured and 
model gravity anomalies. In this case, the 
unknown parameters to be estimated from 
a gravity profile are: depths or densities of 
formations (because the density and the 
volume of the source cannot be determined 
without prior information about one of them) 
and coefficients of a polynomial used to 
describe the fault plane as a function of depth. 
The validity and applicability of the technique 
are demonstrated with both synthetic and 
real field gravity anomalies. The estimated 
parameters are compared with the assumed 
parameters in case of synthetic example and 
with measured density-depth data in case of a 
real field example.

Gravity anomalies of strike limited listric 
fault sources

In a Cartesian co-ordinate system, let the 
z-axis be positive vertically downwards and the 
x-axis transverse to the strike of a listric fault 
source whose geometry is shown in Figure 1. 
The structure is located between the limits, zT 
and zB, along the z-axis and along the x-axis, 
the structure is bounded by a function, z(z), on 
the left and towards the right it is extending 
to infinity. Further, the structure is having a 
limited strike length of 2Y along the y-axis 
perpendicular to the xz plane. The detached 
hanging wall of the structure consists of 
several geological formations, N in number. 

Further, each formation has its own density, ri, i = 1, 2, …, N. For such a structure, the 
gravity anomaly, gmod(xj, zj), at any point, P(xj, 
zj), on the profile, CD, that runs along the 
x-axis and bisects the strike length, 2Y, of the 
structure outside the source region is given by 
(Chakravarthi 2010),
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where, G is the universal gravitational 
constant, Drk is the density contrast of the 
kth  formation, zk and zk+1 represent the depths 
to the top and bottom bounding surfaces of 
the respective formation within the hanging 
wall. Further, the fault plane is described by a 
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coefficients of the polynomial. It is convenient 
to solve equation (1) by means of a numerical 
method rather than an analytical method 
because the polynomial, z(z), may take any 
degree (Chakravarthi 2010). In case the profile 
runs at an offset, s, (such as the profile, C’D’ in 
Figure 1) across the strike then the anomalous 
field at any point on the profile outside the 
source region can be calculated as in equation 
(1) but by substituting, Y − s and Y + s for Y 
(Chakravarthi, 2010). Also if the profile runs at 
an angle, α, with the x-axis then xj in Eq. (1) 
needs to be replaced by xjcosa (Chakravarthi 
and Ramamma, 2013).

Figure 1. Schematic representation 
of a strike limited listric fault source. 
The detached downthrown block 
(hanging wall) is consisting of N 
horizontal formations with differing 
depths and densities. The limited 
strike length prevents the structure 

to represent as a 2D source.
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Inversion of gravity anomalies

Inversion of gravity anomalies of listric fault 
sources is tantamount to a mathematical 
exercise of trying to fit the observed gravity 
anomalies to the anomaly expression and 
solve the unknown parameters within specified 
convergence criteria such that the inferred 
model is geologically acceptable. We propose 
two variants of inversion to analyze the gravity 
anomalies: i) densities and coefficients of the 
polynomial, z(z), are estimated while keeping 
the depths of the density interfaces intact, and 
ii) depths and coefficients of the polynomial 
are estimated while keeping the densities of 
the formations intact.

In either case, the interpretation starts 
by assigning approximate parameters of the 
structure (densities or depths of the formations) 
supplemented by drilling/other geophysical 
methods. To start with, the algorithm identifies 
the approximate location of the fault plane, xD, 
(Figure 1) on the profile at a point at which 
the corresponding anomalous field reaches to 
one half the maximum anomaly (Chakravarthi 
2011). Initially, this value is assigned to the 
constant term, f0, of the polynomial, z(z), while 
the other coefficients are set to zero. These 
initial parameters of the structure are used 
to calculate the modeled gravity anomalies,

 gmod(xj, zj), using equation (1). Because the 
initial parameters are only approximate, the 
modeled gravity anomalies deviate from the 
observed anomalies. The difference between 
the observed anomalies, gobs(xj, zj), and the 
modeled anomalies, gmod(xj, zj), at any point, 
P(xj, zj), on the profile can be expressed as a 
cumulative effect of a truncated Taylor’s series 
expansion involving the partial derivatives 
of anomaly with respect to each unknown 
parameter and corresponding increment as
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where, dak are increments/decrements in the 
parameters pertaining to either densities or 
depths and dfm are the increments/decrements 
to the coefficients of the polynomial used to 
describe the fault plane.

