GeoFisica INTERNACIONAL (2015) 54-1: 31-48

ORIGINAL PAPER

Forward modeling of gravitational fields on hybrid multi-threaded

cluster

Carlos Couder-Castafieda®, José Carlos Ortiz-Aleman, Mauricio Gabriel Orozco-del-Castillo

and Mauricio Nava-Flores

Received: October 18, 2013; accepted: March 11, 2014; published on line: December 12, 2014

Resumen

La solucion analitica de las componentes del
tensor gravimétrico, utilizando la ecuacion del
potencial gravitacional para un ensamble volu-
métrico compuesto de prismas de densidad
constante, requiere un alto costo computacio-
nal. Esto se debe a que el potencial gravitacio-
nal de cada uno de estos prismas tiene que ser
calculado para todos los puntos de una malla
de observacion previamente definida, lo cual
resulta en una carga computacional de gran
escala. En este trabajo introducimos un disefio
hibrido y su implementaciéon paralela basada
en OpenMP y MPI, para el célculo de las compo-
nentes vectoriales del campo gravimétrico (G,
G,G)y las componentes del tensor gravimétri-
c(G.G,G,G,G, G_).El rendimiento obteni-
do conlleva a 6ptimas relaciones del speed-up,
ya que el tiempo de computo es drasticamente
reducido. La técnica de paralelizacion aplicada
consiste en descomponer el problema en gru-
pos de prismas y utilizar diferentes espacios de
memoria por nlcleo de procesamiento, con el
fin de evitar los problemas de cuello de botella
cuando se accesa a la memoria compartida de
un nodo del cluster, que se producen general-
mente cuando varios hilos de ejecucidon acceden
a la misma region en OpenMP. Debido a que
OpenMP solo puede utilizarse en sistemas de
memoria compartida es necesario utilizar MPI
para la distribucién del célculo entre los nodos
del cluster, dando como resultado un cdédigo
hibrido OpenMP+MPI altamente eficiente con
un speed-up practicamente perfecto. Adiciona-
Imente los resultados numéricos fueron valida-
dos con respecto a su contraparte secuencial.

clave:
MPI,

Palabras
OpenMP,

gravedad, gradiometria,
hyper-threading, clusters.

C. Couder-Castafeda”

J. C. Ortiz-Aleman

M. Gabriel Orozco-del-Castillo

Mexican Petroleum Institute

Eje Central Lazaro Cardenas, 152

San Bartolo Atepehuacan, Gustavo A. Madero
07730, Ciudad de México

*Corresponding author: ccouder@esfm.ipn.mx

31

Abstract

The analytic solution of the gravimetric tensor
components, making use of the gravitational
potential equation for a three-dimensional
volumetric assembly composed of unit prisms
of constant density, demands a high compu-
tational cost. This is due to the gravitational
potential of each one of these prisms must be
calculated for all of the points of a previously
defined observation grid, which turns out in a
large scale computational cost. In this work
we introduce a hybrid design and its parallel
implementation, based on OpenMP and MPI,
for the calculation of the vectorial components
of the gravimetric field and the components
of the gravimetric tensor. Since the comput-
ing time is drastically reduced, the obtained
performance leads close to optimal speed-up
ratios. The applied parallelization technique
consists of decomposing the problem into
groups of prisms and using different memory
allocations per processing core to avoid bottle-
neck issues when accessing the main memory
in one cluster node, which are generally pro-
duced when using too many execution threads
over the same region in OpenMP. Due OpenMP
can be only used on shared memory systems
is necessary to use MPI for the calculation
distribution among cluster nodes, giving as a
result a hybrid code (OpenMP+MPI) highly ef-
ficient and with a nearly perfect speed-up. Ad-
ditionally the numerical results were validat-
ed with respect to its sequential counterpart.

Keywords: gravity, gradiometry, OpenMP, MPI,
hyper-threading, clusters.

M. Nava Flores

Division de Ingenieria en Ciencias de la Tierra
Facultad de Ingenieria

Universidad Nacional Auténoma de México
Ciudad Universitaria

Delegaciéon Coyoacan, 04510

México D.F., México

C. Couder-Castafieda, J. Carlos Ortiz-Aleman, M. G. Orozco-del-Castillo and M. Nava-Flores

Introduction

The shared memory architecture is becoming
more common every day in the high-
performance computing market. With the
hardware technology advances allowing us to
have a great number of cores with access to
the same memory locations, nowadays it is not
that expensive to have systems with forty or
sixty cores using shared memory. OpenMP is
now a standard for symmetric multiprocessing
systems (SMP) (even can be used transparently
in the Xeon Phi architecture (Calvin et al.,
2013)) sustained by a combination of function
and compiler directives, a standard for the
symmetric multiprocessing (SMP) systems
(Dagum and Menon, 1998; Curtis-Maury et al.,
2008). OpenMP has proven to be a powerful
tool for SMP due to several reasons: it is highly
portable; it allows fine and medium granularity,
each thread can access to the same global
memory; and has their own private memory,
and it also has a greater level of abstraction
than MPI model (Brunst and Mohr, 2008).

MPI is a library supported on the Same
Program Multiple Data (SPMD) model and on the
message passing model, with an explicit control
of the parallelism. The processes can only read
and write in their respective local memories
and the data in these memories is transferred
through calls to functions or procedures
which implement the message passing model.
Among the principal characteristics of MPI are
that it can run in architectures of shared and
distributed memory, is convenient for medium
to coarse granularity and that employment is
widely extended, making it extremely portable
among platforms (Krpic et al., 2012).

