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Resumen

Se desarrollé un algoritmo de inversion para
estimar simultdneamente la geometria de
plano de falla y los parametros que pertenecen
a cualquiera de las densidades o profundidades
de multiples formaciones geoldgicas, con el
sistema de colgado en la pared, en un plano
de fractura limitada de las anomalias de
gravedad observadas. Se describen planos de
falla de las estructuras mediante funciones
polindmicas de grado arbitrario pero especifico.
La aplicabilidad del algoritmo se demostré
tanto en las anomalias artificiales y reales
de la gravedad de campo. En el ejemplo de
sintesis se afiadid ruido pseudoaleatorio a las
anomalias de gravedad de la estructura antes
de la inversién. En la inversidn de anomalias
de gravedad, producidos por una estructura
sintética, se encontré6 que los parametros
estimados mas o menos imitan los parametros
obtenidos, incluso en presencia de ruido
aleatorio. Las densidades y profundidades
estimadas de las formaciones de inversion
independiente de anomalias de gravedad del
mundo real desde el margen de la subcuenca
Chintalpudi en la India se correlacionan bien
con la informacién disponible de la perforacion.

Palabras clave: morfologia de fallas listricas,
falla finita, variaciones arbitrarias de densidad-
densidad, anomalia de gravedad, inversién.
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Abstract

An inversion algorithm is developed to
simultaneously estimate the fault plane
geometry and the parameters pertaining to
either densities or depths of multiple geologic
formations within the hanging wall system of
a strike-limited listric fault from the observed
gravity anomalies. Fault planes of the structures
are described by polynomial functions of
arbitrary but specific degree. The applicability
of the algorithm is demonstrated on both
synthetic and real field gravity anomalies. In
the synthetic example, pseudorandom noise is
added to the gravity anomalies of the structure
prior to inversion. From the inversion of gravity
anomalies produced by a synthetic structure it
was found that the estimated parameters more
or less mimic the true parameters even in the
presence of random noise. The estimated
densities and depths of the formations from
independent inversion of real-world gravity
anomalies from the margin of the Chintalpudi
sub-basin in India correlate well with the
available drilling information.

Key words: listric fault morphology, finite
strike, arbitrary density-density variations,
gravity anomaly, inversion.
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Introduction

Listric faults are curved normal faults in which
the fault surface is concave upwards because
the main detachment fracture follows a curved
path rather than a planar path. Because of
the non-planar nature of listric fault planes
it is often difficult to estimate the amount of
extension from surface geological observations
of dip and throw of the faults (Mckenzie,
1978). On the other hand, the displaced rock
masses on either side of such fault planes can
create lateral contrasts in subsurface densities
and accordingly generate detectable step-like
gravity anomalies across the fault planes.
These anomalies can be appropriately analyzed
to quantify the fault morphology.

Although fault morphologies more often
than not possess non-planar fault planes
(Brady et al. 2000; Goussav et al. 2006;
McKenzie and Jackson 2012), many existing
algorithms assume planar surfaces for the
fault planes to analyze the gravity anomalies.
For example, Thanassoulas et al. (1987)
developed a method and a computer program
in Basic, Murthy and Krishnamacharyulu
(1990) devised an algorithm and a relevant
code in Fortran to estimate the parameters
of fault structures from the observed gravity
anomalies. Abdelrahman et al. (1989) proposed
a method to determine the dip angle of a fault
plane from the maximum positive and negative
amplitudes of gravity anomalies, where the
relative movement between two semi-infinite
horizontal slabs was confined to a planar
surface. Rao et al. (2003) used generalized
inversion and single value decomposition
techniques to analyze the gravity anomalies
of fault structures. Abdelrahman et al. (2003)
presented two approaches to determine the
depth and amplitude coefficient, related to
the density contrast and the thickness of a
buried faulted slab using numerical horizontal
derivative anomalies obtained from 2D gravity
data. On the other hand, Stavrev and Reid
(2010) used the concept of extended Euler
homogeneity of potential fields to analyze
the gravity anomalies of a thick faulted slab.
Recently, Essa (2013) developed an algorithm
that make use of numerical first horizontal
derivatives computed from the observed
gravity anomaly to estimate the depth and the
dip angle of a buried fault structure, whereas
Toushmalani (2013) proposed a technique
using particle swarm optimization to interpret
the anomalies.

The above 2D strategies find limited

application when analyzing the gravity
anomalies of listric fault morphologies because
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i) the fault planes associated with these
structures are often non-planar in nature, and
ii) the density of the sedimentary load within
the hanging wall is rarely uniform (Maxant
1980; Moral et al. 2000; Rybakov et al. 2000;
Nagihara and Hall, 2001; Adriasyah and
McMechan, 2002; Gémez-Ortiz 2005). Realizing
the fact that the density of sedimentary rocks
varies with depth, Rao (1985) used a quadratic
density function, Sundararajan and Brahmam
(1998) adopted a linear density function, and
Chakravarthi and Sundararajan (2004) used
a parabolic density function to analyze the
gravity anomalies of fault structures, again
treating the fault structures as 2D with fault
planes as planar surfaces.

Martin-Atienza and Garcia-Abdeslem (1999)
developed a technique using a quadratic density
function to compute the gravity anomalies of
geologic sources bounded either laterally or
vertically by continuous functions. Though this
method can be used to simulate the geometries
of listric fault sources to compute gravity
anomalies, it is efficient only for 2D sources.
Based on the fact that the fault structures on
the continental regions often possess finite
strike lengths (Peirce and Lipkov 1988),
Chakravarthi (2011) developed an automatic
inversion to interpret the gravity anomalies of
2.5D strike listric fault sources, where the fault
planes are described by polynomial functions
of arbitrary degree and the variation of density
within the hanging wall by a parabolic density
function. This technique is effective when the
density contrast of sedimentary load within
the hanging wall decreases monotonically
with depth. On the other hand, Chakravarthi
(2010) devised a strategy with a relevant code
in Fortran to compute the gravity anomalies of
strike limited listric fault morphologies, where
the hanging wall was assumed to consist
in several geologic formations of differing
densities and thicknesses. To realize forward
modeling, this method requires the coefficients
of the polynomial (used to describe the fault
plane geometry) and the parameters pertaining
to both thickness and densities of formations
within the hanging wall as part of input, which in
reality are not known a priori. Therefore, a need
exists to develop an appropriate algorithm to
estimate these parameters from the observed
gravity anomalies (inverse process).

In the present paper, we develop a gravity
inversion technique using ridge regression
to estimate the parameters of a listric fault
structure from the observed gravity anomalies,
where the structure is assumed as a 2.5D
source with the detached hanging wall consists
in several geologic formations; each one
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possesses its own density and thickness. The
forward modeling algorithm of Chakravarthi
(2010) is used to compute the gravity
response of a listric fault structure whereas
the business logic of the present inversion
estimates the unknown parameters based on
the differences between the measured and
model gravity anomalies. In this case, the
unknown parameters to be estimated from
a gravity profile are: depths or densities of
formations (because the density and the
volume of the source cannot be determined
without prior information about one of them)
and coefficients of a polynomial used to
describe the fault plane as a function of depth.
The validity and applicability of the technique
are demonstrated with both synthetic and
real field gravity anomalies. The estimated
parameters are compared with the assumed
parameters in case of synthetic example and
with measured density-depth data in case of a
real field example.

Gravity anomalies of strike limited listric
fault sources

In a Cartesian co-ordinate system, let the
z-axis be positive vertically downwards and the
x-axis transverse to the strike of a listric fault
source whose geometry is shown in Figure 1.
The structure is located between the limits, z,
and z,, along the z-axis and along the x-axis,
the structure is bounded by a function, {(z), on
the left and towards the right it is extending
to infinity. Further, the structure is having a
limited strike length of 2Y along the y-axis
perpendicular to the xz plane. The detached
hanging wall of the structure consists of
several geological formations, N in number.

Further, each formation has its own density,
p, i=1,2,..., N. For such a structure, the
gravity anomaly, gmod(x/., z’.), at any point, P(xj,
zj), on the profile, CD, that runs along the
X-axis and bisects the strike length, 2Y, of the
structure outside the source region is given by
(Chakravarthi 2010),

tan™' Y
Za (z- Zi)

Bmoa (X;52;)= ZGEApk f . Y(E(z)-x)
(z- z/)\/(;’(z)— X)) +(z-z)+Y?

(1)

where, G is the universal gravitational
constant, Ap, is the density contrast of the
k™ formation, z, and g, represent the depths
to the top and bottom bounding surfaces of
the respective formation within the hanging
wall. Further, the fault plane is described by a

dz,

N1
function, £(2) = Eﬁ Z, where f represent the
=

coefficients of the polynomial. It is convenient
to solve equation (1) by means of a nhumerical
method rather than an analytical method
because the polynomial, {(z), may take any
degree (Chakravarthi 2010). In case the profile
runs at an offset, s, (such as the profile, C'D’ in
Figure 1) across the strike then the anomalous
field at any point on the profile outside the
source region can be calculated as in equation
(1) but by substituting, ¥ — s and Y + s for Y
(Chakravarthi, 2010). Also if the profile runs at
an angle, a, with the x-axis then x. in Eq. (1)
needs to be replaced by xcosa (CI{1akravarthi
and Ramamma, 2013).

Figure 1. Schematic representation
of a strike limited listric fault source.
The detached downthrown block
(hanging wall) is consisting of N
horizontal formations with differing
depths and densities. The limited
strike length prevents the structure
to represent as a 2D source.
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Inversion of gravity anomalies

Inversion of gravity anomalies of listric fault
sources is tantamount to a mathematical
exercise of trying to fit the observed gravity
anomalies to the anomaly expression and
solve the unknown parameters within specified
convergence criteria such that the inferred
model is geologically acceptable. We propose
two variants of inversion to analyze the gravity
anomalies: i) densities and coefficients of the
polynomial, {(z), are estimated while keeping
the depths of the density interfaces intact, and
ii) depths and coefficients of the polynomial
are estimated while keeping the densities of
the formations intact.

In either case, the interpretation starts
by assigning approximate parameters of the
structure (densities or depths of the formations)
supplemented by drilling/other geophysical
methods. To start with, the algorithm identifies
the approximate location of the fault plane, x ,
(Figure 1) on the profile at a point at which
the corresponding anomalous field reaches to
one half the maximum anomaly (Chakravarthi
2011). Initially, this value is assigned to the
constant term, f;, of the polynomial, {(z), while
the other coefficients are set to zero. These
initial parameters of the structure are used
to calculate the modeled gravity anomalies,
gmod(xl Z), using equation (1). Because the
initial parameters are only approximate, the
modeled gravity anomalies deviate from the
observed anomalies. The difference between
the observed anomalies, g (x/ z/), and the
modeled anomalies, g _ . (x Z), at any point,
P(x/ Z/), on the profile can "be expressed as a
cumulative effect of a truncated Taylor’s series
expansion involving the partial derivatives
of anomaly with respect to each unknown
parameter and corresponding increment as

X 08, (x \Z ) & 080a(X;,2;)
gwmmwmm@)E L a4y, R
=1 a, m=0 afm
(2)

where, dak are increments/decrements in the
parameters pertaining to either densities or
depths and dfmare the increments/decrements
to the coefficients of the polynomial used to
describe the fault plane.

Linear equations similar to equation (2) are
constructedforeachobservationontheprofileand
(N + N1 + 1) normal equations are formed and
solved by minimizing the misfit, J, between
the observed and modeled gravity anomalies
defined by
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N,

2
ﬁ[gobs(xj’zj)_gmod(xj’zj)] (3)
Jj=1

using ridge regression (Marquardt, 1970).
Here, N , stands for the number of observations
on the proﬁle The relevant system of normal

equations can be expressed in a matrix form as
(A+0l) X=B, (4)

where, A is nxn matrix whose elements A
given by

NJENHIN agmod(xm,Z ) agmocl(xm’Z )
L L a; 9a, (s
X = dan, (6)
. Z[gab,&(x,,,,z,,,)—gmoa("m’zm)]W’ J'=1.2,. N+ N1+1
(7)

where, a,n=1,2,..,N+ Nl +1 are the
number of unknown parameters and da
represents the corresponding |mprovements
in the parameters. 6 is the damping factor
and [ is a diagonal matrix containing the
diagonal elements of the matrix A. The
application of ridge regression is described by
Chakravarthi and Sundararajan (2006). The
partial derivatives required in Eq. (5) and Eq.
(7) are evaluated numerically (Chakravarthi
et al. 2001), which involves the calculation
of the rate of change of the gravity anomaly
with respect to each unknown parameter.
The improvements, da solved from Eq. (4)
are used to update the existing parameters
and the exercise repeats until i) the specified
number of iterations completed or ii) the misfit
becomes less than the predefined allowable
error or iii) the damping factor, §, assumes an
unusually large value (Chakravarthi, 2003).