Linear equations similar to equation (2) are 
constructed for each observation on the profile and  
(N + N1 + 1) normal equations are formed and 
solved by minimizing the misfit, J, between 
the observed and modeled gravity anomalies 
defined by
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using ridge regression (Marquardt, 1970). 
Here, Nobs stands for the number of observations 
on the profile. The relevant system of normal 
equations can be expressed in a matrix form as

	 (A + d I) X = B,	 (4)

where, A is nxn
 

matrix whose elements Anj, are 
given by

	 A
g x z

a
g x

nj
m m

jm

N

n

N N
m

obs

'
mod

'

mod( , ) (
=

∂

∂

∂

==

+ +

∑∑
11

1 1 ,, ) ,z
a

m

n∂
		

		  (5)

	 X = dan,	 (6)
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where,  an, n = 1, 2, ..., N + N1 + 1  are the 
number of unknown parameters and dan  
represents the corresponding improvements 
in the parameters. d is the damping factor 
and I is a diagonal matrix containing the 
diagonal elements of the matrix A. The 
application of ridge regression is described by 
Chakravarthi and Sundararajan (2006). The 
partial derivatives required in Eq. (5) and Eq. 
(7) are evaluated numerically (Chakravarthi 
et al. 2001), which involves the calculation 
of the rate of change of the gravity anomaly 
with respect to each unknown parameter. 
The improvements, dan, solved from Eq. (4) 
are used to update the existing parameters 
and the exercise repeats until i) the specified 
number of iterations completed or ii) the misfit 
becomes less than the predefined allowable 
error or iii) the damping factor, d, assumes an 
unusually large value (Chakravarthi, 2003).

Examples

The applicability of the algorithm is 
demonstrated on both synthetic and real 
field gravity anomalies. In either case the 
measurement is made at zj = 0 km.

Theoretical example

Figure 2a shows a set of noisy gravity 
anomalies produced by a synthetic listric fault 
model, whose geometry is shown in Figure 2b. 
The structure has a half strike length of 50 km 
(Figure 2b). The anomalies (shown as solid 
line in Figure 2a) are produced at zero offset 
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in the interval xj∈ [0, 80 km]. In this case, the 
pseudorandom noise was Gaussian, with zero 
mean and a standard deviation of 0.14 mGal. 
The foot wall remains intact and undisturbed, 
whereas the detached hanging wall consists 
of four formations: massive basalt of 3.5 km 
thick at the top is followed successively by 
1.5 km thick sediments, 3 km thick vesicular 
basalt and 2.0 km thick compacted sediments 
above the basement. The model densities of 
the formations are given in Table 1 and shown 
in Figure 2c.  In the present case, a 6th degree 
polynomial with a set of seven arbitrarily 
chosen coefficients (Table 2) is used to describe 
the fault plane geometry (shown as solid line in 
blue in Figure 2b).

We have used two prong strategies to analyze 
the gravity anomalies as described in section 
3. Initially, the densities of the formations and 
polynomial coefficients (to describe the fault 
plane geometry) are estimated from the noisy 
anomalies (shown in Figure 2a) while keeping 
the depths of density interfaces unchanged, 
and secondly the depths of the interfaces and 
coefficients of the polynomial are estimated 
keeping the densities intact. Further, in either 

case a 2nd degree polynomial is used (instead 
of a 6th degree) to describe the fault plane 
in the inversion to study its effect on the 
interpretation, if any.

Inversion of noisy anomalies to estimate 
densities and fault plane geometry

The noisy anomalies (Figure 2a) were subjected 
to inversion assuming an initial density of 2.0    
g/cm3 for each of the subsurface formation 
(Table 1 and Figure 2c). The algorithm calculates 
the density contrast of each formation and 
uses them to compute the gravity effect of 
the structure. The approximate location of 
the fault plane identified by the algorithm is 
at 30.07 km on the profile. Initially, this value 
has been assigned to the first coefficient of the 
polynomial, f0, whereas other coefficients are 
set to zero as described in the text. For such 
an inversion, the algorithm had performed 69 
iterations before it got terminated as the misfit, 
J, fell below a predefined allowable error of 
0.01 mGal. No significant improvements either 
in densities or coefficients of the polynomial are 
observed beyond the 69th iteration (Figure 3b).

Table 1. Assumed and estimated densities in case of synthetic example

Table 2. Assumed and estimated coefficients of the polynomial,  z(z), synthetic example

Formation	 Assumed density	 Initial density	 Estimated density	 Error
	 (g/cm3)	 (g/cm3)	 (g/cm3)	 (%)

Compact basalt	 2.9	 2.0	 2.89	 0.34
Sediments	 2.4	 2.0	 2.44	 1.67
Vesicular basalt	 2.8	 2.0	 2.78	 0.71
Compacted sediments	 2.5	 2.0	 2.51	 0.4

	Coefficient	 Assumed coefficients	 Estimated coefficients of	 Estimated coefficients of
		  of the 6th	 the 2nd degree polynomial	 the 2nd degree polynomial
		  degree polynomial	 in case of density	 in case of depth and fault
			   and fault plane inversion	 plane inversion
 

	 f0	 30.01900944	 30.036317825	 30.029928207

	 f1	 0.09650391535	 0.070503563	 0.076575279

	 f2	 0.1845273787	 0.106036872	 0.110244833

	 f3	 -0.07319248817

	 f4	 0.01707929702

	 f5	 -0.001753613786

	 f6	 7.009779208E-005
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The modeled gravity anomalies (shown as 
a solid dots in Figure 2a) at the end of the 
39th iteration closely fit the observed ones. 
A maximum error of 0.044 mGal between 
the observed and modeled gravity anomalies 
is observed exactly at the 36th km on the 
profile (Figure 3a). The value of J had reduced 
drastically from its initial value of 3550019 
mGal2 to 1.43 at the end of the 34th iteration 
and then to 0.001 at the end of the concluding 
iteration (Figure 3b). The estimated density 
parameters and coefficients of the 2nd degree 
polynomial from the inversion are given 
Table 1 and Table 2 and shown graphically 
in Figure 2c (dashed line) and 2b (solid line) 
respectively. The errors (%) between the 
assumed and estimated densities are given in 
Table 1. Further, the changes in each estimated 
parameter (densities and coefficients of the 
2nd degree polynomial) against the iteration 
number are shown in Figure 3b.

It is to be noted from Figure 2b that the 
modeled fault plane by a 2nd degree polynomial 
marginally deviates from the assumed fault 
plane described by a 6th degree polynomial. 

The estimated densities (Table 1 and Figure 
2c) pertaining to two sedimentary pulses at 
different depths are marginally overestimated, 
whereas the densities of compact and vesicular 
basalts are slightly underestimated. Such 
an error between assumed and estimated 
densities is acceptable considering the 
presence of significant level of pseudorandom 
noise in the anomalies produced by the 
structure. Therefore, the fault plane whether it 
is described by a 2nd degree or a 6th degree does 
not appreciably affect the fault plane geometry 
and estimated densities of the structure.

Inversion of noisy anomalies to estimate 
depths and fault plane geometry

The inversion process is repeated to estimate 
the depths of the four concealed density 
interfaces and three coefficients of the 
polynomial by keeping the density parameters 
unchanged. In this case, the initial depths 
assigned to four density interfaces are given in 
Table 3 and shown in Figure 4c (dotted lines). 
The initial depths of the density interfaces are 
significantly different from the assumed/true 

Figure 2. (a) Observed and 
modeled noisy gravity anomalies, 
(b) four layered hanging wall 
system of a synthetic listric fault 
source with assumed and modeled 
fault planes described by 6th and 2nd 
degree polynomials, (c) assumed, 
initial and modeled densities. 
Depths of density interfaces are 

fixed during inversion.
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Figure 3. (a) Error analysis between the observed and modeled gravity anomalies, (b) Changes in misfit, 
coefficients of a 2nd degree polynomial, and densities of subsurface formations against the iteration number.

Table 3. Assumed and estimated depths to density interfaces, synthetic example.

Interface	 Assumed depth	 Initial depth	 Estimated depth	 Error
	 (km)	 (km)	 (km)	 (%)

Compact basalt/sediments	 3.5	 1.5	 3.44	 1.71
Sediments/ Vesicular basalt	 5.0	 3	 4.8	 4.0
Vesicular basalt/compact sediments	 8.0	 5	 7.6	 5.0
Compact sediments/basement	 10.0	 8	 9.57	 4.3
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model parameters. As in the previous case, the 
approximate location of the fault plane identified 
by the algorithm at 30.07 km was assigned 
to the first coefficient of the polynomial, f0, 
whereas the other coefficients were set to zero. 
For such an inversion, the algorithm took 45 
iterations before it got terminated. The misfit, 
J, had reduced from its initial value of 45565.3 
mGal2 for the starting model to 0.7 at the end 
of 19th iteration and then slowly to 0.004 mGal 
at the end of the 45th iteration (Figure 5a). No 
appreciable changes in estimated depths and 
coefficients of the polynomial are found beyond 
the concluding iteration (Figure 5b).

The fit between the observed (solid line 
in black in Figure 4a) and modeled gravity 
anomalies at the end of the 45th iteration (solid 
dots in Figure 4a) is satisfactory. The estimated 
depths to the four density interfaces are given 
in Table 3 and shown graphically in Figures 4b 
and 4c (solid lines). The estimated coefficients 
of the 2nd degree polynomial to describe the 
fault plane are given in Table 2 and shown in 
Figure 4b. By and large, the modeled fault 
plane (simulated by a 2nd degree polynomial) 

closely mimics the assumed one described by a 
6th degree polynomial (Figure 4b). In this case, 
a maximum error of -0.022 mGal between the 
observed and modeled gravity anomalies is 
observed at the 40th km on the profile (Figure 
5a). The changes in the modeled parameters 
(depths to density interfaces and coefficients 
of the 2nd degree polynomial) against the 
iteration number are shown in Figure 5b.

It is to be noted from Table 3 and Figure 4c 
that the estimated depths to the four density 
interfaces are marginally underestimated, with 
a maximum error of 5% found at the interface 
between vesicular and compact sediments. 
However, such an error between the assumed 
and estimated parameters is acceptable 
considering the presence of significant level of 
noise in the anomaly of the structure.

In short, the fault plane whether it is 
described by a 2nd degree or a 6th degree does 
not appreciably affect the estimated densities 
or depths of the formations within the hanging 
wall of the structure. However, the choice of a 
2nd degree polynomial in the inversion would 

Figure 4. (a) Observed and modeled 
noisy gravity anomalies, (b) four 
layered hanging wall system of 
synthetic listric fault source with 
assumed and modeled fault planes 
described by 6th and 2nd degree 
polynomials, (c) assumed and 
estimated depths to density interfaces. 
Densities of the formations (shown 
as step line) are remain unchanged 

during inversion.
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lead to slightly underestimate the amount 
of extension across normal fault when the 
anomalies are analyzed to estimate the depths 
of the density interfaces.

Field example

The proposed inversion technique is applied to 
analyze the gravity anomalies observed across 
the Aswaraopet master fault of the Chintalpudi 

sub-basin in India. The interpreted results are 
compared with previously reported information 
derived from seismic refraction studies (Kaila 
et al., 1990).

The Chintalpudi sub-basin represents the 
southeasterly continuation of the Pranhita–
Godavari valley. Archaean gneisses (mean 
density 2.67 g/cm3) form the basement for 
the Gondwana sequence within the sub-basin 

Figure 5. (a) Error analysis between the observed and modeled gravity anomalies, (b) changes in misfit, 
coefficients of a 2nd degree polynomial, and depths of various density interfaces against the iteration number.
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and towards the east the basin margin is 
associated with the well-known Aswaraopet 
master fault, which is exposed at the surface 
and strikes NNW–SSE over a length of 20 km 
(Figure 6a). Kaila et al. (1990) have carried out 
Deep Seismic Sounding (DSS) investigations 
along a profile across the basin connecting 
Kallur and Polavaram (Figure 6a). The Oil and 
Natural Gas Corporation Ltd. (ONGC), India 
drilled a borehole (Figure 6a and 6c) within the 
basin and encountered Archaean basement 
at a depth of 2.935 km (Agarwal, 1995). The 
density contrast-depth data measured from this 
borehole is shown in Figure 6b (Chakravarthi, 
2003). The gravity anomaly of the basin 
(Figure 6c) was analyzed by Chakravarthi and 
Sundararajan (2007) for its basement structure 
using a 3D inversion.

For the present study, the gravity anomalies 
of the basin along a profile, EE’, (Figure 6a and 
6c) across the Aswaraopet master fault have 
been analyzed using the present algorithm. 
This profile also forms part of the DSS profile 
(Figure 6a). The observed gravity anomaly 
along the selected profile is shown as solid 

dots in Figure 7a. As in the case of synthetic 
example, we subject the anomaly for inversion 
in two ways. In either case, the fault plane is 
described with a 2nd degree polynomial in the 
inversion. The initial/approximate parameters 
pertaining to densities (in case of inversion 
performed for estimating densities and 
polynomial coefficients) and depths (in case of 
inversion performed for estimating depths and 
polynomial coefficients) are given in Table 4 
and Table 6 and shown in Figure 7c and Figure 
9c (dotted lines) respectively. Although the 
measured density-depth data of the basin is 
available, we presume different values for the 
parameters in the inversion to study whether 
the estimated parameters after the inversion 
mimic the measured ones or not. One can notice 
from Figure 7c and Figure 9c that the assumed 
initial parameters are significantly different 
from the measured quantities. The algorithm 
had identified the approximate location of the 
fault plane at 2.13 km in each case. Initially, 
this value was assigned to the first coefficient, f0, of the polynomial in either case whereas the 
other coefficients were set to zero.

Figure 6. a) Geology of the Chintalpudi sub-basin, India (modified after Kaila et al. 1990),  
(b) measured density contrast-depth data (Chakravarthi, 2003), (c) gravity anomaly map of the Chintalpudi sub-

basin, India (after Chakravarthi and Sundararajan, 2007).



Geofísica Internacional

January - March 2015      59

The algorithm had performed 74 and 14 
iterations in each case before terminating. 
The estimated parameters remained more or 
less unchanged beyond respective concluding 
iterations (Figure 8b and Figure 10b). The 
modeled gravity anomalies are shown in Figure 
7a and Figure 9a as solid lines. The fit between 
the observed and modeled gravity anomalies in 
either case is satisfactory (Figure 7a and Figure 
9a). A maximum error of 0.58 mGal between 
the observed and modeled gravity anomalies is 
observed at 6.3 km on the profile (Figure 8a) 
when the inversion is performed to estimate 
the densities and fault plane geometry. On the 
other hand, a maximum error of 0.64 mGal is 
observed at the 10th km (Figure 10a) when the 
anomalies are inverted for depths and fault 
plane geometry. The estimated density and 
depth parameters subsequent to respective 
inversions are given in Table 4 and Table 6 and 
shown in Figure 7c and Figure 9c respectively. 
The errors (%) between the estimated and 

measured parameters in each case are also 
given in Tables 5 and 6. When the anomalies 
are subjected for inversion to estimate 
densities and the fault plane geometry, the 
modeled densities of the first and second 
formations are slightly overestimated (~0.4%) 
while others marginally underestimated (Table 
4 and Figure 7c). When the inversion was 
performed for estimating both depths and fault 
plane geometry simultaneously, the modeled 
depths of the first, second and fourth density 
interfaces are modestly underestimated 
whereas the third and fifth density interfaces 
are slightly overestimated (Table 6 and Figure 
9c). The changes in the estimated parameters 
with the iteration number in each case are 
shown in Fig. 8b and Figure 10b respectively.

The modeled fault plane of the structure in 
each case from the estimated coefficients of 
the 2nd degree polynomial (Table 5) is shown 
graphically in Figure 7b and Figure 9b. The 

Table 4. Measured and estimated densities, Chintalpudi subbasin, India.

Table 5. Estimated coefficients of the polynomial,  z(z), Chintalpudi subbasin, India.

Table 6. Measured and estimated depths to density interfaces, Chintalpudi subbasin, India.

	 Formation	 Measured density	 Initial density	 Estimated density	 Error
		  (g/cm3)	 (g/cm3)	 (g/cm3)	 (%)

	 1	 2.27	 2.0	 2.279	 0.396
	 2	 2.37	 2.0	 2.380	 0.422
	 3	 2.42	 2.0	 2.410	 0.410
	 4	 2.52	 2.0	 2.517	 0.119
	 5	 2.57	 2.0	 2.562	 0.311

	 Coefficient	 Estimated coefficients of the	 Estimated coefficients of the
		  2nd degree polynomial in case	 2nd degree polynomial in case
		  of densities and fault plane inversion	 of depths and fault plane inversion

	 f0	 1.606	 1.564

	 f1	 -0.149	 0.143

	 f2	 0.719	 0.506

	 Formation	 Measured depth	 Initial depth	 Estimated depth	 Error
		  (km)	 (km)	  (km)	  (%)

	 1	 0.46	 0.2	 0.43	 6.5
	 2	 1.265	 0.9	 1.10	 13.0
	 3	 1.835	 1.2	 1.87	 1.9
	 4	 2.54	 2	 2.33	 8.3
	 5	 2.935	 2.5	 3.01	 2.5
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estimated location of the fault plane in either 
case from gravity modeling closely matches 
with the one mapped from geological studies. 
Furthermore, the inferred structure of the 
basin across the Aswaraopet fault from DSS 

studies (after Kaila et al. 1990) is also shown 
in Figure 9b for comparison. The theoretical 
gravity response of this structure is shown 
as a dashed line in Figure 9a along with the 
observed anomaly. In this case, a 5th degree 
polynomial with a set of six coefficients (Table 
7) completely defines the geometry of the fault 
plane inferred from DSS studies. The forward 
modeling algorithm of Chakravarthi (2010b) 
is used to calculate the gravity anomalies 
of the structure (derived from seismic data 
interpretation) using the measured density-
depth data (Figure 6b) of the basin. It can be 
seen from Figure 9a that the modeled gravity 
anomalies of the structure from present 
inversion closely mimic the observed ones, 
whereas the gravity response of the seismically 
derived structure (Kaila et al., 1990) does not. 
In addition, the large gradient (4.5 mGal/km) 
in the observed anomaly between 0 and 6th km 
across the fault plane does not agree well with 
the interpretation model of Kaila et al. (1990), 
whereas it agrees reasonably well with the 
present gravity inversion result.

Table 7. Coefficients of the 5th degree 
polynomial,  z(z), used to describe the geometry 
of the Aswaraopet fault plane derived from 

DSS studies (after Kaila et al., 1990).

Figure 7. (a) Observed and modeled 
gravity anomalies, (b) inferred fault 
plane geometry of the Aswaraopet 
master fault, Chintalpudi subbasin, 
India, (c) assumed, initial and modeled 
densities. Depths of density interfaces 

are fixed during inversion.

	 f0	 1.852063529
 
	 f1	 -0.6020069478
 
	 f2	 -0.6020069478
 
	 f3	 0.516508814
 
	 f4	 -1.085574722
 
	 f5	 0.25061682
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The structure inferred from DSS 
investigations (Figure 9b) shows high angle dip 
for the fault plane from the surface to a depth 
of about 0.6 km, then moderately varying dips 
up to 1.7 km beyond which it transforms again 
into a high angle normal fault. The present 
interpretation reveals that the fault plane 
(Figure 7b and Figure 9b), which dips at high 

angle near the surface, shows similar dips up 
to a depth of 1.7 km beyond which it shows 
moderate dips. Further, the error (4.6%) 
between the measured and estimated thickness 
of the basin from DSS studies near the existing 
deep borehole is relatively more than the one 
estimated (2.55%) from the present inversion.

Figure 8. (a) Error analysis between the observed and modeled gravity anomalies across the Aswaraopet master 
fault, Chintalpudi subbasin, India, (b) Changes in misfit, coefficients of a 2nd degree polynomial, and densities of 

subsurface formations against the iteration number.
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Conclusions

A gravity inversion technique using ridge 
regression is presented to analyze the gravity 
anomalies of strike-limited listric fault sources, 
where the detached hanging wall of the structure 
consists in several geologic formations; each 
one possessing its own density and thickness. 
The fault plane is described with a polynomial 
function of arbitrary but specific degree. 
This algorithm simultaneously estimates the 
geometry of a fault plane and the parameters 
pertaining to either densities or depths of 
various subsurface formations from the 
observed gravity anomalies. The advantage of 
the algorithm is that it can be used to analyze 
the gravity anomalies of the structure even 
when the profile along which the interpretation 
is intended fails to bisect the fault plane.

The algorithm is applied to both synthetic 
and real field gravity anomalies. In case 
of synthetic example; significant level of 
pseudorandom noise was added to the gravity 
anomalies produced by a structure, whose 

fault plane was described with a 6th degree 
polynomial.  To study the effect of the choice 
of the degree polynomial in the interpretation, 
the noisy anomalies were inverted presuming 
a 2nd degree polynomial for the fault plane. 
The noisy anomalies were then analyzed 
to estimate i) the densities and fault plane 
geometry, keeping the depths of density 
interfaces unchanged, and ii) depths and fault 
plane geometry, keeping densities intact. 
In either case, the estimated parameters 
pertaining either to densities or depths closely 
mimic the assumed parameters. However, the 
choice of the lower order polynomial (such 
as a 2nd degree) would lead to marginally 
underestimate the amount extension across 
the normal fault, when inversion is performed 
to estimate the fault plane geometry and 
depths of density interfaces.

The observed gravity anomalies across 
the Aswaraopet master fault from the eastern 
margin of the Chintalpudi subbasin in India 
are analyzed by the proposed technique and 
found that the estimated parameters (densities 

Figure 9. (a) Observed and modeled 
gravity anomalies, (b) inferred fault 
plane geometry of the Aswaraopet 
master fault, Chintalpudi subbasin, India. 
Anomalies are analyzed to estimate the 

depths of density interfaces.
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and thicknesses of subsurface formations 
within the hanging wall) from independent 
gravity inversion reasonably coincide with 
the measured ones. On the other hand, the 
calculated gravity response of the structure 
derived from seismic data interpretation (Kaila 
et al. 1990) using the measured density-depth 
data significantly deviates from the observed 
anomaly. Further, the large gradient in the 
observed gravity anomaly over the fault plane 
is better explained by the gravity inversion 

model rather than the one reported from 
seismic data interpretation (Kaila et al., 1990).

However, the proposed inversion technique 
presumes that the detached hanging wall of 
listric fault morphology consists in several 
geologic formations with each one bounded 
on top and bottom by flat surfaces, which in 
reality may or not be valid. Therefore, the 
inversion technique is more effective when the 
assumptions are relatively valid. 

Figure 10. (a) Error analysis between the observed and modeled gravity anomalies across the Aswaraopet 
master fault, Chintalpudi subbasin, India, (b) changes in misfit, coefficients of a 2nd degree polynomial, and 

depths to various density interfaces against the iteration number.
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