Using a hybrid programming model we
can take advantage of the benefits of two
programming models OpenMP and MPI. MPI is
normally used to control the parallelism among
cluster nodes, while OpenMP is applied in the
creation of threads of fine granularity tasks
within each node. Most applications developed
in hybrid model involves a hierarchical model:
MPI is for the higher level and OpenMP for the
lower one (Smith, 2000).

One of the potential benefits of using
hybrid model programming consists of getting
rid of the barrier of scaling that each model
has. Generally, in MPI the scaling is limited
by the communications cost, because an
application is affected by the overload of
communication when the number of processes
is increased. In OpenMP the performance of
an application is affected by cache coherence
problems and access to shared memory

32 VoLuME 54 NumBERrR 1

which may lead to bottleneck issues between
the execution threads when trying to access
memory. By mixing these methodologies of
parallel programming (OpenMP and MPI), we
can obtain a more diverse granularity of the
application and therefore a better performance
than by using each one on its own.

There are different applications which use
this programming paradigm: OpenMP with
MPI. For example, in the solution of sparse
linear systems (Mitin et al., 2012), in graph-
coloring algorithms (Sariyuce et al., 2012), in
some models of fluid dynamics (Amritkar et
al., 2012; Couder-Castafieda, 2009) and finite
element methods (Boehmer et al., 2012), in
the simulation of turbulent fluids (Jagannathan
and Donzis, 2012), even in the simulation of
combustion chambers (Kérnyei, 2012) and the
implementation of neural networks (Gonzalez
et al., 2012). As can be observed, there are
numerous computational implementations
using OpenMP with MPI, nevertheless, this
type of design is supported on a natural
decomposition of the domain (Carrillo-
Ledesma et al., 2013), based on data. For our
particular problem, each one of the processing
units accesses all of the computational domain
points.

In Figure 1 is depicted a domain
decomposition, where each task (process or
thread) is given some data subset on which to
work. This domain decomposition is commonly
used for example in finite differences problems
where computational domains divided disjointly
among the different tasks.

On the other hand, in the direct conformation
of gravimetric data, an initial model for the
source body is constructed from geological-
geophysical information. The anomaly of
such model is calculated and compared to the
observed anomaly, after which the parameters
are adapted to improve the adjustment
between them. These three steps that arrange
the model properties — anomalies calculation,
comparison and adjustment — are repeated up
to the observed and calculated anomalies are
similar enough.

A mass volume can be approximated by a
set of rectangular prisms; if chosen sufficiently
small, each prism can be considered to have a
constant density. Because of the superposition
principle, the gravitational anomaly of a
body can be approximated at anypoint by
summing the effects of all the prisms over
that point. Even though this methodology
appears simple (by reducing the size of the
prisms to better adjust the source body),

GEOFisICA INTERNACIONAL

Figure 1. The domain decomposition
based on data for an OpenMP+MPI
application.

M

R

W

P

W

W

P

W

P

5

Y

W

P

W

W

computing time is considerably increased.
There are other approaching methods of
the gravitational anomaly that can simplify
the required computation (mass points or
tesseroids approximations), however, they may
complicate the construction of the geological
model (Heck and Seitz, 2007).

Application design

The application consists of calculating the
gravimetric anomaly produced by a rectangular
prismatic body with constant density with
respect to a group of observation points (see
Figure 2). The set of prisms is known as an
ensemble of prisms, which is not necessarily
regular. A set of irregular prisms can be
configured as long as the prisms are not
superimposed. Because the gravitational field
complies with the superposition principle with
respect to the observation points, if f is the
calculated response at a point (x, y), then the

MPI process S OpenMP thread

observed response at the point f (x, y) is given
by:

f(xay)=EG(pk’x’y) (1)

where M is the number of total prisms and p is
the density of the prism.

It is well known that the function that
calculates the anomaly for a given prism from
an observation point is written as follows (Nagy
et al., 2000):

8=f (X, Yp2p X, ¥, 2,%,Y,2,P) (2)

where (x[, Yy z) is the top left vertex of the
prism, (x Y, Z,S is the bottom right prism and
(xp, Y, ng is the observation point and p the
density, as shown in Figure 3.

observation mesh

Figure 2. Decomposition

of the calculation of M

prisms with respect to the

observation grid: (a) regular

prism assembly, (b) irregular
prism assembly.

(a) regular prism assembly

(b) irregular prism assembly

JANUARY - MaArcH 2015 33

C. Couder-Castafieda, J. Carlos Ortiz-Aleman, M. G. Orozco-del-Castillo and M. Nava-Flores

». (Ip—' y:uzr}

(zpam2)

(Ly Yrs Z’,.)

Figure 3. Calculation of a prism with respect to a
point of observation.

The aforementioned is a large scale problem
since, for example, a synthetic problem
conformed by a set of prisms of 300 x 300
x 150 = 13,500,000 elements, against an
observation grid of 100 x 100 = 10,000 points,
results in the calculation of 135,000,000,000
integrals or differentials to solve the entire
problem. The formulations we used are
included in appendix A.

Computing time reduction in a numerical
simulation is of great importance to diminish
research costs. A simulation which lasts a
week is likely to be costly, not only because the
machine time is expensive, but also because
it prohibits the quick acquisition of results to
make modifications and predictions.

In many projects to be parallelized,
several times the serial algorithm does not
show a natural decomposition which allows
easily porting it to a parallel environment,
or the trivial decomposition does not yield
good performance results. For such reasons
it is convenient to use a hybrid programming
methodology, as the one developed and
presented in this paper. This methodology
provides an adequate programming design to
obtain a superior performance.

To develop a parallel program it is
fundamental to search for the finest granularity,
as in the methodology proposed by Foster
(Foster, 1995). In this case it is possible to
parallelize by prisms or by observation points.
One of the requirements of the design is that
it must be scalable, therefore the use of hybrid
systems is quite appropriate; these systems
are the most commonly used nowadays.
Following Foster’s methodology, it is necessary
to begin with the finest granularity, in this case

34 VoLuME 54 NumBERrR 1

corresponds to OpenMP because it is in the
lowest level. Subsequently the implementation
follows with MPI, due to its coarse granularity.

Implementation in OpenMP

We started our design with OpenMP because it
handles shared memory and it is also the finest
granularity. First we partitioned the domain
into prisms, and for each prism we parallelized
the calculation by observation points, as shown
in Figure 4.

This parallelization by observation points
is trivial and does not offer a great design
challenge, since we simply partition the
calculation with respect to the observation
grid for each prism (see the pseudo-code 1).
However, this scheme has several drawbacks.
One of them is that the performance is not
optimal since the number of prisms is much
greater than the number of observation points.
In other words, this partitioning is efficient as
long as there are not too many threads working
upon the observation grid, thus avoiding a
bottleneck issue as a consequence of the
threads works in the same memory allocation.
Maybe the worst drawback lies in the fact that
the parallel environment is created and closed,
i.e. for each prism, a function which parallely
calculates the anomalies is executed, but such
environment is closed once the execution is
over, and reopened for the following prism,
which results in an unnecessary overload and
therefore decreases the performance.

Listing 1. Parallelization by observation points

For each prism from 1 to M
1$OMP PARRALLEL DO COLLAPSE(2)
For each j from 1 to Ny
For each i from 1 to Nx
G(i,j)=Gz(parameters)+G(i,j)
End For
End For
1$OMP END PARALLEL DO
End For

Listing 2. Parallelization by observation points

I$OMP PARRALLEL DO
For each prism from 1 to M
For each j from 1 to Ny
For each i from 1 to Nx
G(i,j)=Gz(parameters)+G(Thread,
i,J)
End For
End For
End For
I$SOMP END PARALLEL DO

GEOFisICA INTERNACIONAL

prisms
observation mesh

openmp threads

Figure 4. Partitioning by observation points.

The other parallelization option is to use
prisms i.e., making the threads divide the work
per number of prisms (see pseudo-code 2). To
avoid the coherence problems of the cache it is
necessary to create a different memory space
for each execution thread, because it is not
feasible to create a single memory space for
an unique observation grid, shared by all the
threads.

As observed in Figure 6, it is required to
create an observation grid for each execution
thread to avoid memory consistency problems.
Bottleneck memory access issues are avoided
since every thread writes in a different direction
of the memory space. If only one grid were to
be used, there would be access problems to
the shared grid, which would create numerical
inconsistencies.

One of the characteristics of OpenMP is
that the computing is distributed in an implicit

prisms : prisms
3k
e HHhaalrmdhes

i -

3333 A g

i e
; A

(a) (b)

Figure 5. Parallel region behavior: (a) pseudo-code
(1), (b) pseudo-code (2).

manner, therefore the partitioning of the M
prisms, which composes the problem, is done
automatically using a balancing algorithm
included in OpenMP. In this case the decision is
left to the compiler, which is optimum 99% of
the cases (Zhang et al., 2004).

OpenMP+MPI Implementation

One of the advantages of the prism
parallelization is that it is easier to implement
in MPI, producing tasks of coarse granularity
using the same design previously applied
in OpenMP. Having the observation grid
partitioned would result in a more complicated
and less efficient design using MPI. Since
the parallelization in MPI is explicit, we need
to manually distribute the number of prisms
through a modular expression. If M is the
number of prisms to calculate and p is the MPI
process number (numbered from 0 to p-1),
then for each process p we define the beginning
and end of the prisms to be processed by p as
D..andp_ ., respectively. We define theinteger
s as the quotient of the number of prisms M
between the total number of processes p , and

observation mesh

openmp thread
THREAD O

observation mesh

openmp thread
THREAD 1

observation mesh

openmp thread
THREAD N

Figure 6. Partitioning by prisms.

JANUARY - MARrcH 2015 35

C. Couder-Castafieda, J. Carlos Ortiz-Aleman, M. G. Orozco-del-Castillo and M. Nava-Flores

r as the remainder, the procedure to determine
D, @nd p, , proceed as follows:

s=Mlp, 3)
r=mod(M/p). (4)
Therefore
Py =P X s+1 (5)
and
P,,=@+1)xs. (6)
If r=0and p <r, then we adjust as:
Poart = Pyiarn + P (7)
and
Pod=Poyt @+ 1. (8)
If r=0and p=r, then:
Poars = Pygars T T (9)
and
Pepa=Perat T (10)

This way we can distribute the number
of prisms M over p processes in a balanced
manner; once this distribution is made, we can
use the OpenMP implementation in each node.
In other words, we occupy MPI to distribute
the number of prisms in each node, and at the
same time in each node we employ OpenMP to
reduce the number of MPI processes, reducing
communication time.

In consequence, the application is
partitioned by the number of prisms M, both
in OpenMP as in MPI. Another option is to
parallelize by prisms in MPI and by observation
points in OpenMP. Even though this is a viable
option, it is not very scalable due the drawback
discussed in the previous subsection.

Basically the design consists of allocating
an observation grid per execution thread
and a global observation grid in the master
thread per computing node, subsequently the
reduction of the sum of the grids per thread is
done and stored in the global grid contained
in the master thread, and finally at the end
of the parallel calculation, every master
thread will add their grid values to update the
master thread of the master node using a MPI
reduction method (see Figure 7).

It is necessary to mention that the
implementation of the code was made with

36 VoLuME 54 NumBERrR 1

the FORTRAN 2003 specification, using as
development tool the Intel Cluster Toolkit
version 2013 of Intel Corporation.

Performance experiments

For the synthetic experiment we used a case
composed by a cube of 700 x 700 x 50 prisms,
with 7 contrasting spheres of variable density
(see Figure 8). The spheres were conformed
by 251,946 prisms and an observation grid of
150 x 100 = 15,000 points, to an elevation
of 100 m. Therefore, the number of calls
to a procedure required, to calculate the
vector/tensor component of the gravity are
3,779,190,000; this classifies the experiment
into a high-performance computing problem.

We tested the parallelized code by
observation points versus the version by
prisms using OpenMP. The first parallel scheme
is technically easier to implement because for
each one of the prisms the calculation of the
cycles corresponding to the tracking of the
observation grid is parallelized. The second
scheme has a more complex implementation
because it requires different space memory
allocations. The performance experiments that
calculate the components of the gravimetric

. i local mesh

\ f(}Z‘_ of the thread

5 —— | | reduction

G y T

yra ™

N ail of the process-local

- meshes are combined

q together (reduced)

. via MPI_Reduce to

] ’7 form the final global result

5 ;’r in the master node
\ 777

: THREAD 2

. - local mesh

» . iy of the thread

e Y i

‘\" THREAD 0
= : [1 reduction |
: . y [‘...............E
. L || global mesn
. \ L1 Y

« THREAD 1

* " THREAD

Figure 7. OpenMP+MPI design.

GEOFisICA INTERNACIONAL

density contrast

0 kg/m3
I
-20p0 s el
X
Depth (m) ; 159
L}

-40po L 87

S 15
-6000 ._ -57.1

22000 '\
Y distapke (m)
-8000 16500 22000
o 5500 11000

X distance (m)

Figure 8. Synthetic problem setup with 7 spheres of variable density contrast (not scaled). Ensemble size of 22
km x 22km x 8km, 251,946 prisms conform the spheres.

tensor G, G , G G ., G_, G _using both
! })z

versions were carrled outin the server described

below. We did not include the performance

analysis for the vectorial components G , Gy

and G since its behavior is very similar.

The characteristics of the server where the
tests took place with OpenMP are as follows:

4 Xeon Intel
Processors

10 processing cores per processor
Hyperthreading Technology deactivated
512 GB of RAM memory

Red Hat 6.3 as operating system

(R) Xeon (R) E7-4850

To interfere as least as possible with the
processes of the operating system, we used 35
of the 40 cores available in the server. Initially

2
s
|

we can say that the prisms implementation and
with independent memory per core was 3.22X
faster than its counterpart of observation
points. Therefore, while the observation points
version uses 757 s, the version partitioned by
prisms only consumes 235 s.

The comparison of the computing times
per thread in the partition by prisms against
the partition by observation points is shown in
Figure 9.

In Figure 9 it can be seen that the
performance behavior is kept stable in both
types of partitioning; however, by prisms the
best reduction in time is obtained. To prove
that the partitioning by prisms keeps reduction
time practically linear, we graphed the speed-
up of the performance by prisms.

7,000

—&— partition by prisms
—— partition by observation mesh
*

di erence

¢¢-t¢.010

S 6,000 -

c]

S]

$ 5,000

E]

= 4,000 —

= 7

£ 4

S 3,000

n —

E]

§2:000 -
Figure 9. Comparison between 10 =
execution time used between the i m
partition by prisms against the R
partition by observation points 0]

(one thread per core).

5

||||||||||r|l|]|||||||1|||r|1||||||

10 15 20 25 30 35 40
Number of cores

JANUARY - MaArcH 2015 37

C. Couder-Castafieda, J. Carlos Ortiz-Aleman, M. G. Orozco-del-Castillo and M. Nava-Flores

For the speed-up shown in Figure 10, we
considered a serial fraction of 5% (f=0.05). In
this fraction the necessary reductions to sum
the grid points for each core are contemplated,
the total result of the anomaly is calculated as:

NI
0,(i.))= Y0,)) (1)
t=1

where, for each (i, j) O, is the final observation,
Ot is the calculated grid by core t and Nt is the
total number of cores. Therefore, we considered
that 95% of the code is parallel, and according
to Gustafson’s law, the maximum textitspeed-
up that can be obtained with 35 processing
units, in this case cores, is 35 + (1-35) x
(0.05) = 33.30. The experimentally obtained

—=— Obtained speed-up
+— Perfect speed-up with f=0.05
—&— residual relative

residual absolute

L

popadesalesnalonnalonna by lyonalynesl

speed-up result was 31.31, which represents
an absolute difference of 1.99 and a relative
difference of 0.06, which shows the efficiency
of the implementation.

Another indicator which must be
contemplated is the efficiency E, defined as:

S(n)

n

E =

where S(n) is the obtained speed-up with n
tasks, and indicates how busy the processors
or cores are during execution. Figure 11 shows
that the efficiency by prisms is high since on
average every processing core is kept busy
94% of the time. The efficiency E also indicates

Figure 10. Speed-up of the
L partitioning by prisms (one thread
per core).

-5 T T 7 I LI T | T LB I LI L T | T T 1 T I T T | L L L L I T T I
0 5 10 15 20 25 30
Number of cores

100
90
80

70

50
40

Efficiency (%)

30
20
10

s0 JoEE e

35 40

0I'I'IIT"IIII]IIII'|Ifll'ilFIIiI'F1'IiiI'IIi'I'I'II|

o] 5 10 15 20 25 30
Number of cores

38 VoLuME 54 NumBERrR 1

35 40 Figure 11. Efficiency of the

partitioning by prisms.

GEOFisICA INTERNACIONAL

that the partitioning by prisms is scalable,
which means that we can increase the number
of processors to improve time reduction while
not losing efficiency in the use of many cores.
The scalability must be contemplated as a good
design of the parallel program since it allows
scaling the algorithm, so we could expect when
the number of processing units is increasing
the performance is not affected.

The design using OpenMP is limited to
architectures of machines of shared memory,
therefore we are now making experiments
using a hybrid machine commonly known
as cluster, mixing OpenMP+MPI with the
methodology described in subsection 2.2.

The characteristics of the cluster where the
numerical experiments were carried out are as
follows:

e Node: Intel(R) Xeon(R) model X5550
processors with four physical cores
processor.

e 44 processing nodes

e Hyperthreading Technology enabled

¢ 40 GB of RAM memory per node

e Red Hat 6.3 as operating system

¢ InfiniBand 300Gbps

We started by evaluating the performance
of each cluster node, as opposed to the
experiments done with the 40 cores server,
where hyperthreading technology (HT) was
disabled. In this case HT is enabled, so each

node reports the handling of 8 execution
threads instead of 4, but we only have 4
physical floating point units (FPUs). Since our
program is computationally intensive, we have
to find out if we benefit from the use of HT; some
studies have reported the use of HT in numerical
applications can modify the performance by
30% (Curtis-Maury et al., 2008).

The behavior obtained using one node
containing 1 processor with four real cores with
HT enabled/disabled can be exposed by an
analysis of the computing time graph, shown
in Figure 12, the problems analyzed is setup
with 13,997 prism conforming a sphere with a
mesh of 150 x 100 observations points.

As can be observed, the best run-time
performance that we can obtain from the
processor in HT mode is not produced with
4 execution threads, the best performance is
obtained with 8 threads, but the time is not
doubly improved. This occurs since two threads
share the same FPU and the HT technology is
designed to quickly switch between threads, and
therefore there is not a double improvement in
time but the performance gain is approximately
30%, which means that the two threads make
better use of the FPU,therefore is necessary
to create two threads per core to obtain the
maximum performance when the HT is enabled.
When the HT is disabled we have an asymptotic
behavior after 4 threads but did not reach the
performance obtained using the HT mode.

| I
—e— HT disabled

—#— HT enabled

=
[=]
(=]

Computing time (seconds)

50s

36s 235
Figure 12. Computing time using
only one node with HT enabled/
dlsabled, Ca|CU|atIng a problem 10 rTrrT I TTTT rTrTT LN LI L I LILELEL LI TrTrT l
of 13,997 prisms with 10,000 0 1 2 3 4 5 6 7 8 [+
observation points. Number of threads

JANUARY - MARrcH 2015 39

C. Couder-Castafieda, J. Carlos Ortiz-Aleman, M. G. Orozco-del-Castillo and M. Nava-Flores

8
pereantl

Figure 13. Speed-up using

only one node with HT enabled/

disabled corresponding to the

execution times shown in the
Figure 11.

11l

In Figure 13 it can be observed that when
HT technology is enabled we obtain a linear
speed-up up to 4 execution threads; this is
obvious since there are only 4 physical FPUs.
Nevertheless, with the HT we can have a better
use of the FPUs improving the speed-up up to
5.60, thisis, 1.6 more processing units. With the
HT disabled, a similar performance is observed
up to 4 threads, although this performance is
below the one with the HT enabled. For more
than 4 threads, the performance with the HT
disabled begins to decrease.

rrTTT TrTTT TTT T TrTTTd TrTTT L L LB L 'III'IIfIII

The efficiency corresponding to the speed-
up shown in Figure 13 is graphed in Figure 14;
notice how HT is able to increase the efficiency
of some intensive floating point applications up
to 30% when the number of threads equals the
number of physical cores. Of course, the best
efficiency is obtained with 4 threads because
we have 4 FPUs, nevertheless we can get a
better performance creating 4 threads more
using the additional virtual processors created
by the HT.

110 .
100 3 : . . '
- 3] |
QD—E H""‘ Physical COTeS |ivimpmiv
80 ! —
— - M : 3aad. i
é N] X\-‘\‘\-
- E r T \ 5. : i
)] |
g 60 -
E 3 —e— HT disabled efficiency : \
— s oihee HT bl d fﬁ rmonme s Lge-d P S N, SR B & o 44 o e v
& 50) +. H enabled e CIEI"IC;«'- SEme : _\\.
WO ———t o e e .
304
203
10: : i Figure 14. Efficiency using
UL TirnrT TTIiTT L TTo1rT TTr 1T TIiTrT '| LB L I 0n|y One node With4C0reS With
0 1 2 3 4 5 6 7 8 | the HT enabled/disabled for the
Number of threads problem of 13,997 prisms.

40 VoLuME 54 NumBERrR 1

GEOFisICA INTERNACIONAL

To analyze the performance in a node with
the original problem (shown in Figure 8), we
added a processor in the second socket to one
of the nodes. In other words, we created a node
with eight real cores to compare it against a
node with four real cores with HT enabled. The
results of execution time are shown in Figure 15.

It must be taken in consideration our cluster
nodes are composed of a single processor with
HT enabled, we only added another processor
in the second socket to a node for experimental
purposes. To have a better perspective of the

performance, we determined the speed-up
through both node configurations we showed
in Figure 16. A nearly perfect speed-up can be
observed for the node with 8 real cores, but a
increase of 1.8 processing units for the node
with 4 real cores with HT enabled. Evidently,
if we enable HT in the machine with 8 real
cores we would have 16 reported processors,
and to get its maximum performance we
would have to create 16 threads. However,
the experimentation with 8 real cores was
only for comparisonpurposes, since the cluster
configuration is made of one node with 4 real

Figure 15. Eight real cores 6,000 i 354
with HT disabled vs four real =
cores with HT enabled for the 5,000

problem setup in the Figure 8.
4,000

—®&— Four physical cores with HT enabled

L1 11

—®— Eight physical cores with HT disabled |-

-
(=]
=]
o

11

Computing time (seconds)
Pad
o
[=]
[=]

1,000+
LIL L I LI L L L L L L L LB I Ll LB L I L LI | I
0 1 2 3 4 5 [} 7 8 Q
Number of threads
8 770
71| —e— Four cores with HT enabled [70
1| —=— Eight cores with HT disabled|! .
. e Perfect Speed-up |
6 Al -
e 580
C - :
& 54 F20
T
w4
3
2+
1]
Figure 16. Eight real cores with E ! ! : : L [} ;
the HT disabled vs four real 0 LI I I
cores with HT enabled for the 0 1 2 3 4 5 6 7 8 g
problem setup in the Figure 8. Number of threads
JANUARY - MaArcH 2015 41

C. Couder-Castafieda, J. Carlos Ortiz-Aleman, M. G. Orozco-del-Castillo and M. Nava-Flores

cores with HT enabled. It can also be observed
that each node of the cluster reduces the time
by a factor of 5,8X against the serial version.

Once it is known that the best node
performance is achieved with 8 execution
threads for a node with 4 real cores with HT
enabled and with the partition by prisms, we
can consider each node as a processing unit and
distribute the computing with MPI, obtaining a
code with a hybrid programming model.

The speed-up results using 25 cluster nodes
are displayed in Figure 17; a serial fraction of
5% (f=0.05) is considered since in MPI there
needs to be reductions in the sum for each
node. The results show that a nearly perfect
speed-up is obtained up to 22 nodes. From this
point on, the speed-up starts declining because
the application performance is affected by the
communication time between nodes. In other
words, the granularity of the tasks begins to
decrease for this problem of 249,946 prisms

Figure 17. Speed-up obtained using 25
cluster nodes.

303 ! 1] |
E —#— Speed-up obtained

25 | —+— Perfect speed-up with F=0.05
1| —+— Absolute difference

20 3]

L1l

Ll

(=]
(AR AEEE

LLLL

]

|

|

|

T

|

|

T
-

I

t

!

L

T T T 1 T T T T T

0 5 10 15 20
Number of nodes

110 5

100 3 mm-u-a

a0

80

Lipplippnligg

[T |
[T |

un
o

Efficiency (%)

o
(=]

pipidirendegnplignng

L
(=]

rJ
(=]

-y
(=]

o

0 5 10 15 20
Number of Nodes

42 VoLuME 54 NumBERrR 1

25 Figure 18. Cluster eficiency using 25
nodes.

GEOFisICA INTERNACIONAL

for 30 nodes. This implies that by increasing
the granularity of the problem (increasing
the number of prisms), the speed-up is also
increased until it becomes stable, to decrease
again later on.

The efficiency graph related with the speed-
up of Figure 16 is shown in Figure 18. Notice
how the efficiency is below 90% after node
23. If we consider that we have an increase in
speed 5.8 times per node (from Figure 15) with
respect to the serial version, then the optimum
speed factor for this cluster (for a problem of
251,946 prisms) is approximately 5.8 x 22 =
127.6X, i.e. 127 times faster than the serial
version. Obviously, as previously stated, if we
increase the granularity (number of prisms),
the efficiency increases as well. In fact, we
reduce the computation time of the spheres
problem from 1 h 34 m 56 sto 34 s

Comparison with similar programs

To provide a better perspective of the obtained
performance with the parallel implementation
of our code, we compared against an open
source code called tesseroids (Uieda et al.,
2011), which can be downloaded from http://
dx.doi.org/10.6084/m9.figshare.786514. We
chose the problem of 13,997 prisms which
form an sphere against 10,000 observation
points, since tesseroids is not distributed (can
not be executed on a cluster) and can only
accelerate the computation in shared memory

a speed improvement of 2.14X and with HT
enabled of 2.51X with respect to tesseroids.
This performance improvement is due to our
program design takes a better advantage of
the processor technology and keeps the cores
occupied to the maximum by using a prisms
parallelization scheme based on different
memory allocations. This can be observed in
the CPU history graph shown in the Figure 20.

Numerical code validation

The main challenge of the parallel programming
is to decompose the program into components
which can be simultaneously executed to reduce
computing time. The decomposition level is
highly influenced by the type of architecture of
the parallel machine. In this case the design
was made with a hybrid programming strategy
to get the maximum out of the architecture.
Although the reduction of the execution time is
the main objective of the parallel programming,
the validation of the code is a topic that
should be covered since inherent parallelism
programming errors can occur.

To measure the error, we compared the
previously validated sequential counterpart in
the synthetic experiment with the analytical
solution. We used the L2 norm error or RMS
(Mickus and Hinojosa, 2001; Menke, 1989),
defined as:

N.r N)‘
machines. The execution times are shown o= 1 EE P8 |2
using the bar chart in Figure 19, where it can NN &« 8i; =84l >
be observed that with HT disabled we have oy (13)
100 |- % _ £ 2 -
N ——
80 . % . e %
%] AN Y [e
E A A
S 60 m N % A
u i o
v A i o]
ataN EAS A [
~~ A A
A vy A
N vy A A
20 %% % w |
. o 0 e P s P [N
_Flglure 19. _Computlng tlme_ of our tesseroids our implementation tessercids our implementation
implementation vs tesseroids on HT disabled HT disabled HT enabled HT enabled

one node.

JANUARY - MARrcH 2015 43

C. Couder-Castafieda, J. Carlos Ortiz-Aleman, M. G. Orozco-del-Castillo and M. Nava-Flores

CPU History (our implementation) Figure 20. Behavior of the
CPU utilization produced

100 by our implementation
i} vs tesseroids. The HT is
3 enabled and note how
1 F i i {1 the cores are used to
80 i 1 1 . 1 1 maximum efficiency in our
[VSRR DU SRR SRR N SR - - cerdnancchanedllecedionedeaan l - implementation Compared
b B e oo T i with the partial use of
o et : i i P tesseroids.
60 —
- —— CPU]. * ..
40— —&— CPU 2
4 —— CPU3
4 —a— crpua | IO T O O -
il CPU S
20— —*— CPU 6
i CPU 7
| —— cpus
0_ T T T T T T T T T
0 10 20 30
Seconds
CPU History (tesseroids)
LT q‘?}. -
i i
\, it
Al
1] 1'1 |
: I ‘
g 4 |
........... +| .
T T 1 T T L I 1 1 I
40 50 60
Seconds
where gl’ is the tensor component, parallely Table 1. Errors of the tensor components with
computed, and g, is the serially calculated respect to its sequential counterpart.
component. - -
Gravity gradient Error L2
In Table 1 the errors of the gravimetric tensor components
Calculated with respect to the serial form. G. Dol
P ' G, 6.3054e-12
From the errors obtained it can be noticed G, 2.8367e-12
that there is no numerical difference, therefore G, 1.0244e-14
the parallel version is correctly implemented. G_ 1.5518e-14
G 1.5581e-14

z

o

44 VorLume 54 Numeer 1

GEOFisICA INTERNACIONAL

Gyy

3.03

222

Gyz Gzz

2.13

1.11

0.0871
% -0.932

-1.95

\ \‘l\‘ :hi

Figure 21. Behavior of the CPU utilization produced by our implementation vs tesseroids. The HT is enabled
and note how the cores are used to maximum efficiency in our implementation compared with the partial use of
tesseroids.

JANUARY - MaArcH 2015 45

C. Couder-Castafieda, J. Carlos Ortiz-Aleman, M. G. Orozco-del-Castillo and M. Nava-Flores

The surface graphs of the gravitational
fields are shown in Figure 21. These graphs
correspond to the components of the
gravimetric tensor, calculated for the synthetic
case studied in Figure 8.

Conclusions

A parallel design for the calculation of the
vectorial and tensorial components of the
gravity anomaly was implemented and
validated using a hybrid methodology with
OpenMP and MPI. The numerical experiments
and the obtained indicators validate that the
implementation is very efficient and that it
also yields good results with respect to the
numerical solution.

We show that using the simplest or most
trivial parallelization form does not contribute
to the attainment of the best performance or
the greatest exploitation of the platform. For
our case, even though the partitioning by
prisms requires a greater investment in the
design and implementation, it was the most
advantageous with respect to performance.

The HT technology could improve some
numerical intensive applications up to 30%,
nevertheless, to get the best performance it is
necessary to create two threads per core when
the HT is enabled.

We also conclude that this design can serve
as a benchmark for solving problems which
require the parallelization of schemes where
the decomposition of the domain is not trivial
or is shared by the processing units, as is the
case of the observation grid. Finally the correct
exploitation of OpenMP and MPI, jointly,
can become a fundamental tool for parallel
programming in clusters.

Future work

As future work we pretend to implement the
code in CUDA NVIDIA with TESLA technology
and compare these results with the cluster
performance results presented in this paper,
as the measurement of the error introduced
by CUDA in single and double precision. The
implementation in CUDA is a work of interest
since the reduction of the variable values in
CUDA technology is very complicated when
used in shared form, as is the case with the
observation grid.

46 VoLuME 54 NumBERrR 1

Appendix A. Calculation of gravitational
quantities

The Earth’s gravitational potential G is a scalar
quantity, its shape can be constrained by its
slope in the x, y and z directions, called the
gravitational attraction G, G, and G, (gravity
vector field). In this work, we have investigated
how to parallelize the analytical calculation
of the components of the gravity field vector
and the gravity gradients represented by
a nine component tensor, because of the
symmetrical or irrotational attribute, the
gravity gradient tensor is reduced to only six
independent components: Gm, (the vertical
gravity gradient), and For the right rectangular
prism model, the analytical formulae for the
three components vectors and the six gravity
gradient components, corresponding to the Eq.
(2) are given by:

Gy = _ypi i Enuijk

2
i=1 j=1 k=1

2, X
x [z, In(x, +7,) + X, In(z, + 1) -y, arctan ——]

Yilik
2 2
5.
=1 k=1

J

G, =-w

2
i=1

2 X,
x [z, In(x; +7,) + x,In(z, + 7,) -y, arctan ~—]

Vil
2 2
YiZk
G, = ypz 2 M arctan ——
=1 =1 k=l Xiliji
2 2
XiZy
G, = ypE E E M, arctan ———
i=1 j=1 k=1 Yilijk
2
XY;
G,.=y0 EHU" arctan ——
k=1 Zkr;]k

Hij In(z, + rzjk)

i In(y, + 1)

GEOFisICA INTERNACIONAL

G, = }/pi i > by InCx, +1,)

2
=1 7=1 k=1

Acknowledgment

The authors thank the support provided by
the Mexican Institute of Petroleum (IMP, www.
imp.mx) in allowing access to its computing
equipment, as well as the financial support
through project Y.00107, jointly created by
IMP-SENER-CONACYT number 128376. Also,
we would like to express our gratitude to the
two anonymous reviewers for their helpful
comments.

References

Amritkar A., Tafti D., Liu R., Kufrin R,
Chapman B., 2012, OpenMP parallelism for
fluid and fluid-particulate systems. Parallel
Computing, 38, 9, 501-517.

Boehmer S., Cramer T., Hafner M., Lange E.,
Bischof C., Hameyer K., 2012, Numerical
simulation of electrical machines by means
of a hybrid parallelisation using MPI and
OpenMP for finite-element method. Science,
Measurement & Technology, 1IET, 6, 5, 339-
343.

Brunst H., Mohr B., 2008, Performance
analysis of large-scale OpenMP and hybrid
MPI/OpenMP applications with Vampir
NG. In OpenMP Shared Memory Parallel
Programming (pp. 5-14). Springer Berlin
Heidelberg.

Calvin C., Ye F., Petiton S., 2013, October, The
Exploration of Pervasive and Fine-Grained
Parallel Model Applied on Intel Xeon Phi
Coprocessor. In P2P, Parallel, Grid, Cloud
and Internet Computing (3PGCIC), 2013
Eighth International Conference on (pp.
166-173). IEEE.

Carrillo-Ledesma A., Herrera 1., de la Cruz L.M,,
2013, Parallel algorithms for computational
models of geophysical systems. Geofisica
Internacional, 52, 3, 293-309.

Couder-Castafieda C., 2010. Simulation of
supersonic flow in an ejector diffuser using
the jpvm. Journal of Applied Mathematics,
20009.

Curtis-Maury M., Ding X., Antonopoulos C.D.,
Nikolopoulos D.S., 2008, An evaluation
of OpenMP on current and emerging
multithreaded/multicore processors.
In OpenMP Shared Memory Parallel

Programming (pp. 133-144). Springer
Berlin Heidelberg.

Dagum L., Menon R., 1998, OpenMP: an
industry standard API for shared-memory
programming. Computational Science &
Engineering, 1EEE, 5(1), 46-55.

Foster 1., 1995, Designing and building parallel
programs (pp. 83-135). Addison Wesley
Publishing Company.

Gonzalez B., Donate J.P., Cortez P., Sdnchez G.,
De Miguel A., 2012, May, Parallelization of an
evolving Artificial Neural Networks system
to Forecast Time Series using OPENMP and
MPI. In Evolving and Adaptive Intelligent
Systems (EAIS), 2012 IEEE Conference on
(pp. 186-191). IEEE.

Heck B., Seitz K., 2007, A comparison of
the tesseroid, prism and point-mass
approaches for mass reductions in gravity
field modelling. Journal of Geodesy, 81, 2,
121-136.

Jagannathan S., Donzis D.A., 2012, July,
Massively parallel direct numerical
simulations of forced compressible
turbulence: a hybrid MPI/OpenMP approach.
In Proceedings of the 1st Conference of the
Extreme Science and Engineering Discovery
Environment: Bridging from the eXtreme to
the campus and beyond (p. 23). ACM.

Krpic Z., Martinovic G., Crnkovic I., 2012,
May). Green HPC: MPI vs. OpenMP on a
shared memory system. In MIPRO, 2012
Proceedings of the 35th International
Convention (pp. 246-250). IEEE.

Kornyei L., 2012, May, Parallel implementation
of a combustion chamber simulation with
MPI-OpenMP hybrid techniques. In MIPRO,
2012 Proceedings of the 35th International
Convention (pp. 356-361). IEEE.

Menke W., 2012, Geophysical data analysis:
discrete inverse theory. Academic press.

Mickus K.L., Hinojosa J.H., 2001, The complete
gravity gradient tensor derived from the
vertical component of gravity: a Fourier
transform technique. Journal of Applied
Geophysics, 46, 3, 159-174.

Mitin I., Kalinkin A., Laevsky Y., 2012, A parallel
iterative solver for positive-definite systems
with hybrid MPI-OpenMP parallelization for
multi-core clusters. Journal of Computational
Science, 3, 6, 463-468.

JANUARY - MARrcH 2015 47

C. Couder-Castafieda, J. Carlos Ortiz-Aleman, M. G. Orozco-del-Castillo and M. Nava-Flores

Nagy D., Papp G., Benedek J., 2000, The
gravitational potential and its derivatives
for the prism. Journal of Geodesy, 74(7-8),
552-560.

Sariyuce A.E., Saule E., Catalyurek U.V., 2012,
May, Scalable hybrid implementation of
graph coloring using mpi and openmp.
In Parallel and Distributed Processing
Symposium Workshops & PhD Forum
(IPDPSW), 2012 IEEE 26th International
(pp. 1744-1753). IEEE.

Smith L.A., 2000, Mixed mode MPI/OpenMP

programming. UK High-End Computing
Technology Report, 1-25.

48 VoLuME 54 NumBERrR 1

Uieda L., Bomfim E., Braitenberg C., Molina
E., 2011, July, Optimal forward calculation
method of the Marussi tensor due to a
geologic structure at GOCE height. In
Proceedings of GOCE User Workshop 2011.

Zhang Y., Burcea M., Cheng V., Ho R., Voss
M., 2004, September, An Adaptive OpenMP
Loop Scheduler for Hyperthreaded SMPs. In
ISCA PDCS (pp. 256-263).