Examples

The applicability of the algorithm s
demonstrated on both synthetic and real
field gravity anomalies. In either case the
measurement is made at 7= 0 km.

Theoretical example

Figure 2a shows a set of noisy gravity
anomalies produced by a synthetic listric fault
model, whose geometry is shown in Figure 2b.
The structure has a half strike length of 50 km
(Figure 2b). The anomalies (shown as solid
line in Figure 2a) are produced at zero offset
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in the interval X, € [0, 80 km]. In this case, the
pseudorandom noise was Gaussian, with zero
mean and a standard deviation of 0.14 mGal.
The foot wall remains intact and undisturbed,
whereas the detached hanging wall consists
of four formations: massive basalt of 3.5 km
thick at the top is followed successively by
1.5 km thick sediments, 3 km thick vesicular
basalt and 2.0 km thick compacted sediments
above the basement. The model densities of
the formations are given in Table 1 and shown
in Figure 2c. In the present case, a 6™ degree
polynomial with a set of seven arbitrarily
chosen coefficients (Table 2) is used to describe
the fault plane geometry (shown as solid line in
blue in Figure 2b).

We have used two prong strategies to analyze
the gravity anomalies as described in section
3. Initially, the densities of the formations and
polynomial coefficients (to describe the fault
plane geometry) are estimated from the noisy
anomalies (shown in Figure 2a) while keeping
the depths of density interfaces unchanged,
and secondly the depths of the interfaces and
coefficients of the polynomial are estimated
keeping the densities intact. Further, in either

case a 2" degree polynomial is used (instead
of a 6™ degree) to describe the fault plane
in the inversion to study its effect on the
interpretation, if any.

Inversion of noisy anomalies to estimate
densities and fault plane geometry

The noisy anomalies (Figure 2a) were subjected
to inversion assuming an initial density of 2.0
g/cm? for each of the subsurface formation
(Table 1 and Figure 2c). The algorithm calculates
the density contrast of each formation and
uses them to compute the gravity effect of
the structure. The approximate location of
the fault plane identified by the algorithm is
at 30.07 km on the profile. Initially, this value
has been assigned to the first coefficient of the
polynomial, fO, whereas other coefficients are
set to zero as described in the text. For such
an inversion, the algorithm had performed 69
iterations before it got terminated as the misfit,
J, fell below a predefined allowable error of
0.01 mGal. No significant improvements either
in densities or coefficients of the polynomial are
observed beyond the 69" iteration (Figure 3b).

Table 1. Assumed and estimated densities in case of synthetic example

Formation Assumed density Initial density Estimated density Error
(g/cm?3) (g/cm?) (g/cm?) (%)
Compact basalt 2.9 2.0 2.89 0.34
Sediments 2.4 2.0 2.44 1.67
Vesicular basalt 2.8 2.0 2.78 0.71
Compacted sediments 2.5 2.0 2.51 0.4

Table 2. Assumed and estimated coefficients of the polynomial, {(z), synthetic example

Coefficient Assumed coefficients Estimated coefficients of Estimated coefficients of
of the 6* the 2" degree polynomial the 2" degree polynomial
degree polynomial in case of density in case of depth and fault
and fault plane inversion plane inversion
f0 30.01900944 30.036317825 30.029928207
fl 0.09650391535 0.070503563 0.076575279
f2 0.1845273787 0.106036872 0.110244833
f3 -0.07319248817
f4 0.01707929702
f5 -0.001753613786
f6 7.009779208E-005
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Figure 2. (a) Observed and

modeled noisy gravity anomalies,
(b) four layered hanging wall
system of a synthetic listric fault
source with assumed and modeled
fault planes described by 6% and 2™
degree polynomials, (c) assumed,
initial and modeled densities.
Depths of density interfaces are
fixed during inversion.

