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Resumen
 
Los modelos matemáticos de muchos sistemas 
geofísicos requieren el procesamiento de sistemas 
algebraicos de gran escala. Las herramientas 
computacionales más avanzadas están 
masivamente paralelizadas. El software más 
efectivo para resolver ecuaciones diferenciales 
parciales en paralelo intenta alcanzar el paradigma 
de los métodos de descomposición de dominio, 
que hasta ahora se había mantenido como un 
anhelo no alcanzado. Sin embargo, un grupo de 
cuatro algoritmos –los algoritmos DVS- que lo 
alcanzan y que tiene aplicabilidad muy general se 
ha desarrollado recientemente. Este artículo está 
dedicado a presentarlos y a ilustrar su aplicación 
a problemas que se presentan frecuentemente 
en la investigación y el estudio de la Geofísica.

Palabras clave: computational-geophysics, 
computational-PDEs, non-overlapping DDM, 
BDDC; FETI-DP.

Abstract
 
Mathematical models of many geophysical systems 
are based on the computational processing of 
large-scale algebraic systems. The most advanced 
computational tools are based on massively 
parallel processors. The most effective software 
for solving partial differential equations in parallel 
intends to achieve the DDM-paradigm. A set 
of four algorithms, the DVS-algorithms, which 
achieve it, and of very general applicability, 
has recently been developed and here they are 
explained. Also, their application to problems that 
frequently occur in Geophysics is illustrated.

Key words: computat ional-geophys ics , 
computational-PDEs, non-overlapping DDM, 
BDDC, FETI-DP.
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1. Introduction

Mathematical models of many systems of interest, 
including very important continuous systems 
of Earth Sciences and Engineering, lead to a 
great variety of partial differential equations 
(PDEs) whose solution methods are based on the 
computational processing of large-scale algebraic 
systems. Furthermore, the incredible expansion 
experienced by the existing computational 
hardware and software has made amenable to 
effective treatment problems of an ever increasing 
diversity and complexity, posed by scientific and 
engineering applications [PITAC, 2006].

Parallel computing is outstanding among 
the new computational tools and, in order to 
effectively use the most advanced computers 
available today, massively parallel software is 
required. Domain decomposition methods (DDMs) 
have been developed precisely for effectively 
treating PDEs in parallel [DDM Organization, 
2012]. Ideally, the main objective of domain 
decomposition research is to produce algorithms 
capable of ‘obtaining the global solution by 
exclusively solving local problems’, but up-to-
now this has only been an aspiration; that is, a 
strong desire for achieving such a property and 
so we call it ‘the DDM-paradigm’. In recent times, 
numerically competitive DDM-algorithms are 
non-overlapping, preconditioned and necessarily 
incorporate constraints [Dohrmann, 2003; Farhat 
et al., 1991; Farhat et al., 2000; Farhat et al., 
2001; Mandel, 1993; Mandel et al., 1996; Mandel 
and Tezaur, 1996; Mandel et al., 2001; Mandel et 
al., 2003; Mandel et al., 2005; J. Li et al., 2005; 
Toselli et al., 2005], which pose an additional 
challenge for achieving the DDM-paradigm. 

Recently a group of four algorithms, referred 
to as the ‘DVS-algorithms’, which fulfill the DDM-
paradigm, was developed [Herrera et al., 2012; 
L.M. de la Cruz et al., 2012; Herrera and L.M. de 
la Cruz et al., 2012; Herrera and Carrillo-Ledesma 
et al., 2012]. To derive them a new discretization 
method, which uses a non-overlapping system 
of nodes (the derived-nodes), was introduced. 
This discretization procedure can be applied 
to any boundary-value problem, or system of 
such equations. In turn, the resulting system 
of discrete equations can be treated using any 
available DDM-algorithm. In particular, two of 
the four DVS-algorithms mentioned above were 
obtained by application of the well-known and 
very effective algorithms BDDC and FETI-DP 
[Dohrmann, 2003; Farhat et al., 1991; Farhat 
et al., 2000; Farhat et al., 2001;  Mandel et al., 
1993; Mandel et al., 1996; Mandel and Tezaur, 
1996; Mandel et al., 2001; Mandel et al.,  2003; 
Mandel et al.,  2005; J. Li et al., 2005; Toselli et 
al., 2005]; these will be referred to as the DVS-
BDDC and DVS-FETI-DP algorithms. The other 

two, which will be referred to as the DVS-PRIMAL 
and DVS-DUAL algorithms, were obtained by 
application of two new algorithms that had not 
been previously reported in the literature [Herrera 
et al., 2011; Herrera et al., 2010; Herrera et 
al., 2009; Herrera et al., 2009; Herrera, 2008; 
Herrera, 2007]. As said before, the four DVS-
algorithms constitute a group of preconditioned 
and constrained algorithms that, for the first time, 
fulfill the DDM-paradigm [Herrera et al., 2013; 
L.M. de la Cruz et al., 2012].

Both, BDDC and FETI-DP, are very well-known 
[Dohrmann, 2003; Farhat et al., 1991; Farhat 
et al., 2000; Farhat et al., 2001;  Mandel et al., 
1993; Mandel et al., 1996; Mandel and Tezaur, 
1996; Mandel et al., 2001]; and both are highly 
efficient. Recently, it was established that these 
two methods are closely related and its numerical 
performance is quite similar [Mandel et al., 2003; 
Mandel et al., 2005]. On the other hand, through 
numerical experiments, we have established that 
the numerical performances of each one of the 
members of DVS-algorithms group (DVS-BDDC, 
DVS-FETI-DP, DVS-PRIMAL and DVS-DUAL) are 
very similar too. Furthermore, we have carried out 
comparisons of the performances of the standard 
versions of BDDC and FETI-DP with DVS-BDDC 
and DVS-FETI-DP, and in all such numerical 
experiments the DVS algorithms have performed 
significantly better.

Each DVS-algorithm possesses the following 
conspicuous features:

• It fulfills the DDM-paradigm;

• It is applicable to symmetric, non-symmetric 
and indefinite matrices (i.e., neither positive, nor 
negative definite); and

• It is preconditioned and constrained, and has 
update numerical efficiency.

Furthermore, the uniformity of the algebraic 
structure of the matrix-formulas that define each 
one of them is remarkable.

This article is organized as follows. In Section 
2 the basic definitions for the DVS framework are 
given; here we define the set of ‘derived-nodes’, 
internal, interface, primal and dual nodes, the 
‘derived-vector-space’, among others. Section 3 
is devoted to define the new set of vector spaces 
that conforms the DVS framework; the Euclidean 
inner product, is also defined here. In Section 4 
the ‘transformed-problem’ on the derived-nodes 
is explained in detail, and this is our starting point 
to define the DVS algorithms. Section 5 presents 
a summary of the four DVS-algorithms: DVS-
BDDC, DVS-FETI-DP, DVS-PRIMAL and DVS-DUAL. 
In Section 6 we give the numerical procedures 
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we use to fulfilling the DDM-paradigm, and we 
explain in detail the implementation issues. 
Finally, in Section 7 we show some numerical 
results obtained after the application of the DVS-
algorithms in the solution of several boundary 
values problems of interest in Geophysics. We 
studied examples for a single-equation, for the 
cases of symmetric, non-symmetric and indefinite 
problems. We also present results for an elasticity 
problem, where a system of PDE equations is 
solved.

2. DVS Framework: A Summary

The ‘derived-vector-space framework (DVS-
framework)’ is applied to the discrete system 
of equations that is obtained after the partial 
differential equation, or system of such equations, 
has been discretized. The procedure is independent 
of the method of discretization that is used. Thus, 
the DVS-framework’s starting point is a system 
of linear algebraic equations that is referred to as 
the ‘original problem’:

 







Au f=
 (2.1)

However, in the DVS setting one does not 
work with the set of nodes originally used for 
discretizing the problem the original-nodes’ 
(Figure 1). Instead, one uses an auxiliary set 
of nodes: the ‘derived-nodes’. Each one of such 
nodes has the property that it belongs to one and 
only one subdomain of the coarse mesh. 

Indeed, generally after a coarse-mesh has 
been introduced, some original-nodes belong to 
more than one subdomain of the coarse-mesh 
(Figure 2), which is inconvenient for achieving the 
DDM-paradigm. Therefore, in the DVS-framework, 
each original-node that belongs to more than one 
subdomain is divided into as many new nodes –
the derived-nodes (Figure 3) - as subdomains it 
belongs to. Then, the derived-nodes so obtained 
are distributed into the coarse-mesh subdomains 
so that each derived-node is assigned to one and 
only one subdomain of the coarse-mesh (Figure 
4). Once this has been done, a convenient notation 
is to label each derived-node by a pair of natural 
numbers: the first one indicating the original-node 
from which it derives and the second one, the 
subdomain to which it is assigned.

Figure 1. The ‘original nodes’. Figure 2. The original nodes in the coarse-mesh.

Figure 4. The derived-nodes distributed in the coarse-
meshFigure 3. The mitosis.
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The real-valued functions defined in the set 
of derived-nodes constitute a vector-space: the 
‘derived-vector-space’, W. This space becomes a 
finite-dimensional Hilbert-space when it is supplied 
with the inner-product that is usually introduced 
when dealing with real-valued functions defined in 
a set of nodes; this is referred to as the Euclidean 
inner-product.

Afterwards, a new problem (referred to as the 
‘transformed problem’) is defined in the derived-
vector-space, which is equivalent to the original 
system of discrete equations. Thereafter, all the 
numerical and computational work is carried out 
in the DVS-space.

Before leaving this Section, we dwell a little 
further on the meaning of a coarse-mesh. By it, we 
mean a partition of W into a set of non-overlapping 
subdomains {W1,..., WE}, such that for each a=1, 
..., E, Wa, is open and:

 

Ω Ω Ω Ωα β α
α

∩ = ∅
=

 and 
1

E

∪⊂
 (2.2)

Where Ωα  stands for the closure of Wa. The 
set of ‘subdomain-indices’ will be 

 
ˆ ,...,Ε ≡ { }1 E

 (2.3)

Ν̂α, a=1,..., E, will be used for the subset of 
original-nodes that correspond to nodes pertaining 

to Ωα . As usual, nodes will be classified into 
‘internal’ and ‘interface-nodes’: a node is internal 
if it belongs to only one partition-subdomain 
closure and it is an interface-node, when it belongs 
to more than one. For the application of dual-
primal methods, interface-nodes are classified 
into ‘primal’ and ‘dual’ nodes. We define:

ˆ ˆΝ ΝΙ⊂  as the set of internal-nodes;

ˆ ˆΝ ΝΓ ⊂  as the set of interface-nodes;

ˆ ˆ ˆΝ Ν ΝΓπ ⊂ ⊂  as the set of primal-nodes1; 
and

ˆ ˆΝ Ν⊂∆  as the set of dual-nodes.

The set of primal-nodes is required to be a 

subset of Ν̂Γ and, in principle, could be otherwise 

chosen arbitrarily. However, the algorithms 
considered by domain decomposition methods are 
iterative-algorithms and their rate of convergence 
depends crucially on the selection of the set 

Ν̂π . Thus, criteria for selecting Ν̂π  have been 
studied extensively (see [Toselli et al., 2005], for 
detailed discussions of this topic). Each one of the 
following two families of node-subsets is disjoint : 

ˆ , ˆΝ ΝΙ Γ{ } and ˆ , ˆ , ˆΝ Ν ΝΙ π{ }∆ . Furthermore, these 
node subsets fulfill the relations:

 
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆΝ Ν Ν Ν Ν Ν Ν Ν ΝΙ Γ Ι Γ= ∪ = ∪ ∪ = ∪π π and ∆ ∆  

  (2.4)

Throughout our developments the original 
matrix 



A  is assumed to be non-singular (i.e., it 

defines a bijection of W  into itself). The following 
assumption (‘axiom’) is also adopted in throughout 
the DVS-framework: “When the indices p ∈Ν̂α

 
and q ∈Ν̂β are internal original-nodes, while a 
≠ b , then p ∈Ν̂α

 and q ∈Ν̂β are unconnected”. 
We recall that unconnected means:

 
 

A Apq qp= = 0  (2.5)

3. The Derived-Vector Space (DVS)

In order to have at hand a sufficiently general 
framework, we consider functions defined on 
the set X of derived-nodes whose value at each 
derived-node is a dD−Vector. The numerical 
applications that will be discussed in this paper 
correspond to two possible choices of d: when the 
application refers to a single partial differential 
equation (PDE), d=1, and for the problems of 
elasticity that will be considered, which are 
governed by a three-equations system, d=3.

Independently of the chosen value for d, the 
set of such functions constitute a vector space, 
W, referred to as the ‘derived-vector space’. 
When u W∈ , we write u(p, a) for the value of 
u at the derived-node (p, a). We observe that, 
in general, u(p, a) itself is a d−Vector and we 
adopt the notation u(p, a, i), i=1, ..., d. For the 
i−th component of u(p, a). When d=1 the index 
i is irrelevant and, in such a case, will deleted 
throughout.

For every pair of functions, u∈W and w∈W, the 
‘Euclidean inner product’ is defined to be

1In order to mimic standard notations, we should have used P instead of the low-case p. However, the modified 
definitions given here yield some convenient algebraic properties.
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 u w u p w p
p

i �= ( ) ( )
( )∈
∑ , ,
,

α α
α Χ

 (3.1)

Here, u(p, a) u w u p w p
p

i �= ( ) ( )
( )∈
∑ , ,
,

α α
α Χ

 w(p, a) stands for the inner-
product of the dD−Vectors involved; thus,

 u p w p u p i w p i
i

n

, , , , , ,α α α α( ) ( ) ≡ ( ) ( )
=
∑�

1  (3.2)

A fundamental property of the derived-vector 
space W, is that it constitutes a finite dimensional 
Hilbert-space with respect to the Euclidean inner-
product.

Let W' ⊂ W be a linear subspace and assume 
M ⊂ X is a subset of derived-nodes. Then, the 
notation W’(M) will be used to represent the 
vector subspace of W’, whose elements vanish 
at every derived-node that does not belong to M. 
Furthermore, corresponding to each local subset 
of derived-nodes, Xa, there is a ‘local subspace of 
derived-vectors’, Wa, which is defined by

 
W W Xα α≡ ( )

 (3.3)

Clearly, when u∈Wa ⊂ W, u(p, b)=0 whenever 
b ≠a. We observe that 

 W =W1⊕... ⊕WE (3.4)

A derived-vector u∈W is said to be continuous 
when u(p, a) is independent of a. The set of 
continuous vectors constitute the linear subspace, 
W12.

The orthogonal complement (with respect to 
the Euclidean inner-product) of W12 ⊂ W is W11 ⊂ 
W. Then W= W11⊕W12. Two projection-matrices 
a W W: →  and j W W: →  are here introduced; 

they are the projection-operators, with respect 
to the Euclidean inner-product on W12 and W11, 
respectively. When u∈W, one has

 

u u u
u ju W

u au W
= +

≡ ∈

≡ ∈






11 12

11 11

12 12

 with 

 (3.5)

the vectors ju  and au  are said to be the ‘jump’ 

and the ‘average’ of u, respectively. Therefore, 
W11 is the ‘zero-average’ subspace, while W12 is 
the ‘zero-jump’ subspace.

Original-nodes are classified into ‘internal’ and 
‘interface-nodes’: a node is internal if it belongs to 
only one subdomain-closure of the coarse-mesh, 
and it is an interface-node when it belongs to 
more than one of such closure-subdomains. Some 

subspaces, significant for our developments, are 
listed next:

W WI ≡ ( )Ι ;
W WΓ Γ≡ ( ) ;
W Wπ π≡ ( ) ;
W W≡ ( )∆∆ ;and

W WΠ Π≡ ( ) . 

At present, numerically competitive algorithms 
need to incorporate restrictions and to this end, 
in the DVS-framework, a ‘restricted subspace’ Wr 
⊂ W is selected. In the developments that follow, 
it is assumed that:

 
W W aW Wr ≡ + +Ι π ∆  (3.6)

The matrix ar
 will be the projection-operator 

on Wr. We observe that when u∈(WI+WD), one has 
a u ur = . We also notice that

 W =WI⊕WG=WI⊕Wp⊕WD (3.7)

4. The Transformed Problem

The transformed-problem consists in finding u∈W 
such that

 a A u f jut = = and 0  (4.1)

Where:

 
A At

E

≡
=
∑ α

α 1  (4.2)

and

 

  



A A A
A

p qpq pq
pq pqα α α

αδ
≡ ( ) ≡ ( ) with 

s ,  (4.3)

together with

 
m p q s p q

p q

ppq

E

, ,
, ,

,
( ) ≡ ( ) ≡ ( )

=
∑δα

α 1

1
 and 

 when m = 0

m qq p q( ) ( ) ≠




 , , when m 0  
  (4.4)

The function m (p, q) is said to be the 
‘multiplicity’ of the pair (p, q). The ‘derived-
nodes’ are created after a coarse-mesh has been 
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introduced, by dividing the original-nodes as 
explained in the Overview (Section 2), and then 
with each ‘derived-node’ we associate a unique 
pair of numbers (p, a) such that a∈ ˆ ,...,Ε ≡ { }1 E and p ∈Ν̂α. 
In what follows, we identify derived-nodes with 
such pairs.

Then, in order to incorporate the constraints, 
we define

 W W W aWr ≡ ( ) + ( ) + ( )Ι π∆  (4.5)

then, the matrix A W Wr r: →  defined by 

 A a A ar t r≡  (4.6)

has the property that

 a Aa a A at=  (4.7)

Hence, Eq. (4.1) is replaced by

 a Au f ju= = and 0  (4.8)

For matrices and vectors the following notation 
is adopted:

 

A
A A

A A

u
u
u

u
≡










≡






∈

ΠΠ Π

Π

Π

; 
 for any WW

u
u
u

u W

 

 for any ≡






∈ ( )













Ι Π
π

∆

∆

∆

∆∆
 

  (4.9)

where the matrices

 

A W W A W W

A W W
r r r r

r r

ΠΠ Π

Π

Π Π Π

Π

: :

:

( )→ ( ) ( )→ ( )
( )→ (

,  

)) ( )→ ( ),  A W Wr r:

∆

∆∆
∆

∆∆ ∆
∆  

  (4.10)

furthermore,

 

A
A A a

a A a A a

t t r

r t r t rΠΠ

∆Π

ΙΙ Ι

Ι

≡
( ) ( )
( ) ( )

          

 
π

π ππ

















≡
( )
( )

















,  
    

A
A

a A

A

t

r tΠ∆

Ι∆

π∆

∆∆ ∆∆Ι
≡ ( ) ( )



 ≡ ( )

         ,   A A a A At t r t

∆π


∆   

  (4.11)

The matrix A W W: →  will be referred to as 

the ‘transformed-matrix’. We observe that A At=
when π = ∅ .

In turn, the transformed problem of (4.8) can 
be reduced, see [Herrera et al., 2010; Herrera et 
al., 2009; Herrera, 2008; Herrera, 2007; Farhat et 
al., 2000] for details, into the following problem, 
which is expressed in terms of the values of the 
solution at dual-nodes, exclusively: “Find uD∈W 
(D) that satisfies

 aSu f ju= = and 0
∆∆ ∆  (4.12)”

Here, f aW∈ ( )∆∆
 and the ‘Schur-complement 

matrix with constraints’ are defined by

 f f A A f
Π ΠΠ Π

≡ − ( )−1

∆ ∆∆  (4.13)

and

 S A A A A≡ − ( )−Π ΠΠ Π

1

∆∆ ∆ ∆  (4.14)

respectively.

5. The DVS-Algorithms

General ly two kinds of approaches are 
distinguished: primal –these are direct approaches, 
which do not resort to Lagrange multipliers- and 
dual –indirect approaches that use Lagrange 
multipliers-. However, when DDMs are formulated 
using a setting as general as that supplied by the 
DVS-framework, such a distinction is irrelevant. 
The feature that is conspicuous for different 
options is the information that the algorithm 
seeks. Indeed, four algorithms will be obtained by 

seeking successively for the vectors: uD, 
S jSu−1

∆, 
jSu∆, and Su∆. However, in the presentation that 

follows we stick to the ‘primal vs. dual-algorithms’ 
classification.

5.1 Primal Formulations

The DVS Version of BDDC

This is a primal algorithm which seeks directly for  
uD. Pre-multiplying Eq. (4.12) by aS −1

, one gets:

 
aS aSu aS f ju− −= =1 1 0 and 

∆ ∆∆
 (5.1)

In [Farhat et al., 2000], it was shown that Eq. 
(5.1) is equivalent to Eq. (4.12). This equation is 
the DVS-version of BDDC.

The DVS-Primal Algorithm

For this algorithm, the sought-information is:
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v ≡ − −S jSu1

∆ ∆ (5.2)

Applying to aS  Eq. (5.2) it is seen that 

aSv = 0∆
. Furthermore,

 
j S f j S aS S jS u ju− − −+( ) = +( ) = =1 1 1 0v∆∆ ∆ ∆ ∆  
  (5.3)

Therefore

 j jS f aSv v= − =−1 0 and ∆ ∆∆  (5.4)

Eq. (5.4) does not define an iterative algorithm. 
In order to obtain such an algorithm, we project 
on jS −1W∆, to obtain:

 
S jS j S jS jS f aS− − −= − =1 1 1 0v v and ∆∆∆   

  (5.5)

This algorithm is referred to as the ‘DVS-primal 
algorithm’. The solution is given by

 
u a S f= +( )−v 1

∆∆ ∆  (5.6)

We observe that we could have written 
u S f= + −v 1

∆ ∆ ∆
 instead of Eq. (5.6). However, 

the application of the projection operator a  is 
important when vD and S f−1

∆
are not computed 

with exact arithmetic, as it is the case when using 
numerical methods, because when it is applied 
it replaces v + −S f1

∆ ∆
by the continuous-vector 

closest (with respect to the Euclidean distance) 
to it.

5.2 Dual Formulations

The DVS Version of FETI-DP

For this algorithm the sought-information is 
defined to be: λ ≡ − jSu∆ ∆. This algorithm can 

be easily derived from the DVS-primal formulation 
that has just been presented. We observe that 

v = −S 1λ∆ ∆
, λ = Sv∆ ∆

, in view of Eq. (5.2), and 

aλ = 0∆
 . This permits transforming Eq. (5.5) into

 S jS jS S jS jS f a− −= =1 1 0λ λ and ∆ ∆ ∆   
  (5.7)

Applying S −1
 to the first of these equations, 

it is obtained:

 
jS jS jS jS f a− −= =1 1 0λ λ and ∆ ∆ ∆

 (5.8)

As for Eq. (5.6), it becomes:

 
u aS f j= −( )−1 λ∆∆ ∆  (5.9)

The DVS-Dual Algorithm

In this algorithm, the sought-information is: µ ≡ Su∆∆
. 

Then, u S= −1µ∆ ∆
. Replacing this in Eq. (5.1), one gets:

 aS a SaS f jS− − −= =1 1 1 0µ µ and 
∆ ∆∆

  
  (5.10)

Finally, multiplying by S  the first of these 
equalities, it is obtained:

 
SaS a SaS f jS− − −= =1 1 1 0µ µ and 

∆ ∆ ∆  (5.11)

When µ
∆
is known, uD can be recovered by 

means of 

 
u aS f= +( )−1 µ∆ ∆ ∆  (5.12)

A comment similar to that made immediately 
after Eq. (5.6), goes here: we have applied the 
projection matrix a , in Eq. (5.12) because we 
are assuming that exact arithmetic generally will 
not be used.

6. Numerical Procedures Fulfilling the DDM-
Paradigm

Summarizing, the preconditioned DVS-algorithms 
with constraints are:

 aS aSu aS f ju− −= =1 1 0  and  DVS - BDDC;∆ ∆ ∆   
  (6.1)

 

jS jS jS jS f a− −= =1 1 0λ λ  and  DVS - FETI - DP

      

;

                  where u aS f j= −( )−1 λ

∆ ∆ ∆

∆∆ ∆
  

  (6.2)

 

S jS j S jS jS f aS− − −= =1 1 1 0v v  and   DVS - PRIMAL

  

;

                   where u aS f jS= −( )−1 v

∆ ∆ ∆

∆ ∆ ∆
  

  (6.3)

 
SaS a SaS aS jS f jS− − − −= =1 1 1 1 0µ µ  and     DVS - DU; AAL

                            where u aS f= +−1 µµ( )
∆ ∆ ∆

∆ ∆

  
  (6.4)
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6.1 Comment on the DVS Numerical 
Procedures

The outstanding uniformity of the formulas given 
in Eqs. (6.1) to (6.4) yields clear advantages for 
code development, especially when such codes 
are built using object-oriented programming 
techniques. Such advantages include:

I. The construction of very robust codes. This 
is an advantage of the DVS-algorithms, 
which stems from the fact the definitions of 
such algorithms exclusively depend on the 
discretized system of equations, obtained 
after discretization of the partial differential 
equations considered (referred to as the 
original problem), but which is otherwise 
independent of the problem that motivated 
it. In this manner, for example, essentially 
the same code was applied to treat 2-D and 
3-D problems; indeed, only the part defining 
the geometry had to be changed, and that 
was a very small part of it;

II. The codes may use different local solvers, 
which can be direct or iterative solvers;

III. Minimal modifications are required for 
transforming sequential codes into parallel 
ones; and

IV. Such formulas also permit developing codes 
which fulfill the DDM-paradigm; i.e., in which 
“the solution of the global problem is obtained 
by exclusively solving local problems”.

This last property makes the DVS-algorithms 
very suitable as a tool to be used in the 
construction of massively-parallelized software, 
so much needed for efficiently programming the 
most powerful parallel computers available at 
present. In the next Subsection, procedures for 
constructing codes possessing Property IV are 
explained with some detail.

All the DVS-algorithms of Eqs. (6.1) to (6.4) 
are iterative and can be implemented with 
recourse to Conjugate Gradient Method (CGM), 
when the matrix is definite and symmetric, or 
some other iterative procedure such as GMRES, 
when that is not the case. At each iteration step, 
depending on the DVS-algorithm that is applied, 
one has to compute the action on a derived-
vector of one of the following matrices: aS aS−1

, 

jS jS −1
, S jS j−1

 or SaS a−1
. Such matrices in 

turn are different permutations of the matrices 
S , S −1

, a  and j . Thus, to implement any of the 

preconditioned DVS-algorithms, one only needs 
to separately develop codes capable of computing 

the action of each one of the matrices S , S −1
, a

or j  on an arbitrary derived-vector, of W.

Therefore, next we present numerical 
procedures for computing the application of 

each one of the matrices S , S −1
, a  and j , 

which fulfill the DDM-paradigm. It will be seen 
that only a  requires exchange of information 
between derived-nodes belonging to different 
subdomains; actually, between derived-nodes 
that are descendants of the same original-node 
(the exchange of information is minimal). As 
for j I a= − , once the action of a  has been 
computed, no further exchange of information 
is required.

6.2 Application of S

From Eq. (4.13), we recall the definition of the 

matrix S A A A A≡ − ( )−Π ΠΠ Π

1

∆∆ ∆ ∆
. In order to 

evaluate the action of S  on any derived-vector, 

we need to successively evaluate the action of 

the following matrices A
Π∆

, A
ΠΠ

−1
, A

Π∆
 and A

∆∆
. 

Nothing special is required except for A
ΠΠ( )−1

. A 

procedure for evaluating the action of this matrix, 
which fulfills the DDM-paradigm is explained next.

We have

 

A
A A

A A

A A a

a

t t r

ΠΠ

ΙΙ Ι

Ι

ΙΙ Ι≡









=

 

 

         
π

π ππ

π
rr t r t rA a A a

π ππΙ
 













  
  (6.5)

Let v∈W, be an arbitrary derived-vector, and 
write

 
w A≡ ( )−ΠΠ

1
v

 (6.6)

Then, w w w W= + ∈Ι π  is characterized by

 

σππ π π π
A w A A

ΠΠ Ι ΙΙ Ι( ) = − ( )







−
v v

1
, subjected to jj w

w A A w

π
π

π π

=

= ( ) −{ }
0

1

Ι ΙΙ Ι Ι



v  
  (6.7)

and can obtained iteratively. Here,
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σππ ππ π π

A A A A A
ΠΠ Ι ΙΙ Ι( ) ≡ − ( )








−1

 (6.8)

and, with aπ
 as the projection-matrix into 

Wr π( ), j aπ π≡ −Ι .

We observe that fulfilling the DDM-paradigm 

when computing the action of A
ΙΙ( )−1

 is 
straightforward because

 A A
E

ΙΙ ΙΙ( ) = ( )− −

=
∑

1 1

1

α

α
 (6.9)

is parallelizable. Once vπ π∈ ( )Wr has been 
obtained, to derive VI one can apply:

 v vΙ ΙΙ Ι Ι
= ( ) −( )−

A w A
1

π π  (6.10)

this completes the evaluation of S .

6.3 Application of S -1

We define

 Σ Ι≡ ∪∆ (6.11)

and observe that
   
 Σ Χ Σ∪ = ∩ = ∅π π  and   (6.12)

Therefore, the matrix A−1
 can be written as:

 

A
A A

A A

A
−

− −

− −

−

=
( ) ( )
( ) ( )















=

(1

1 1

1 1

1

ΠΠ Π

Π

)) ( )
( ) ( )
















−

− −

ΣΣ Σ

Σ

A

A A

1

1 1

π

π ππ∆ ∆∆

∆

  
  (6.13)

Furthermore, S W W: →∆ ∆  fulfills

 
S A− −= ( )1 1

∆∆  (6.14)

Another property that is relevant for the 
following discussion is:

 W Wr Σ Σ( ) = ( )  (6.15)

for any v∈W, let us write

 w A≡ −1v  (6.16)

then, wπ  fulfills

 σππ π π π πA w A A w jt r( ) = − ( ) =
−

v v
Σ ΣΣ Σ

1

0, subjected to  
  (6.17)

Here, j ar r≡ −Ι , where the matrix ar
 is the 

projection operator on Wr, while

 
σππ ππ π π

A A A A At( ) ≡ − ( )−Σ ΣΣ Σ

1

 (6.18)

Furthermore, we observe that

 
A At

E

ΣΣ ΣΣ( ) = ( )− −

=
∑

1 1

1

α

α  (6.19)

In order to use Eq. (6.19) as a means of 
parallelizing the DVS-algorithms, however, the 
detailed discussion of such procedures will be 
presented separately [Herrera et al., 2013; L.M. 
de la Cruz et al., 2013]. It is necessary that the 
local matrices, A

ΣΣ

α
, be invertible. This is granted 

when invertible A  in Wr, which generally is 

achieved by taking a sufficiently large number of 
primal-nodes.

Eq. (6.17) is solved iteratively. Once vπ  has 
been obtained, we apply:

 
v vΣ ΣΣ Σ Σ

= ( ) −( )−

A w At 1

π π  (6.20)

This procedure permits obtaining A w−1
 in full; 

however, we only need A w−( )1

∆∆
. We observe 

that

 
A w A w− −( ) = ( )1 1

∆∆ ∆ ∆  (6.21)

The vector A w−1

∆
 can be obtained by the 

general procedure presented above. Thus, take 
w w W W≡ ∈∆ ∆ ⊂  and

 
v ≡ −A w1

∆  (6.22)

Therefore,

 v v v v vