Georfsica INTERNACIONAL (2014) 53-4: 457-471

ORIGINAL PAPER

AVOA techniques for fracture characterization

Vladimir Sabinin

Received: September 02, 2013; accepted: December 05, 2013; published on line: October 01, 2014

Resumen

Se tomaron en consideracion distintos aspectos
de algunas técnicas computacionales para
el andlisis AVOA (Amplitud Versus Offset y
Azimut), para la composicién de fracturas, en
particular: utilizando amplitudes en lugar de
coeficientes de refeccidn, suavizando los datos
sismicos y el método de la estimacién numérica
para calcular la direccién. Se estimé un nuevo
meétodo de célculo y se indica un nuevo método
suavizado. Se compararan distintos métodos
de calculo en los datos sintéticos de superficie
de refleccion, con y sin ruido. Se obtuvieron
propiedades de los métodos numéricos,
dependientes de conjuntos distintos de los
azimuty los offset. Se muestra una superioridad
del nuevo método.

Palabras clave: AVOA, medio HTI, anisotropia
sismica, caracterizacion de yacimientos
fracturados.
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Abstract

Different aspects of computational techniques
for AVOA analysis (Amplitude Versus Offset
and Azimuth) for fracture characterization are
considered, in particular: using amplitudes
instead of reflection coefficients, smoothing
seismic data, and numerical methods for
estimation of fracture directions. A new
computational method and a new filter for
smoothing are suggested. The different
computational methods are compared in
synthetic reflection surface data with noise,
and without noise. Properties of the numerical
methods in dependence on different sets of
azimuths and offsets are obtained. It is shown
a superiority of the new method.

Key words: AVOA, HTI medium, seismic
anisotropy, fracture-reservoir characterization.
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Introduction

The analysis of azimuthal variation in reflection
coefficients, or AVOA analysis (Amplitude
Versus Offset and Azimuth), is widely applied
for detecting and mapping highly fractured
zones with azimuthally-oriented vertical cracks
(Mallik et al., 1998; Jenner, 2002; Sabinin &
Chichinina, 2008). The AVOA techniques are
based on the Riger (1998) approximation
for the reflection coefficients in HTI medium,
and give principal symmetry directions of HTI
medium.

Here, the computational aspects of AVOA
techniques are considered, namely, applying
amplitudes instead of reflection coefficients,
smoothing the amplitudes, an incidence
angle estimation, methods for obtaining the
symmetry-axis angle, synthetic data for testing
techniques, and a numerical experiment for
investigating properties of the techniques.
A new computational method for obtaining
the symmetry-axis angle and a new filter
for smoothing are suggested. All considered
techniques are compared in synthetic
anisotropic seismic data with noise, and
without noise. The suggested new technique
proved better than the others.

Background

The methodology of AVOA analysis is based on
the concept of azimuthal anisotropy caused for
the most part by parallel vertical fractures. It
leads to the azimuthal anisotropy of amplitudes,
in particular, to azimuthal variation in reflection
coefficients. Let a fractured reservoir be
represented by a model of a transversely
isotropic medium with horizontal symmetry
axis (HTI medium). The PP-wave reflection
coefficient R at the interface (or at the reflecting
boundary) between weakly anisotropic HTI
media (or between an isotropic medium and
an anisotropic HTI medium) is defined by the
approximate formula (Riger, 1998):

R(6O, )= A + B (¢p)sin> 6+ C(¢)sin?0 tan>0,

(1)
where 6 is the incidence angle, and ¢ is the
source-receiver-line azimuth with respect to

the coordinate axis x. The term A is the normal-
incidence reflection coefficient

A=AZ[/(2Z) (2)

where Z=pV, is the vertical P-wave

impedance, V,! is the vertical velocity (or
velocity in the isotropy plane) of the P-wave,
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p is density, A denotes the difference between
the values of a parameter below and above the

reflecting boundary, and the bar ... indicates

average of these values. V) =V, in the
isotropic media.

The coefficient B(¢) is a so-called AVO
gradient, which can be written (Rlger, 1998)
as

B(¢)=B,, + B, cos’(¢—¢).  (3)

where ¢, is the angle of the symmetry axis with
the x--axis. The term B, is the AVO-gradient
isotropic part (equal to the AVO gradient for
isotropic media), and B is the anisotropic part
of the AVO gradient.

The coefficient C(¢) can be written (Rlger,
1998) as,

C(¢) = a+B cos*(¢—¢,) + ¥ sin2(¢—¢0)cosz(¢—gé§23),

where a=AV,/(2V)), B=2A&", and
y =3A8".

Above, Thomsen-style anisotropy parame-
ters &V, and 6" are negative for HTI media,
and they are equal to zero for isotropic media.

The main problem of AVOA analysis is to
estimate the symmetry-axis angle ¢0 from
surface seismic data of amplitudes using
numerical techniques.

The techniques of AVOA are based on
equations (1) - (4). Note that equation (1)
is intended for calculation of reflection coe-
fficients, while in real data, one operates
with amplitudes of reflected waves, not with
reflection coefficients. This brings some pro-
blems which are discussed in the next section.

Using amplitudes instead of reflection
coefficients

While the background of AVOA analysis is
based on Rilger’s equation for the reflection
coefficient (1), in real data, AVOA analysis
should use signal amplitudes. It is true that
the amplitude is not equal to the reflection
coefficient. Moreover, no picked instantaneous
amplitude (sample) in the signal can be used
instead of the reflection coefficient because the
signal changes its form during propagation for
many reasons. It seems that one should use an
integral amplitude characteristic of the signal
which adequately corresponds to the reflection
coefficient. Let’s call this characteristic simply
by amplitude and denote it as P.
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The estimated value of ¢,is very sensitive
to the definition of P, especially for data with
noise. I suggest the following procedure for
definition of P which gives good and stable
results. The procedure calculates an average
value of a signal envelope in a time window.
In calculating the envelope, the Fourier
transform of this signal is used: F =F+ F,
where Fis spectrum, F_is the part of spectrum
corresponding to positive frequencies (w=0),
and F_is the part of negative frequencies. The
envelope of the signal is given by the absolute
value of inverse Fourier transform of the
spectrum with double F, and F =0 (Sheriff &
Geldart, 1983).

The sign of envelope is positive; therefore
this approach is applicable only to seismograms
with the constant sign of reflection coefficient
in dependence on offset.

For data with noise, the envelope is noisy,
too (see Figure 1). Therefore, smoothing is
necessary.

For smoothing, an algorithm of discrete
transformations of wavelet by filters is applied.
Four symmetric filters are constructed for it:
the low-pass (h,) and high-pass (h,) analysis
filters, and the low-pass (h,) and high-pass
(h,) synthesis filters. The right-hand part of &,
consists from the filter derived by Abdelnour
& Selesnick (2004). The left-hand part of & is
symmetric to it. That is

ho({_n9'-'7n})={b7b’_a’a 7b’b a,—a,c,
_aaa’bab’aa_a7b7b}7 (5)

where a=M /32, M =~/2/2.b=4a, and

n = 8. The central value is ¢ = 1-M.

The high-pass analysis filter is constructed
by formula &, (i) = (=1)" h, (n—i+1) for i # 0, and

i
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Figure 1. A signal with noise (thin line) in time, and
its envelope.

il

h,(0) = 0. The synthesis filters are calculated
by formula &, (i) = (=1)" h, (i), h, (i) = (=1)" h, (i),
see (Abdelnour & Selesnick, 2005). The central
values are h,(0) = c and h,(0) =0.

The smoothed signal is obtained by the
decomposition algorithm; see Figure 2 (WSBP,
2012).

Sage 1 2 3 3 2
::I—v

Figure 2. The 3-stage decomposition algorithm.

The input signal is x(j), j=1,...m, m>>2n. It
is decomposed into low and high components
lo (j) and hi (j) in the first stage:

o) =S hy(i)x + ).

n
hiy(j)= ") (Dx(i + ),
j=1..m.
In the next stages (s =2,..., 5), the each low

component lo_ (j) is decomposed by the same
analysis filters.

After all stages of decomposition finishing,
the stages of applying the synthesis filters are
fulfilled in reverse order (s=S, S-1,...,1):

lo,_,(j)= Y, h(D)lo,(i + j)

+ S hy(Dhi (i + j),

j=1,..,m.
The output signal y (j) is obtained finally:
() =lo(Hp,

where the fitting amplitude coefficient p can
be approximately estimated by the formula p
= 140.057S, where S is the number of stages.

The advantage of this variant of discrete
transformation algorithm in comparison with
(WSBP, 2012) is the absence of shift functions
in it due to applying the fully symmetric filters
(i=-n,...,n).
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It must be noted that the algorithm gives
unsatisfactory results at the edges of the signal
because of truncating the filters in 2n edge
points. Therefore, it is necessary m>>2n.

The result of smoothing the signal of Figure
1 by the 3-stage algorithm is presented in
Figure 3. The smoothness of resulting curve
increases with increasing S. Also with increasing
S, the algorithm slightly deforms the resulting
impulse in comparison with the parent impulse
without noise. Optimum in the smoothness and
in the conservation of form is observed at the
value §=3.

The limits of time window for calculating P
with the help of envelope can be chosen by
different ways. I use the following way. From
the envelope of signal e(r), the maximum ¢ and
nearest local minimums, left ¢ and right ¢, are
calculated. The left limit of the time window is
set in the point where e = ¢, + 0.15(¢,—¢), and
the right limit - where e = ¢ +0.15(¢,—¢), see
vertical lines in Figures 1, 3. Obviously, this
algorithm correctly works only with smoothed
signals.

Equation (1) should be rewritten for using
the amplitudes. If the source and the receivers
are at the earth surface, then the amplitude of
reflected PP-wave can be expressed as

P = CZRP”” Y

where ¢, is the coefficient of geometrical
spreading (divergence) from source to
reflection point for this wave, c¢= c, 0, ¢,
P, . is the amplitude of the source’ (the initial
amplitude), and R is the reflection coefficient,
R =R (6, ¢) in the equation (1).

uﬂ" !'Il' | Lt n-.

|

Figure 3. The signal with noise (thin line), the
smoothed signal (thick line), and the envelope of
smoothed signal.
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The amplitude for the normal-incidence
wave can be written as

2
R) = CgOAEm' ’

where ¢, is the normal-incidence coefficient
of geometrical spreading, which does not
depend on (0, ¢), and A is the normal-incidence
reflection coefficient, A = const, see equations
(1) - (2). Then the reflection coefficient can be
expressed as

2
CooP

2
c. By

R=A

Therefore the equation (1) for the reflection
coefficient R transforms into the following
equation for the amplitude P:

r P(6, ¢) = P, + mB(¢)sin’ 0 + mC(¢)sin*0 tan*0,
(6)

where m=P /A, and r, = (¢, /c, )?. This equation
should be used in the AVOA technlques instead
of (1).

Note that ¢, can be expressed as ¢ = ¢(6,
@)/r in 3D space, where r is a half ofg travel
path from source to receiver, and ¢ depends
on the direction of wave propagation (for
isotropic media, ¢ = const). In assuming a
weak anisotropy, one may assume a weak
dependence of geometrical spreading on
incidence angle: ¢ = const for a given source-
to-receiver line with azimuth ¢. Then, for a
homogeneous medium above the reflecting
boundary,

2
Cqo r’ 1 7)

y =— =—= ,

¢ 7 cos’H

where z is the normal-incidence ray path, and
¢, = ¢/ z It is the approximate formula for
Ivergent correction.

Also for multilayered media, the expressions
for divergence correction can be found from
Newman (1973). A practical methodology for
the P-wave geometrical-spreading correction
in layered azimuthally anisotropic media can
be found from Xu & Tsvankin (2004).

The incidence angle estimation

In the case of n isotropic layers above the
reflecting boundary, one can obtain the
incidence angle 6 = 6 from a solution of the
following non-linear equation for a:
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X, =a§zi_vi, (8)

where x is the half of offset, z, is the thickness
of i-th layer, V. is the veIOC|ty in i-th layer, and
sin (0) = aV,. For calculating the geometrical

%
spreading, the travel path r = E

=R ani2 .

In the case of the reflecting boundary being
the lower boundary of anisotropic layer, the
problem is more complicated because the last
layer is anisotropic, and the velocity V, depends
on O in it and is not known beforehand.

The problem can be solved by Sabinin
(2012). An advantage of his method is that the
value V in the anisotropic layer is unnecessary
for calculatlng angle 0 and path r. However, it
uses additionally the |mpulse from the upper
boundary of anisotropic layer what complicates
the technique. It gives results not sufficiently
better than the method (8). Therefore, I use
the simple method (8) here with setting an
approximate value of V .

The methods for estimation of symmetry
axis angle by AVOA

Usually, 3D seismic data used in AVOA analysis
are received from a system of receivers and
sources spacing in nodes of a rectangle grid
at the surface. The symmetry axis angle
is calculated for a small square (for a bin)
including a node of the grid, by using seismic
traces which have the Common Middle Point
(CMP) located in this bin. If such traces are
few, then neighbor bins are combined into
a superbin, and calculations are made for
it. Therefore, a preliminary stage of the
estimation is an extraction of seismic traces of
the superbin from the seismic data for taking
them into consideration.

For numerical methods of estimation of
symmetry axis angle, one can use equation (6)
as in Ruger’s form:

T.=a+ (b, +ct)s + (d, + e,t + f)s¥(1-s), (9a)
as in the power form:
T=a+s(b+ct)+s* (d+et+f?), (9b)

where T,=r P (0, $), T=(1-s)T,,s = sin?0, t = cos>
(¢-¢),a=P,b,=mB_.b=b-a,c=mB, .d =

ma, d= d—b,,e, —mA5(V)/2 e=e,—c,f=mAgV2—e,
and m = P/A

The methods vary by simplifying ways
applied, and can be separated into Sectored
methods (S and SR), Linear methods (L and
LR), and General method (G), where the letter
‘R’ denotes that the Riiger’s form (9a) is used
instead of (9b).

Sectored methods

The method SR was suggested by Mallik et
al. (1998) for the case of three azimuths with
using equations (1), and (3). It took its perfect
form in the work by Sabinin & Chichinina (2008)
who used equations (6), (3), and (4). For this
method, the traces of superbin are sorted by n
azimuthal sectors. It is adopted that all traces
of the sector have the same value of azimuth
equal to the middle azimuth of the sector.
Because of this, sectored methods introduce
in ¢, an own error no more than a half of the
sector size.

Here, the method S applied to equation (9b)
is presented. If in the sector of azimuth qb =1,

.,n), there are kj traces with incidence angles
Gj (i=1,.., ki) in the last layer above the target
boundary, then one can write from (9b) for this
sector j:

T, = P+Bs +C's?

8 (10)
where T., is the value T calculated from the
trace i in the sector j. In each sector, B1 mB,
C'= mC, where m;=P /A, and P, B1 C1 are the
ﬁftmg constants.

Having T, and 0. for all i in the sector j (k=
3), one can calculate s, =sin? 0i, and then P, B1
and C' from (10) by the least- squares metho
For this, it is minimized the functional of error
for each sector j:

k;
F = (P +Bjs;+Cjs] =T,
i=1

For minimizing Fj, it is necessary to solve
the system of three equations:

1 1
oF, /0P, =0,0F;/0B; =0,0F;/ dC; = 0.

bf-ag

. . 1 _

It gives: C,;= bzl—alcll , Bi= (f—=Cib)a,
and P =(u, —BCl —AB')/k where a, = Az—Bk b, =
AB— Ck c, —BZ—Dk f Au, uk g = uk

A= Esl,B E,,c E,,D E
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k; k;

ESZTU and u, = EslzTU :

i=1

Eu'

These calculations should be made for all
sectors.

Then, the unknown value ¢, can be obtained
from the system of equations of type (3), see
(9b):

1 1 1

Bl/P =b"+c', (11)
where j =1, .., n, and 1, = cos’(¢—¢). The
unknown constants 5!, and c¢' have a sense:

b'A=B —A, and c'A= Bam..

Equation (11) is transformed into more
convenient form:

Uj = b0+coggj+cohhj, (12)

where U, = B1 /P, b, =b'"+0.5c", ¢,=0.5c", g=
cos(2¢, ), = sm(2¢ ), 8= cos(2¢) and h,= sm(2¢)

The system (12) has three unknowns (b,
¢, and d)), therefore it should be n > 3 for
obtaining solution. The system (12) has two
solutions (two ¢, differing in 7/2, and two ¢,
of opposite signs, correspondently), and is
solved by the least-squares method, too. It is
minimized the functional of error:

F = Zl(b0 +o88; + Cohh; U ,)*. (13)

The following system of three equations
should be solved:

dF/ab, = 0, IF/dc, = 0, dF/dd, = 0.

bfi-af,

= f/
blfz Clji 0 1
o_c()(Ag + Bh)]/n, where

h
It gives: tan(2p,)=—
(ga, + hb), and b, = [u

a,=A-Cn, b, = AB—Dn, c = B°—En, f, = Au,—un,

f,=Bu,~un, A= Eg/,B Eh/,c Eg,,
D=Eg” , E=2hf , u0=2Uj ,
j=1 j=1 J=1
u, = Engj, and u, = Ethf'
j=1 j=1

The condition for distinguishing symmetry-
axis from fracture-strike directions is derived
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by Sabinin & Chichinina (2008), and uses
equation (4). Here it is presented in more
general form.

In terms of equations (9b), (10), and (11),
equation (4) can be written as

1 1 1 1,2
C,/P=d +et,+ft;, (14)

where j =1, .., n, d" = (a-B, /A, ' = (A6"/2—
B_ /A, and 1 = (ASV—AGM)/(DA).

When substituting the value @, % 7 instead
of ¢, into equation (14), the sign of the second
term e t switches to the opposite sign, because
equatlon (14) takes the form

1 1 1 1 1,2
C,/P=(d+e)-et;+ [,

The last term of equation (11) ¢!z, switches
its sign, too. One can combine A6" =ﬁA(c1 +e')
from definitions to equations (11), (14), and
conclude that the sign of A§" is switched, too.
For calculating A8, it should be solved system
(14) which is similar to (10) by the method of
solution.

If the HTI layer is situated between
isotropic layers then A6" must be negative for
upper reflecting boundary of the HTI layer, and
positive for lower boundary. If the calculated
value of AS"Y has this sign then ¢, is the
symmetry-axis angle. In opposite case, it is
the fracture-strike direction.

It must be noted that Ag™ = 2A(c' + ¢' +
/M, and also can be used for distinguishing
solutions because &% and 6" have the same
sign.

The formal condition that the second
derivative of functional (13) must be positive in
the minimum of functional can also be applied.
Because of errors in data, it should be used as
an additional condition to previous ones, and

should have a form BZF/8¢(2)> a small value.
Linear methods

The method LR was suggested by Jenner
(2002) for equation (1). It is not needed in
sectoring data. All traces of superbin are taken
into consideration together.

Here, it is applied to equation (9b), the
method L. Equation (9b) is truncated after a
line part respecting s. If the superbin has n
traces(i = 1, ..., n), with incidence angles 9,- at
the target boundary, and with azimuthal angles
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¢, then one can write the result of truncation
in the form:

T =a+s, (b, +c,gg,+ c,hhi). (15)

where T is the value T calculated from the trace
i s, —sm29 b,=b+0.5¢, ¢,=0.5¢, g = cos(2¢,), h
= sm(2d) )i &= cos(Zd)), and h,= sm(2(b)

The values s, g, and h, are known because
they can be calculated from headers of
seismograms and parameters of medium. Let
us consider the functional of error:

F= E(a+bs +C,85,8 + cohsh = T))
(16)

Functional F must be minimized over
parameters a, b, ¢, and d)o. For this, it is
necessary to solve the system of four equations:

9F/da =0, dF/db, = 0, IF/dc, = 0, IFI¢, = 0.
(17)

Solution of system (17) gives the equation
for obtaining ¢,:

h AH -AH
tan(29,) = — = —=—~-—"—2, (18)
g AH,-BH,

A=ab,—aa

where A =ab, a , B=ac, —-a; , oy

H=Fa-F a, and H2—Fa Fa in Whlch
a1=nB—A2, b1=nI—D2, c,=nJ— E2 a2=nG—AD,
b,=nK—ED, a=nH-AE, F =1, Af F=nf,—Df,,

and Fg=nf—Ef, and finally:A = Esl,B E
, D= Eg,,,E Eh”,G Eg,, :
- 2.2 = 252
H = ZhlSl , 1—;&8,- . J ;hls, '
K- Eg, 55 fo= DT fi= Y sT,,
i=1 i=1
=i=2gisiTir and f3=2hz‘siTi-

The other parameters are:

A2Hl - A1H2

Cy = 2 ’
h(A;, - AB,)
and a = (f,—b,A—c ,gD—c hE)/n.

, = (F,—c,ga,—c ha)la,,

From (18), one can see that the solution ¢
has a period of7t This value of the period means

that we must use an additional condition for
understanding what value d) is the symmetry-
axis azimuth. This condition may be B >0if V
/'V,>0.56 (Chichinina et al., 2003). In general
case it can be the condition O’F/og;> a small
positive value, where F is the funct|onal of
error (16).

General method (G)

The method is constructed by analogy with the
GM method by Sabinin (2013). It is not needed
in sectoring, too. All traces of superbin are taken
into consideration together. If the superbin has
n traces (i=1, ...,n), with incidence angles Q_ at
the target boundary, and with azimuthal angles
q)i, then equation (9b) can be written as:

T, =a+bs, +cst, +ds] +es't, + fs't],
where T is the value T calculated from the trace
i, s,=sin’0, and r, = cos’(¢—¢,).

Let us consider the functional of error:

F= E(a +bs, +cst, +ds;

2 2.2 2
+esit, + fsit; = T)" (19)

Functional F must be minimized over
parameters a, b, ¢, d, e, f, and qﬁo. For this,
it is necessary to solve the system of seven
equations:

0F/da =0, dF/db =0, dF/dc =0, dF/dd =0,
dF/de =0, 0F/9f =0, dF/d¢,=0. (20)

The six first equations of system (20) give
a line system for deriving expressions for the
parameters a, b, ¢, d, e, and f (for details, see
Appendix).

The last equation of (20) can be transformed
into a non-linear equation for obtaining d)o (for
details, see Appendix).

Thus, system (20) is non-linear on ¢0, and
is solved by the method of bisecting. It has
more than one solution usually. From these
local solutions, one chooses that one which
gives a minimum for functional (19).

As was observed from calculations, the
solutions of system (20) near the symmetry
axis angle, and near the fracture strike angle
give close values of functional (19). It means
that additional criterions are practically needed
for separating these directions. For the case
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of HTI layer situated between isotropic layers,
it can be the condition of negative values
for calculated & and &Y in the anisotropic
layer, as above. For this, from definitions to
equations (9b) and (2), one can calculate from
the solution of (20) at the interface:

AeV=2A(c + e +f)/a, (21)
ASV'=2A(c + e)/a. (22)

In the case of interface between anisotropic
layers, it is needed additionally to know
the predefined signs of Ag", and ASY for
comparison.

The additional criterion can also be the
maximum of second derivative of functional
(19), aF/aqﬁo.

Comparing the AVOA techniques

The techniques using the methods above
for estimation of symmetry axis angle were
compared in ability to give the most precise
value of ¢, for HTI medium. At present, reliable
field methods of obtaining ¢, do not exist.
Therefore, I generated synthetlc seismograms
for an artificial three-layer medium with the
anisotropic layer in the middle by applying
the technique by Sabinin (2012) of 2D wave
modeling. I set ¢, =60°, and derived models of
the anisotropic Iayer for different values of ¢ by
rotating the stiffness tensor for anisotropic HTI
layer (MacBeth, 1999) around z axis relatively
to ¢ Anisotropic parameters ¢ = 0.35, and e,

= 0.2 (see MacBeth, 1999) were used in the
st|ffness tensor.

Host rock velocity V, in three layers from
above had the values 3200, 4000, and 4800
(the other variant was 3200), m/s, V, was twice
less, densities were equal, and thicknesses
of two first layers were 1600, and 400 m. A
source of explosion type generated one Ricker
impulse of frequency 30 Hz. Receivers were
spaced over every 100 m beginning from the
source, and they measured z-component of
velocity. There were 50 offsets, and 50 traces
in each seismogram.

There were three goals: to investigate
how the techniques behave on different sets
of incidence angles, how the techniques are
influenced by non-symmetry in qﬁj relatively to
d)o, and how the techniques are influenced by
noise.

Therefore, for the first goal, I made

calculations of ¢, for different intervals of
offsets: from a minimum offset till a maximum
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offset, provided the minimum offset was
fixed at the number one, and the number of
maximum offset was changed from number 50
down to 3 in one set of the intervals; and the
maximum offset was fixed at the 50-th, and
the minimum offset was changed from number
1 to 48 in the other set of the intervals.
Naturally, the maximum incidence angle 9
corresponding to the maximum offset, and the
minimum incidence angle Gmm corresponding to
the minimum offset was also correspondently
changed in these sets of offsets.

For the second goal, I obtained different sets
of the synthetic seismograms corresponding to
different azimuths, one seismogram for each
azimuth. The sets of azimuths were uniform,
and differed by symmetry. I did not aim to find
the best or the worst set from them. I only
supposed that a symmetric set can be better
than an asymmetric one. I kept for testing the
symmetric set of azimuths d) ={-150°, —120°,
—90°, —60°, —=30°, 0°, 30°, 60°, 90°, 1200 150°, 180°},
and the asymmetric set d) ={85°,95°,105°, 115°,
125°,135°, 145°, 155°, 165"}

For the third goal, I took the best variant for
the symmetric set of seismograms to eliminate
the errors as due to the non-symmetry, as due
to a finite-difference simulation when applying
the artificial noise. The FD simulation by
Sabinin (2012) uses PML boundary conditions
which give non-visible (see Figure 4) but non-
zero waves reflected from the boundaries of
area. This slightly distorts the form of some
synthetic impulses.

For the synthetic seismic data being quasi-
real, I added a random Gauss normal noise to
the seismograms generated, different for each
seismogram. Maximum amplitude of the noise
was chosen as 10% of the maximum amplitude
of the wave reflected from the top boundary
of the anisotropic layer in the first trace of
seismogram.

Finally, I added the noise to the seismograms
of the asymmetric set.

All  seismograms were smoothed by
filters (5) in the techniques. High-frequency
components of the noise are eliminated well
after smoothing, as shown in Figure 3. It
is principally impossible to eliminate low
frequencies compared with the frequency of
signal. Therefore, the signal after smoothing
remains slightly deformed. I suppose that just
these deformations affect the estimated value
of ¢, in the case of noise.
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The same sets of the time windows were
used for all the techniques, and for all intervals
of offsets.

As illustration, in Figure 4, the seismogram
without noise for azimuth 5° is presented for
the variant of V,, = 4800 m/s; and in Figure
5, the se|smogram with noise for azimuth 30°
is presented for the variant of V,, = 3200 m/s.

As one can see from Figure 5, the amplitudes
of noise reach really up to 50% of the maximum
wave amplitudes in the middle traces, and up
to 100% in the far traces.

The techniques were applied as to upper
(1050 ms), as to down boundary (1250 ms) of
the anisotropic layer.

In Figures 6, 7, the error of estimated ¢0 in
degrees (difference with the correct value 60°)
is presented for the symmetric set of azimuths
and the upper boundary, variant V,, = 3200.
Figure 6 is for fixed Gm = 0° and Figure 7 is
for fixed 9 = 56.853°. The sectored methods
show some |nstab|I|ty for small values of Gm
Omi in comparison with the others. All methods
increase the error in the case of small 9
(Figure 6).

For the lower boundary and in the variant
= 4800, the general and linear methods
0

Vv
P3
also show increasing errors for small 6 ,
and small 6 -6 _, see Figure 8, and Figure
9. However, the errors of these methods are

sufficiently less than of the sectored methods.

In Figures 10, 11, the variant of Figs.
6, 7 with the added noise is presented. The
sectored methods demonstrate so great errors
and instability that can not be recommended
for applying. The other methods show large
errors only for small Gmax (less than 300°).

The asymmetric set of azimuths is presented
by results in Figures 12-15. The variant of
upper boundary and V,, = 3200 without noise
is presented in Figures 12, 13, and the same
with the noise - in Figures 14, 15.

Typical peculiarities of the asymmetric set
are: great errors of the sectored methods with
instability in noised data, and stable large
errors of the linear methods (up to 7°). The
general method remains of small errors. The
noise causes instability of all methods in the
interval of 0 ax<36° provided even the general
method (G) gives large errors in this interval.
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Figure 4. Synthetic seismogram without noise. Azimuth 5°, V

= 4800. Axis x - time in ms, axis y — numbers

of traces. Zero time is origin of the source impulse.

OcTtoBER - DECcEMBER 2014 465



V. Sabinin

TR TR . L. AP PR . PR, .. NP, S o .. . .. .. A A "
-~ el e W :
e 5
- Pl ‘n'.,"_ =
Ay, J\'L -
= st amisasi
el " o ¥
» A W \J‘ =
w—r. o
Ay E}
X oy vk s
ff o e ol
v "!‘ JP" P oot 1
-4 W . b dansamane E
v . 4 - i 2
- h ;\l 2, - -
. - g X
- = ﬁ’ :}- :
A, po
A dhd n@_
ey s o "
i v
T § AN
s ' e l\)?’c
AN A
| ¥ o W ] 1 e £ o £ £ 7] 130 E o £ b i T T ho

Figure 5. Synthetic seismogram with added 10% noise. Azimuth 309, V,, = 3200. Axis x - time in ms, axis y -
numbers of traces.

Figure 6. Errors for the symmetric set of azimuths; the upper boundary, and fixed 6 _ =0.
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Figure 7. Errors for the symmetric set of 0.6 =
azimuths; the upper boundary, and fixed
0 =56.853°. | a
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Figure 8. Errors for the symmetric set of = o
azimuths; the lower boundary, variant v,, .g "
= 4800, and fixed 0 =0. 52
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Figure 9. Errors for the symmetric set of
azimuths; the lower boundary, variant v,
= 4800, and fixed 6, =63.6°.
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Figure 10. Errors for the symmetric
set of azimuths; the noise, the upper
boundary, v,, = 3200, and fixed

min

Figure 11. Errors for the symmetric

set of azimuths; the noise, the upper

boundary, Vv, = 3200, and fixed
0,,=56.853°

Figure 12. Errors for the asymmetric
set of azimuths; the upper boundary,
variant V,, = 3200, and fixed 6 _ =0.
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Figure 13. Errors for the asymmetric
set of azimuths; the upper boundary,
variant v,, = 3200, and fixed 6, =56.853°.

Figure 14. Errors for the asymmetric
set of azimuths; the noise, the upper
boundary, v,, = 3200, and fixed 6 _ =0.

Figure 15. Errors for the asymmetric
set of azimuths; the noise, the upper
boundary, variant v,, = 3200, and fixed
0 =56.853°.
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Discussion and conclusion

Some unexpected results were obtained. The
first is that the sectored S and SR methods
are failed. They can be used only in seismic
data without noise, and for mainly symmetric
distributions of azimuths ¢ in the 3D data
(Figures 6 - 9). This is too ideal conditions.

The second is that the linear L and LR
methods have an additional nearly constant
error in mainly asymmetric distributions of
azimuths ¢ in the data (Figures 12 - 15). This
error is probably connected with the truncation
of high terms in equation (1) of Riger,
because the general method G has not such
error. Therefore, the linear methods should be
applied to azimuthally symmetric data.

The third is that the smoothing data with
noise by simple filters (5) gives relatively
stable estimated values of ¢ in a wide interval
of incidence angles 0 for the methods L, LR,
and G (Figures 10, 11, 14, 15). The interval of
instability is near the normal incidence, and has
a width of 9 ., <40°, different in different variants
(Figures 10 14) For data without noise, this
interval is 9 .<10° (Figures 6, 8). Presence of
the interval of instability is an intrinsic property
of the formula (1) in connection with the least-
squares method. Errors in amplitudes become
relatively more with decreasing 0 in definition
of ¢, by equation (1).

The results show a superior of the general
method (G). On the whole, its errors are less
than of the others. Unfortunately, it has an
intrinsic problem of choosing the right solution
from the local solutions of non-linear system
(20). All criterions described above do not
guarantee the correct choosing. It is especially
difficult in the interval of instability. All the
methods have such problem of distinguishing
solutions. The best in this sense is the
method L. Its criterions are failed very rarely.
Therefore, I recommend applying the method
G in a coupling with the method L: after
estimation of ¢ by L, the value ¢, is defined
more precisely by G with expertly taking into
consideration the local solutions of (20). The
other recommendation is to avoid the interval
of instability.

In applying to field data, the techniques
can give worse results. The real data have
much more interferences of waves than the
synthetic data. It is practically impossible to
clear each interfered wave of the other by
filters. Distorted by this way impulses can lead
to unpredictable results.
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Appendix. Solution of system (20)

Let’s define:

n n n n
2 2
A= Esl,B = Esitl.,C = Esl ,D = Esl t,
i=1 i= i=1 i=1
n n n
2.2 3 3
E = sltilF_EsilG= Sitll
i=1 i=1 i=1
n n n

Then, from the first six equations of system
(20), one can derive the formulas for unknown
parameters:

f= a2fl a1f2’e=fl_fa2,

—-a,b, a,

8 — Ja; —eay,
d=">——"—=,
ap
h - fa,, - eay, — da,,

C = = 7
a,

b= k= fays — eay, — day, — cay,
- !

aOl

a=(U, - fE — eD —dC — cB — bA)/n,

where a,=A>-Cn, a,=AB—Dn, a,=AC—Fn,
a,=AD—-Gn, a, =AE—Hn, b =B>~En, a,=BC—
Gn, b,=BD-Hn, b,=BE—Kn, c =C-Ln,
¢,,=CD—Mn, ¢, ,=CE—Nn, d, =D*~Nn, d =DE—
On, e,=E*~Pn, k=AU~Un, k=BU~Upn,
k3=CU -Un, k=DU~Un, k=EU—-Ugn,

a, =a —a b a,,=a,,a,.—a, b

o01r-or’ 027703 01702
Cl 0026104 a()lb()?’a a02a05 a01b04’
2
b2l a aOICOI’b22 a03a04 aOICOZ’

b _ao3aos A1C030 € —a amdm’

caaadd hakak

047705 01702° ()l 01’ 0172



GEOFisICA INTERNACIONAL

hakakhakakhakak

03 1 01773 04771 42774 01752
a _a a2lb21 ? a a22a23 a21b22’
a a22a24 a21b23’ bll_a a21c21 ’

b a2’%a24 a21C22’ C

adzl,glah —a, h

2172
21 3’ _a24h1 a21h4’a Cl allbll’

2
a a12al3 allbIZ’ bl a13 11 ll’ f a2g1 182’

andfz_awgl 4,85

The seventh equation of system (20) takes
a form:

c(@A, + bB, + cC, +dD, + eE, + fF, - U, +
e(aB, +bD + cE +dG +eH +fK - U) +
2ftaC, + bE, + cF +dH +eK +fL —U)=0

where nAl = gyisi,B: = 2)’,-5,-2, C = i)’itisiz
D, =Eyisi3  E, =Eyitisi3 B = Ey, iti
G, = Eyl 14: H, = Ey“ 14/ K, =2yiti2sl41

n

L = E)’,, st Uy = Elesl,U Eles
Uy = Elet,s, , and y, = sin[2(§~¢,)].
i=1
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