Estimated fault plane
(2 degree polynomial)

Observed anomaly
& & » hodeled anomaly

Massive
- basalt

Vesicular
basalt

Bl Sediments

Compacted
sediments

Assumed fault plane
(6™ degree polynonial)

Density (glem?)
0

4 —— Assumed density distribution
- Estimated density distribution
= Initial density distribution

Dapth (km)

10

(e}

The modeled gravity anomalies (shown as
a solid dots in Figure 2a) at the end of the
39t iteration closely fit the observed ones.
A maximum error of 0.044 mGal between
the observed and modeled gravity anomalies
is observed exactly at the 36™ km on the
profile (Figure 3a). The value of J had reduced
drastically from its initial value of 3550019
mGal? to 1.43 at the end of the 34" iteration
and then to 0.001 at the end of the concluding
iteration (Figure 3b). The estimated density
parameters and coefficients of the 2" degree
polynomial from the inversion are given
Table 1 and Table 2 and shown graphically
in Figure 2c (dashed line) and 2b (solid line)
respectively. The errors (%) between the
assumed and estimated densities are given in
Table 1. Further, the changes in each estimated
parameter (densities and coefficients of the
2" degree polynomial) against the iteration
number are shown in Figure 3b.

It is to be noted from Figure 2b that the
modeled fault plane by a 2" degree polynomial
marginally deviates from the assumed fault
plane described by a 6% degree polynomial.
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The estimated densities (Table 1 and Figure
2c) pertaining to two sedimentary pulses at
different depths are marginally overestimated,
whereas the densities of compact and vesicular
basalts are slightly underestimated. Such
an error between assumed and estimated
densities is acceptable considering the
presence of significant level of pseudorandom
noise in the anomalies produced by the
structure. Therefore, the fault plane whether it
is described by a 2" degree or a 6" degree does
not appreciably affect the fault plane geometry
and estimated densities of the structure.

Inversion of noisy anomalies to estimate
depths and fault plane geometry

The inversion process is repeated to estimate
the depths of the four concealed density
interfaces and three coefficients of the
polynomial by keeping the density parameters
unchanged. In this case, the initial depths
assigned to four density interfaces are given in
Table 3 and shown in Figure 4c (dotted lines).
The initial depths of the density interfaces are
significantly different from the assumed/true
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Figure 3. (a) Error analysis between the observed and modeled gravity anomalies, (b) Changes in misfit,
coefficients of a 2" degree polynomial, and densities of subsurface formations against the iteration number.

Table 3. Assumed and estimated depths to density interfaces, synthetic example.

Interface Assumed depth Initial depth Estimated depth Error
(km) (km) (km) (%)
Compact basalt/sediments 3.5 1.5 3.44 1.71
Sediments/ Vesicular basalt 5.0 3 4.8 4.0
Vesicular basalt/compact sediments 8.0 5 7.6 5.0
Compact sediments/basement 10.0 8 9.57 4.3
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Figure 4. (a) Observed and modeled

noisy gravity anomalies, (b) four
layered hanging wall system of
synthetic listric fault source with

Observed anomaly
= o @ Modeled anomaly

assumed and modeled fault planes
described by 6% and 2" degree
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estimated depths to density interfaces.

Densities of the formations (shown

as step line) are remain unchanged
during inversion.
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model parameters. As in the previous case, the
approximate location of the fault plane identified
by the algorithm at 30.07 km was assigned
to the first coefficient of the polynomial, fo,
whereas the other coefficients were set to zero.
For such an inversion, the algorithm took 45
iterations before it got terminated. The misfit,
J, had reduced from its initial value of 45565.3
mGal? for the starting model to 0.7 at the end
of 19% iteration and then slowly to 0.004 mGal
at the end of the 45 iteration (Figure 5a). No
appreciable changes in estimated depths and
coefficients of the polynomial are found beyond
the concluding iteration (Figure 5b).

The fit between the observed (solid line
in black in Figure 4a) and modeled gravity
anomalies at the end of the 45 iteration (solid
dots in Figure 4a) is satisfactory. The estimated
depths to the four density interfaces are given
in Table 3 and shown graphically in Figures 4b
and 4c (solid lines). The estimated coefficients
of the 2" degree polynomial to describe the
fault plane are given in Table 2 and shown in
Figure 4b. By and large, the modeled fault
plane (simulated by a 2™ degree polynomial)

56 VoLuME 54 NumBERrR 1

closely mimics the assumed one described by a
6t degree polynomial (Figure 4b). In this case,
a maximum error of -0.022 mGal between the
observed and modeled gravity anomalies is
observed at the 40" km on the profile (Figure
5a). The changes in the modeled parameters
(depths to density interfaces and coefficients
of the 2" degree polynomial) against the
iteration number are shown in Figure 5b.

It is to be noted from Table 3 and Figure 4c
that the estimated depths to the four density
interfaces are marginally underestimated, with
a maximum error of 5% found at the interface
between vesicular and compact sediments.
However, such an error between the assumed
and estimated parameters is acceptable
considering the presence of significant level of
noise in the anomaly of the structure.

In short, the fault plane whether it is
described by a 2" degree or a 6™ degree does
not appreciably affect the estimated densities
or depths of the formations within the hanging
wall of the structure. However, the choice of a
2" degree polynomial in the inversion would
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Figure 5. (a) Error analysis between the observed and modeled gravity anomalies, (b) changes in misfit,
coefficients of a2 degree polynomial, and depths of various density interfaces against the iteration number.

lead to slightly underestimate the amount
of extension across normal fault when the
anomalies are analyzed to estimate the depths
of the density interfaces.

Field example
The proposed inversion technique is applied to

analyze the gravity anomalies observed across
the Aswaraopet master fault of the Chintalpudi

sub-basin in India. The interpreted results are
compared with previously reported information
derived from seismic refraction studies (Kaila
et al., 1990).

The Chintalpudi sub-basin represents the
southeasterly continuation of the Pranhita-
Godavari valley. Archaean gneisses (mean
density 2.67 g/cm?3) form the basement for
the Gondwana sequence within the sub-basin
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and towards the east the basin margin is
associated with the well-known Aswaraopet
master fault, which is exposed at the surface
and strikes NNW-SSE over a length of 20 km
(Figure 6a). Kaila et al. (1990) have carried out
Deep Seismic Sounding (DSS) investigations
along a profile across the basin connecting
Kallur and Polavaram (Figure 6a). The Oil and
Natural Gas Corporation Ltd. (ONGC), India
drilled a borehole (Figure 6a and 6c) within the
basin and encountered Archaean basement
at a depth of 2.935 km (Agarwal, 1995). The
density contrast-depth data measured from this
borehole is shown in Figure 6b (Chakravarthi,
2003). The gravity anomaly of the basin
(Figure 6¢) was analyzed by Chakravarthi and
Sundararajan (2007) for its basement structure
using a 3D inversion.

For the present study, the gravity anomalies
of the basin along a profile, EE’, (Figure 6a and
6c) across the Aswaraopet master fault have
been analyzed using the present algorithm.
This profile also forms part of the DSS profile
(Figure 6a). The observed gravity anomaly
along the selected profile is shown as solid

dots in Figure 7a. As in the case of synthetic
example, we subject the anomaly for inversion
in two ways. In either case, the fault plane is
described with a 2" degree polynomial in the
inversion. The initial/approximate parameters
pertaining to densities (in case of inversion
performed for estimating densities and
polynomial coefficients) and depths (in case of
inversion performed for estimating depths and
polynomial coefficients) are given in Table 4
and Table 6 and shown in Figure 7c and Figure
9c (dotted lines) respectively. Although the
measured density-depth data of the basin is
available, we presume different values for the
parameters in the inversion to study whether
the estimated parameters after the inversion
mimic the measured ones or not. One can notice
from Figure 7c and Figure 9c that the assumed
initial parameters are significantly different
from the measured quantities. The algorithm
had identified the approximate location of the
fault plane at 2.13 km in each case. Initially,
this value was assigned to the first coefficient,
fo, of the polynomial in either case whereas the
other coefficients were set to zero.

INDEX
FEE Kamihi Formation  ~ ~ — DSS Profile
AT AT

Dharwar Formation € E' Profile for gravity
. anomaly interpretation

Khondalites Aswaraopet fault
. <  Borehole

Chamockites

Archaeans

Bl e oos

Polavaram

(a)

Density contrast (glem')

0.
02 04
1_
Depth
(km)
2 )
3.

(c)

Figure 6. a) Geology of the Chintalpudi sub-basin, India (modified after Kaila et al. 1990),
(b) measured density contrast-depth data (Chakravarthi, 2003), (c) gravity anomaly map of the Chintalpudi sub-
basin, India (after Chakravarthi and Sundararajan, 2007).
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Table 4. Measured and estimated densities, Chintalpudi subbasin, India.

Formation Measured density Initial density Estimated density Error
(g/cm3) (g/cm?3) (g9/cm?3) (%)

1 2.27 2.0 2.279 0.396

2 2.37 2.0 2.380 0.422

3 2.42 2.0 2.410 0.410

4 2.52 2.0 2.517 0.119

5 2.57 2.0 2.562 0.311

Table 5. Estimated coefficients of the polynomial, {(z), Chintalpudi subbasin, India.

Coefficient Estimated coefficients of the Estimated coefficients of the
2" degree polynomial in case 2" degree polynomial in case
of densities and fault plane inversion of depths and fault plane inversion
fo 1.606 1.564
f1 -0.149 0.143
f2 0.719 0.506

Table 6. Measured and estimated depths to density interfaces, Chintalpudi subbasin, India.

Formation Measured depth Initial depth Estimated depth Error
(km) (km) (km) (%)

1 0.46 0.2 0.43 6.5

2 1.265 0.9 1.10 13.0

3 1.835 1.2 1.87 1.9

4 2.54 2 2.33 8.3

5 2.935 2.5 3.01 2.5

The algorithm had performed 74 and 14
iterations in each case before terminating.
The estimated parameters remained more or
less unchanged beyond respective concluding
iterations (Figure 8b and Figure 10b). The
modeled gravity anomalies are shown in Figure
7a and Figure 9a as solid lines. The fit between
the observed and modeled gravity anomalies in
either case is satisfactory (Figure 7a and Figure
9a). A maximum error of 0.58 mGal between
the observed and modeled gravity anomalies is
observed at 6.3 km on the profile (Figure 8a)
when the inversion is performed to estimate
the densities and fault plane geometry. On the
other hand, a maximum error of 0.64 mGal is
observed at the 10" km (Figure 10a) when the
anomalies are inverted for depths and fault
plane geometry. The estimated density and
depth parameters subsequent to respective
inversions are given in Table 4 and Table 6 and
shown in Figure 7c and Figure 9c respectively.
The errors (%) between the estimated and

measured parameters in each case are also
given in Tables 5 and 6. When the anomalies
are subjected for inversion to estimate
densities and the fault plane geometry, the
modeled densities of the first and second
formations are slightly overestimated (~0.4%)
while others marginally underestimated (Table
4 and Figure 7c). When the inversion was
performed for estimating both depths and fault
plane geometry simultaneously, the modeled
depths of the first, second and fourth density
interfaces are modestly underestimated
whereas the third and fifth density interfaces
are slightly overestimated (Table 6 and Figure
9c¢). The changes in the estimated parameters
with the iteration number in each case are
shown in Fig. 8b and Figure 10b respectively.

The modeled fault plane of the structure in
each case from the estimated coefficients of
the 2n degree polynomial (Table 5) is shown
graphically in Figure 7b and Figure 9b. The
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Figure 7. (a) Observed and modeled

® & ® Dbserved anomaly
Modeled anomaly

Depth (km)

stimated fault plana
(2~ degree polynomial)

(B)

gravity anomalies, (b) inferred fault

plane geometry of the Aswaraopet

master fault, Chintalpudi subbasin,

India, (c) assumed, initial and modeled

densities. Depths of density interfaces
are fixed during inversion.

Density {gfem?)

B

Depth (km)

= = Initial density distribution
- Estimated density distribution
= Measured density distribution

Table 7. Coefficients of the 5th degree

polynomial, {(z), used to describe the geometry

of the Aswaraopet fault plane derived from
DSS studies (after Kaila et al., 1990).

f 1.852063529
f -0.6020069478
f, -0.6020069478
f, 0.516508814
f, -1.085574722
f; 0.25061682

estimated location of the fault plane in either
case from gravity modeling closely matches
with the one mapped from geological studies.
Furthermore, the inferred structure of the
basin across the Aswaraopet fault from DSS
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studies (after Kaila et al. 1990) is also shown
in Figure 9b for comparison. The theoretical
gravity response of this structure is shown
as a dashed line in Figure 9a along with the
observed anomaly. In this case, a 5" degree
polynomial with a set of six coefficients (Table
7) completely defines the geometry of the fault
plane inferred from DSS studies. The forward
modeling algorithm of Chakravarthi (2010b)
is used to calculate the gravity anomalies
of the structure (derived from seismic data
interpretation) using the measured density-
depth data (Figure 6b) of the basin. It can be
seen from Figure 9a that the modeled gravity
anomalies of the structure from present
inversion closely mimic the observed ones,
whereas the gravity response of the seismically
derived structure (Kaila et al., 1990) does not.
In addition, the large gradient (4.5 mGal/km)
in the observed anomaly between 0 and 6% km
across the fault plane does not agree well with
the interpretation model of Kaila et al. (1990),
whereas it agrees reasonably well with the
present gravity inversion result.
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Figure 8. (a) Error analysis between the observed and modeled gravity anomalies across the Aswaraopet master
fault, Chintalpudi subbasin, India, (b) Changes in misfit, coefficients of a 2" degree polynomial, and densities of
subsurface formations against the iteration number.

The  structure inferred from DSS
investigations (Figure 9b) shows high angle dip
for the fault plane from the surface to a depth
of about 0.6 km, then moderately varying dips
up to 1.7 km beyond which it transforms again
into a high angle normal fault. The present
interpretation reveals that the fault plane
(Figure 7b and Figure 9b), which dips at high

angle near the surface, shows similar dips up
to a depth of 1.7 km beyond which it shows
moderate dips. Further, the error (4.6%)
between the measured and estimated thickness
of the basin from DSS studies near the existing
deep borehole is relatively more than the one
estimated (2.55%) from the present inversion.

JANUARY - MARrcH 2015 61



V. Chakravarthi and M. Pramod Kumar

& & & Observed ancmaly
Modeled anomaly
Thearetical anomaly of
= = = the structure derived

Figure 9. (a) Observed and modeled
gravity anomalies, (b) inferred fault
plane geometry of the Aswaraopet
master fault, Chintalpudi subbasin, India.
Anomalies are analyzed to estimate the
depths of density interfaces.
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Conclusions

A gravity inversion technique using ridge
regression is presented to analyze the gravity
anomalies of strike-limited listric fault sources,
where the detached hanging wall of the structure
consists in several geologic formations; each
one possessing its own density and thickness.
The fault plane is described with a polynomial
function of arbitrary but specific degree.
This algorithm simultaneously estimates the
geometry of a fault plane and the parameters
pertaining to either densities or depths of
various subsurface formations from the
observed gravity anomalies. The advantage of
the algorithm is that it can be used to analyze
the gravity anomalies of the structure even
when the profile along which the interpretation
is intended fails to bisect the fault plane.

The algorithm is applied to both synthetic
and real field gravity anomalies. In case
of synthetic example; significant level of
pseudorandom noise was added to the gravity
anomalies produced by a structure, whose
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fault plane was described with a 6™ degree
polynomial. To study the effect of the choice
of the degree polynomial in the interpretation,
the noisy anomalies were inverted presuming
a 2" degree polynomial for the fault plane.
The noisy anomalies were then analyzed
to estimate i) the densities and fault plane
geometry, keeping the depths of density
interfaces unchanged, and ii) depths and fault
plane geometry, keeping densities intact.
In either case, the estimated parameters
pertaining either to densities or depths closely
mimic the assumed parameters. However, the
choice of the lower order polynomial (such
as a 2" degree) would lead to marginally
underestimate the amount extension across
the normal fault, when inversion is performed
to estimate the fault plane geometry and
depths of density interfaces.

The observed gravity anomalies across
the Aswaraopet master fault from the eastern
margin of the Chintalpudi subbasin in India
are analyzed by the proposed technique and
found that the estimated parameters (densities
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Figure 10. (a) Error analysis between the observed and modeled gravity anomalies across the Aswaraopet
master fault, Chintalpudi subbasin, India, (b) changes in misfit, coefficients of a 2"¢ degree polynomial, and
depths to various density interfaces against the iteration number.

and thicknesses of subsurface formations
within the hanging wall) from independent
gravity inversion reasonably coincide with
the measured ones. On the other hand, the
calculated gravity response of the structure
derived from seismic data interpretation (Kaila
et al. 1990) using the measured density-depth
data significantly deviates from the observed
anomaly. Further, the large gradient in the
observed gravity anomaly over the fault plane
is better explained by the gravity inversion

model rather than the one reported from
seismic data interpretation (Kaila et al., 1990).

However, the proposed inversion technique
presumes that the detached hanging wall of
listric fault morphology consists in several
geologic formations with each one bounded
on top and bottom by flat surfaces, which in
reality may or not be valid. Therefore, the
inversion technique is more effective when the
assumptions are relatively valid.
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