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Abstract

The analytic solution of the gravimetric tensor 
components, making use of the gravitational 
potential equation for a three-dimensional 
volumetric assembly composed of unit prisms 
of constant density, demands a high compu-
tational cost. This is due to the gravitational 
potential of each one of these prisms must be 
calculated for all of the points of a previously 
defined observation grid, which turns out in a 
large scale computational cost. In this work 
we introduce a hybrid design and its parallel 
implementation, based on OpenMP and MPI, 
for the calculation of the vectorial components 
of the gravimetric field and the components 
of the gravimetric tensor. Since the comput-
ing time is drastically reduced, the obtained 
performance leads close to optimal speed-up 
ratios. The applied parallelization technique 
consists of decomposing the problem into 
groups of prisms and using different memory 
allocations per processing core to avoid bottle-
neck issues when accessing the main memory 
in one cluster node, which are generally pro-
duced when using too many execution threads 
over the same region in OpenMP. Due OpenMP 
can be only used on shared memory systems 
is necessary to use MPI for the calculation 
distribution among cluster nodes, giving as a 
result a hybrid code (OpenMP+MPI) highly ef-
ficient and with a nearly perfect speed-up. Ad-
ditionally the numerical results were validat-
ed with respect to its sequential counterpart.

Keywords: gravity, gradiometry, OpenMP, MPI, 
hyper-threading, clusters. 
 

Resumen

La solución analítica de las componentes del 
tensor gravimétrico, utilizando la ecuación del 
potencial gravitacional para un ensamble volu-
métrico compuesto de prismas de densidad 
constante, requiere un alto costo computacio-
nal. Esto se debe a que el potencial gravitacio-
nal de cada uno de estos prismas tiene que ser 
calculado para todos los puntos de una malla 
de observación previamente definida, lo cual 
resulta en una carga computacional de gran 
escala. En este trabajo introducimos un diseño 
híbrido y su implementación paralela basada 
en OpenMP y MPI, para el cálculo de las compo-
nentes vectoriales del campo gravimétrico (Gx, 
Gy, Gz) y las componentes del tensor gravimétri-
co (Gxx, Gxy, Gzz, Gyy, Gyz, Gzz).El rendimiento obteni-
do conlleva a óptimas relaciones del speed-up, 
ya que el tiempo de cómputo es drásticamente 
reducido. La técnica de paralelización aplicada 
consiste en descomponer el problema en gru-
pos de prismas y utilizar diferentes espacios de 
memoria por núcleo de procesamiento, con el 
fin de evitar los problemas de cuello de botella 
cuando se accesa a la memoria compartida de 
un nodo del cluster, que se producen general-
mente cuando varios hilos de ejecución acceden 
a la misma región en OpenMP. Debido a que 
OpenMP solo puede utilizarse en sistemas de 
memoria compartida es necesario utilizar MPI 
para la distribución del cálculo entre los nodos 
del cluster, dando como resultado un código 
híbrido OpenMP+MPI altamente eficiente con 
un speed-up prácticamente perfecto. Adiciona-
lmente los resultados numéricos fueron valida-
dos con respecto a su contraparte secuencial.

Palabras clave: gravedad, gradiometría, 
OpenMP, MPI, hyper-threading, clusters. 
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Introduction

The shared memory architecture is becoming 
more common every day in the high-
performance computing market. With the 
hardware technology advances allowing us to 
have a great number of cores with access to 
the same memory locations, nowadays it is not 
that expensive to have systems with forty or 
sixty cores using shared memory. OpenMP is 
now a standard for symmetric multiprocessing 
systems (SMP) (even can be used transparently 
in the Xeon Phi architecture (Calvin et al., 
2013)) sustained by a combination of function 
and compiler directives, a standard for the 
symmetric multiprocessing (SMP) systems 
(Dagum and Menon, 1998; Curtis-Maury et al., 
2008). OpenMP has proven to be a powerful 
tool for SMP due to several reasons: it is highly 
portable; it allows fine and medium granularity, 
each thread can access to the same global 
memory; and has their own private memory, 
and it also has a greater level of abstraction 
than MPI model (Brunst and Mohr, 2008). 

MPI is a library supported on the Same 
Program Multiple Data (SPMD) model and on the 
message passing model, with an explicit control 
of the parallelism. The processes can only read 
and write in their respective local memories 
and the data in these memories is transferred 
through calls to functions or procedures 
which implement the message passing model. 
Among the principal characteristics of MPI are 
that it can run in architectures of shared and 
distributed memory, is convenient for medium 
to coarse granularity and that employment is 
widely extended, making it extremely portable 
among platforms (Krpic et al., 2012). 

Using a hybrid programming model we 
can take advantage of the benefits of two 
programming models OpenMP and MPI. MPI is 
normally used to control the parallelism among 
cluster nodes, while OpenMP is applied in the 
creation of threads of fine granularity tasks 
within each node. Most applications developed 
in hybrid model involves a hierarchical model: 
MPI is for the higher level and OpenMP for the 
lower one (Smith, 2000). 

One of the potential benefits of using 
hybrid model programming consists of getting 
rid of the barrier of scaling that each model 
has. Generally, in MPI the scaling is limited 
by the communications cost, because an 
application is affected by the overload of 
communication when the number of processes 
is increased. In OpenMP the performance of 
an application is affected by cache coherence 
problems and access to shared memory 

which may lead to bottleneck issues between 
the execution threads when trying to access 
memory. By mixing these methodologies of 
parallel programming (OpenMP and MPI), we 
can obtain a more diverse granularity of the 
application and therefore a better performance 
than by using each one on its own. 

There are different applications which use 
this programming paradigm: OpenMP with 
MPI. For example, in the solution of sparse 
linear systems (Mitin et al., 2012), in graph-
coloring algorithms (Sariyuce et al., 2012), in 
some models of fluid dynamics (Amritkar et 
al., 2012; Couder-Castañeda, 2009) and finite 
element methods (Boehmer et al., 2012), in 
the simulation of turbulent fluids (Jagannathan 
and Donzis, 2012), even in the simulation of 
combustion chambers (Környei, 2012) and the 
implementation of neural networks (Gonzalez 
et al., 2012). As can be observed, there are 
numerous computational implementations 
using OpenMP with MPI, nevertheless, this 
type of design is supported on a natural 
decomposition of the domain (Carrillo-
Ledesma et al., 2013), based on data. For our 
particular problem, each one of the processing 
units accesses all of the computational domain 
points. 

In Figure 1 is depicted a domain 
decomposition, where each task (process or 
thread) is given some data subset on which to 
work. This domain decomposition is commonly 
used for example in finite differences problems 
where computational domains divided disjointly 
among the different tasks.

On the other hand, in the direct conformation 
of gravimetric data, an initial model for the 
source body is constructed from geological-
geophysical information. The anomaly of 
such model is calculated and compared to the 
observed anomaly, after which the parameters 
are adapted to improve the adjustment 
between them. These three steps that arrange 
the model properties — anomalies calculation, 
comparison and adjustment — are repeated up 
to the observed and calculated anomalies are 
similar enough. 

A mass volume can be approximated by a 
set of rectangular prisms; if chosen sufficiently 
small, each prism can be considered to have a 
constant density. Because of the superposition 
principle, the gravitational anomaly of a 
body can be approximated at anypoint by 
summing the effects of all the prisms over 
that point. Even though this methodology 
appears simple (by reducing the size of the 
prisms to better adjust the source body), 
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computing time is considerably increased. 
There are other approaching methods of 
the gravitational anomaly that can simplify 
the required computation (mass points or 
tesseroids approximations), however, they may 
complicate the construction of the geological 
model (Heck and Seitz, 2007).

Application design

The application consists of calculating the 
gravimetric anomaly produced by a rectangular 
prismatic body with constant density with 
respect to a group of observation points (see 
Figure 2). The set of prisms is known as an 
ensemble of prisms, which is not necessarily 
regular. A set of irregular prisms can be 
configured as long as the prisms are not 
superimposed. Because the gravitational field 
complies with the superposition principle with 
respect to the observation points, if f is the 
calculated response at a point (x, y), then the 

observed response at the point f (x, y) is given 
by:

	 f x y G x yk
k

M

( , ) ( , , )=
=
∑ ρ
1

	 (1)

where M is the number of total prisms and ρ is 
the density of the prism.

It is well known that the function that 
calculates the anomaly for a given prism from 
an observation point is written as follows (Nagy 
et al., 2000):

	 g = f (xl, yl, zl, xr, yr, zr, xp, yp, zp, ρ)	 (2)

where (xl, yl, zl) is the top left vertex of the 
prism, (xr, yr, zr) is the bottom right prism and 
(xp, yp, zp) is the observation point and ρ the 
density, as shown in Figure 3. 

Figure 1. The domain decomposition 
based on data for an OpenMP+MPI 

application.

Figure 2. Decomposition 
of the calculation of M 
prisms with respect to the 
observation grid: (a) regular 
prism assembly, (b) irregular 

prism assembly.
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Figure  3. Calculation of a prism with respect to a 
point of observation.

The aforementioned is a large scale problem 
since, for example, a synthetic problem 
conformed by a set of prisms of 300 × 300 
× 150 = 13,500,000 elements, against an 
observation grid of 100 × 100 = 10,000 points, 
results in the calculation of 135,000,000,000 
integrals or differentials to solve the entire 
problem. The formulations we used are 
included in appendix A. 

Computing time reduction in a numerical 
simulation is of great importance to diminish 
research costs. A simulation which lasts a 
week is likely to be costly, not only because the 
machine time is expensive, but also because 
it prohibits the quick acquisition of results to 
make modifications and predictions.

In many projects to be parallelized, 
several times the serial algorithm does not 
show a natural decomposition which allows 
easily porting it to a parallel environment, 
or the trivial decomposition does not yield 
good performance results. For such reasons 
it is convenient to use a hybrid programming 
methodology, as the one developed and 
presented in this paper. This methodology 
provides an adequate programming design to 
obtain a superior performance. 

To develop a parallel program it is 
fundamental to search for the finest granularity, 
as in the methodology proposed by Foster 
(Foster, 1995). In this case it is possible to 
parallelize by prisms or by observation points. 
One of the requirements of the design is that 
it must be scalable, therefore the use of hybrid 
systems is quite appropriate; these systems 
are the most commonly used nowadays. 
Following Foster’s methodology, it is necessary 
to begin with the finest granularity, in this case 

corresponds to OpenMP because it is in the 
lowest level. Subsequently the implementation 
follows with MPI, due to its coarse granularity.

Implementation in OpenMP

We started our design with OpenMP because it 
handles shared memory and it is also the finest 
granularity. First we partitioned the domain 
into prisms, and for each prism we parallelized 
the calculation by observation points, as shown 
in Figure 4.

This parallelization by observation points 
is trivial and does not offer a great design 
challenge, since we simply partition the 
calculation with respect to the observation 
grid for each prism (see the pseudo-code 1). 
However, this scheme has several drawbacks. 
One of them is that the performance is not 
optimal since the number of prisms is much 
greater than the number of observation points. 
In other words, this partitioning is efficient as 
long as there are not too many threads working 
upon the observation grid, thus avoiding a 
bottleneck issue as a consequence of the 
threads works in the same memory allocation. 
Maybe the worst drawback lies in the fact that 
the parallel environment is created and closed, 
i.e. for each prism, a function which parallely 
calculates the anomalies is executed, but such 
environment is closed once the execution is 
over, and reopened for the following prism, 
which results in an unnecessary overload and 
therefore decreases the performance.

For each prism from 1 to M
!$OMP PARRALLEL DO COLLAPSE(2)
	 For each j from 1 to Ny
		  For each i from 1 to Nx
		  G(i,j)=Gz(parameters)+G(i,j)
		  End For
	 End For
!$OMP END PARALLEL DO
End For

Listing 1. Parallelization by observation points

Listing 2. Parallelization by observation points

!$OMP PARRALLEL DO
For each prism from 1 to M
	 For each j from 1 to Ny
		  For each i from 1 to Nx
		  G(i,j)=Gz(parameters)+G(Thread,

i,j)
		  End For
	 End For
End For
!$OMP END PARALLEL DO
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 The other parallelization option is to use 
prisms i.e., making the threads divide the work 
per number of prisms (see pseudo-code 2). To 
avoid the coherence problems of the cache it is 
necessary to create a different memory space 
for each execution thread, because it is not 
feasible to create a single memory space for 
an unique observation grid, shared by all the 
threads.

As observed in Figure 6, it is required to 
create an observation grid for each execution 
thread to avoid memory consistency problems. 
Bottleneck memory access issues are avoided 
since every thread writes in a different direction 
of the memory space. If only one grid were to 
be used, there would be access problems to 
the shared grid, which would create numerical 
inconsistencies.

One of the characteristics of OpenMP is 
that the computing is distributed in an implicit 

Figure 6. Partitioning by prisms.

Figure 4. Partitioning by observation points.

 Figure 5. Parallel region behavior: (a) pseudo-code 
(1), (b) pseudo-code (2).

manner, therefore the partitioning of the M 
prisms, which composes the problem, is done 
automatically using a balancing algorithm 
included in OpenMP. In this case the decision is 
left to the compiler, which is optimum 99% of 
the cases (Zhang et al., 2004).

OpenMP+MPI Implementation

One of the advantages of the prism 
parallelization is that it is easier to implement 
in MPI, producing tasks of coarse granularity 
using the same design previously applied 
in OpenMP. Having the observation grid 
partitioned would result in a more complicated 
and less efficient design using MPI. Since 
the parallelization in MPI is explicit, we need 
to manually distribute the number of prisms 
through a modular expression. If M is the 
number of prisms to calculate and p is the MPI 
process number (numbered from 0 to p−1), 
then for each process p we define the beginning 
and end of the prisms to be processed by p as 
pstart and pend, respectively. We define theinteger 
s as the quotient of the number of prisms M 
between the total number of processes pn, and 



C. Couder-Castañeda, J. Carlos Ortiz-Alemán, M. G. Orozco-del-Castillo and M. Nava-Flores

36      Volume 54 Number 1

r as the remainder, the procedure to determine 
pstart and pend proceed as follows:

	 s = M/pn,	 (3)

	 r = mod(M/pn).	 (4)

Therefore

	 pstart = p × s+1	 (5)

and

	 pend = (p + 1) × s.	 (6)

If r ≠ 0 and p < r, then we adjust as:

	 pstart = pstart + p	 (7)

and

	 pend = pend + (p + 1).	 (8)

If r ≠ 0 and p ≥ r, then:

	 pstart = pstart + r	 (9)

and

	 pend = pend + r.	 (10)

This way we can distribute the number 
of prisms M over pn processes in a balanced 
manner; once this distribution is made, we can 
use the OpenMP implementation in each node. 
In other words, we occupy MPI to distribute 
the number of prisms in each node, and at the 
same time in each node we employ OpenMP to 
reduce the number of MPI processes, reducing 
communication time. 

In consequence, the application is 
partitioned by the number of prisms M, both 
in OpenMP as in MPI. Another option is to 
parallelize by prisms in MPI and by observation 
points in OpenMP. Even though this is a viable 
option, it is not very scalable due the drawback 
discussed in the previous subsection. 

Basically the design consists of allocating 
an observation grid per execution thread 
and a global observation grid in the master 
thread per computing node, subsequently the 
reduction of the sum of the grids per thread is 
done and stored in the global grid contained 
in the master thread, and finally at the end 
of the parallel calculation, every master 
thread will add their grid values to update the 
master thread of the master node using a MPI 
reduction method (see Figure 7).

It is necessary to mention that the 
implementation of the code was made with 

the FORTRAN 2003 specification, using as 
development tool the Intel Cluster Toolkit 
version 2013 of Intel Corporation.

Performance experiments

For the synthetic experiment we used a case 
composed by a cube of 700 × 700 × 50 prisms, 
with 7 contrasting spheres of variable density 
(see Figure 8). The spheres were conformed 
by 251,946 prisms and an observation grid of 
150 × 100 = 15,000 points, to an elevation 
of 100 m. Therefore, the number of calls 
to a procedure required, to calculate the 
vector/tensor component of the gravity are 
3,779,190,000; this classifies the experiment 
into a high-performance computing problem.

We tested the parallelized code by 
observation points versus the version by 
prisms using OpenMP. The first parallel scheme 
is technically easier to implement because for 
each one of the prisms the calculation of the 
cycles corresponding to the tracking of the 
observation grid is parallelized. The second 
scheme has a more complex implementation 
because it requires different space memory 
allocations. The performance experiments that 
calculate the components of the gravimetric 

Figure 7. OpenMP+MPI design.
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tensor Gxx, Gyy, Gzz, Gxy, Gxz, Gyz using both 
versions were carried out in the server described 
below. We did not include the performance 
analysis for the vectorial components Gx, Gy 
and Gz, since its behavior is very similar. 

The characteristics of the server where the 
tests took place with OpenMP are as follows:

• 4 Xeon Intel (R) Xeon (R) E7-4850 
Processors

• 10 processing cores per processor 
• Hyperthreading Technology deactivated 
• 512 GB of RAM memory
• Red Hat 6.3 as operating system

To interfere as least as possible with the 
processes of the operating system, we used 35 
of the 40 cores available in the server. Initially 

we can say that the prisms implementation and 
with independent memory per core was 3.22X 
faster than its counterpart of observation 
points. Therefore, while the observation points 
version uses 757 s, the version partitioned by 
prisms only consumes 235 s.

The comparison of the computing times 
per thread in the partition by prisms against 
the partition by observation points is shown in 
Figure 9.

In Figure 9 it can be seen that the 
performance behavior is kept stable in both 
types of partitioning; however, by prisms the 
best reduction in time is obtained. To prove 
that the partitioning by prisms keeps reduction 
time practically linear, we graphed the speed-
up of the performance by prisms.

Figure 8. Synthetic problem setup with 7 spheres of variable density contrast (not scaled). Ensemble size of 22 
km x 22km x 8km, 251,946 prisms conform the spheres.

Figure  9. Comparison between 
execution time used between the 
partition by prisms against the 
partition by observation points 

(one thread per core).
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For the speed-up shown in Figure 10, we 
considered a serial fraction of 5% ( f = 0.05). In 
this fraction the necessary reductions to sum 
the grid points for each core are contemplated, 
the total result of the anomaly is calculated as: 

	 O i j O i jf t
t

Nt
( , ) ( , )=

=
∑
1

	 (11)

where, for each (i, j) Of is the final observation, 
Ot is the calculated grid by core t and Nt is the 
total number of cores. Therefore, we considered 
that 95% of the code is parallel, and according 
to Gustafson’s law, the maximum textitspeed-
up that can be obtained with 35 processing 
units, in this case cores, is 35 + (1-35) × 
(0.05) = 33.30. The experimentally obtained 

speed-up result was 31.31, which represents 
an absolute difference of 1.99 and a relative 
difference of 0.06, which shows the efficiency 
of the implementation.

Another indicator which must be 
contemplated is the efficiency E, defined as:

	 E S n
n

= ×
( ) %100 	 (12)

where S(n) is the obtained speed-up with n 
tasks, and indicates how busy the processors 
or cores are during execution. Figure 11 shows 
that the efficiency by prisms is high since on 
average every processing core is kept busy 
94% of the time. The efficiency E also indicates 

Figure 10. Speed-up of the 
partitioning by prisms (one thread 

per core).

Figure 11. Efficiency of the 
partitioning by prisms.
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that the partitioning by prisms is scalable, 
which means that we can increase the number 
of processors to improve time reduction while 
not losing efficiency in the use of many cores. 
The scalability must be contemplated as a good 
design of the parallel program since it allows 
scaling the algorithm, so we could expect when 
the number of processing units is increasing 
the performance is not affected.

The design using OpenMP is limited to 
architectures of machines of shared memory, 
therefore we are now making experiments 
using a hybrid machine commonly known 
as cluster, mixing OpenMP+MPI with the 
methodology described in subsection 2.2. 

The characteristics of the cluster where the 
numerical experiments were carried out are as 
follows:

• Node: Intel(R) Xeon(R) model X5550 
processors with four physical cores 
processor. 

• 44 processing nodes 
• Hyperthreading Technology enabled 
• 40 GB of RAM memory per node 
• Red Hat 6.3 as operating system 
• InfiniBand 300Gbps

We started by evaluating the performance 
of each cluster node, as opposed to the 
experiments done with the 40 cores server, 
where hyperthreading technology (HT) was 
disabled. In this case HT is enabled, so each 

node reports the handling of 8 execution 
threads instead of 4, but we only have 4 
physical floating point units (FPUs). Since our 
program is computationally intensive, we have 
to find out if we benefit from the use of HT; some 
studies have reported the use of HT in numerical 
applications can modify the performance by 
30% (Curtis-Maury et al., 2008).

The behavior obtained using one node 
containing 1 processor with four real cores with 
HT enabled/disabled can be exposed by an 
analysis of the computing time graph, shown 
in Figure 12, the problems analyzed is setup 
with 13,997 prism conforming a sphere with a 
mesh of 150 × 100 observations points.

As can be observed, the best run-time 
performance that we can obtain from the 
processor in HT mode is not produced with 
4 execution threads, the best performance is 
obtained with 8 threads, but the time is not 
doubly improved. This occurs since two threads 
share the same FPU and the HT technology is 
designed to quickly switch between threads, and 
therefore there is not a double improvement in 
time but the performance gain is approximately 
30%, which means that the two threads make 
better use of the FPU,therefore is necessary 
to create two threads per core to obtain the 
maximum performance when the HT is enabled. 
When the HT is disabled we have an asymptotic 
behavior after 4 threads but did not reach the 
performance obtained using the HT mode. 

Figure 12. Computing time using 
only one node with HT enabled/
disabled, calculating a problem 
of 13,997 prisms with 10,000 

observation points.
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In Figure 13 it can be observed that when 
HT technology is enabled we obtain a linear 
speed-up up to 4 execution threads; this is 
obvious since there are only 4 physical FPUs. 
Nevertheless, with the HT we can have a better 
use of the FPUs improving the speed-up up to 
5.60, this is, 1.6 more processing units. With the 
HT disabled, a similar performance is observed 
up to 4 threads, although this performance is 
below the one with the HT enabled. For more 
than 4 threads, the performance with the HT 
disabled begins to decrease. 

The efficiency corresponding to the speed-
up shown in Figure 13 is graphed in Figure 14; 
notice how HT is able to increase the efficiency 
of some intensive floating point applications up 
to 30% when the number of threads equals the 
number of physical cores. Of course, the best 
efficiency is obtained with 4 threads because 
we have 4 FPUs, nevertheless we can get a 
better performance creating 4 threads more 
using the additional virtual processors created 
by the HT.

Figure 13. Speed-up using 
only one node with HT enabled/
disabled corresponding to the 
execution times shown in the 

Figure 11.

 Figure 14. Efficiency using 
only one node with 4 cores with 
the HT enabled/disabled for the 

problem of 13,997 prisms.
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To analyze the performance in a node with 
the original problem (shown in Figure 8), we 
added a processor in the second socket to one 
of the nodes. In other words, we created a node 
with eight real cores to compare it against a 
node with four real cores with HT enabled. The 
results of execution time are shown in Figure 15.

It must be taken in consideration our cluster 
nodes are composed of a single processor with 
HT enabled, we only added another processor 
in the second socket to a node for experimental 
purposes. To have a better perspective of the 

performance, we determined the speed-up 
through both node configurations we showed 
in Figure 16. A nearly perfect speed-up can be 
observed for the node with 8 real cores, but a 
increase of 1.8 processing units for the node 
with 4 real cores with HT enabled. Evidently, 
if we enable HT in the machine with 8 real 
cores we would have 16 reported processors, 
and to get its maximum performance we 
would have to create 16 threads. However, 
the experimentation with 8 real cores was 
only for comparisonpurposes, since the cluster 
configuration is made of one node with 4 real 

Figure 15. Eight real cores 
with HT disabled vs four real 
cores with HT enabled for the 
problem setup in the Figure 8.

Figure 16. Eight real cores with 
the HT disabled vs four real 
cores with HT enabled for the 
problem setup in the Figure 8.
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cores with HT enabled. It can also be observed 
that each node of the cluster reduces the time 
by a factor of 5,8X against the serial version.

Once it is known that the best node 
performance is achieved with 8 execution 
threads for a node with 4 real cores with HT 
enabled and with the partition by prisms, we 
can consider each node as a processing unit and 
distribute the computing with MPI, obtaining a 
code with a hybrid programming model. 

The speed-up results using 25 cluster nodes 
are displayed in Figure 17; a serial fraction of 
5% (f = 0.05) is considered since in MPI there 
needs to be reductions in the sum for each 
node. The results show that a nearly perfect 
speed-up is obtained up to 22 nodes. From this 
point on, the speed-up starts declining because 
the application performance is affected by the 
communication time between nodes. In other 
words, the granularity of the tasks begins to 
decrease for this problem of 249,946 prisms 

Figure 17. Speed-up obtained using 25 
cluster nodes.

 Figure 18. Cluster eficiency using 25 
nodes.
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 Figure 19. Computing time of our 
implementation vs tesseroids on 

one node.

for 30 nodes. This implies that by increasing 
the granularity of the problem (increasing 
the number of prisms), the speed-up is also 
increased until it becomes stable, to decrease 
again later on.

The efficiency graph related with the speed-
up of Figure 16 is shown in Figure 18. Notice 
how the efficiency is below 90% after node 
23. If we consider that we have an increase in 
speed 5.8 times per node (from Figure 15) with 
respect to the serial version, then the optimum 
speed factor for this cluster (for a problem of 
251,946 prisms) is approximately 5.8 × 22 = 
127.6X, i.e. 127 times faster than the serial 
version. Obviously, as previously stated, if we 
increase the granularity (number of prisms), 
the efficiency increases as well. In fact, we 
reduce the computation time of the spheres 
problem from 1 h 34 m 56 s to 34 s

Comparison with similar programs

To provide a better perspective of the obtained 
performance with the parallel implementation 
of our code, we compared against an open 
source code called tesseroids (Uieda et al., 
2011), which can be downloaded from http://
dx.doi.org/10.6084/m9.figshare.786514. We 
chose the problem of 13,997 prisms which 
form an sphere against 10,000 observation 
points, since tesseroids is not distributed (can 
not be executed on a cluster) and can only 
accelerate the computation in shared memory 
machines. The execution times are shown 
using the bar chart in Figure 19, where it can 
be observed that with HT disabled we have 

a speed improvement of 2.14X and with HT 
enabled of 2.51X with respect to tesseroids. 
This performance improvement is due to our 
program design takes a better advantage of 
the processor technology and keeps the cores 
occupied to the maximum by using a prisms 
parallelization scheme based on different 
memory allocations. This can be observed in 
the CPU history graph shown in the Figure 20.

Numerical code validation

The main challenge of the parallel programming 
is to decompose the program into components 
which can be simultaneously executed to reduce 
computing time. The decomposition level is 
highly influenced by the type of architecture of 
the parallel machine. In this case the design 
was made with a hybrid programming strategy 
to get the maximum out of the architecture. 
Although the reduction of the execution time is 
the main objective of the parallel programming, 
the validation of the code is a topic that 
should be covered since inherent parallelism 
programming errors can occur.

To measure the error, we compared the 
previously validated sequential counterpart in 
the synthetic experiment with the analytical 
solution. We used the L2 norm error or RMS 
(Mickus and Hinojosa, 2001; Menke, 1989), 
defined as:
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where gp
i,j is the tensor component, parallely 

computed, and gs
i,j is the serially calculated 

component. 

In Table 1 the errors of the gravimetric 
tensor components are shown, parallely 
calculated with respect to the serial form.

From the errors obtained it can be noticed 
that there is no numerical difference, therefore 
the parallel version is correctly implemented. 

Figure 20. Behavior of the 
CPU utilization produced 
by our implementation 
vs tesseroids. The HT is 
enabled and note how 
the cores are used to 
maximum efficiency in our 
implementation compared 
with the partial use of 

tesseroids.

Table 1. Errors of the tensor components with 
respect to its sequential counterpart.

	 Gravity gradient	 Error L2
	 tensor components	

	 Gxx	 6.3136e-12
	 Gyy	 6.3054e-12
	 Gzz	 2.8367e-12
	 Gxy	 1.0244e-14
	 Gxz	 1.5518e-14
	 Gyz	 1.5581e-14
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Figure 21. Behavior of the CPU utilization produced by our implementation vs tesseroids. The HT is enabled 
and note how the cores are used to maximum efficiency in our implementation compared with the partial use of 

tesseroids.
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The surface graphs of the gravitational 
fields are shown in Figure 21. These graphs 
correspond to the components of the 
gravimetric tensor, calculated for the synthetic 
case studied in Figure 8.

Conclusions

A parallel design for the calculation of the 
vectorial and tensorial components of the 
gravity anomaly was implemented and 
validated using a hybrid methodology with 
OpenMP and MPI. The numerical experiments 
and the obtained indicators validate that the 
implementation is very efficient and that it 
also yields good results with respect to the 
numerical solution. 

We show that using the simplest or most 
trivial parallelization form does not contribute 
to the attainment of the best performance or 
the greatest exploitation of the platform. For 
our case, even though the partitioning by 
prisms requires a greater investment in the 
design and implementation, it was the most 
advantageous with respect to performance. 

The HT technology could improve some 
numerical intensive applications up to 30%, 
nevertheless, to get the best performance it is 
necessary to create two threads per core when 
the HT is enabled. 

We also conclude that this design can serve 
as a benchmark for solving problems which 
require the parallelization of schemes where 
the decomposition of the domain is not trivial 
or is shared by the processing units, as is the 
case of the observation grid. Finally the correct 
exploitation of OpenMP and MPI, jointly, 
can become a fundamental tool for parallel 
programming in clusters.

Future work

As future work we pretend to implement the 
code in CUDA NVIDIA with TESLA technology 
and compare these results with the cluster 
performance results presented in this paper, 
as the measurement of the error introduced 
by CUDA in single and double precision. The 
implementation in CUDA is a work of interest 
since the reduction of the variable values in 
CUDA technology is very complicated when 
used in shared form, as is the case with the 
observation grid. 

Appendix A. Calculation of gravitational 
quantities 

The Earth’s gravitational potential G is a scalar 
quantity, its shape can be constrained by its 
slope in the x, y and z directions, called the 
gravitational attraction Gx, Gy and Gz (gravity 
vector field). In this work, we have investigated 
how to parallelize the analytical calculation 
of the components of the gravity field vector 
and the gravity gradients represented by 
a nine component tensor, because of the 
symmetrical or irrotational attribute, the 
gravity gradient tensor is reduced to only six 
independent components: Gxx, (the vertical 
gravity gradient), and For the right rectangular 
prism model, the analytical formulae for the 
three components vectors and the six gravity 
gradient components, corresponding to the Eq. 
(2) are given by:
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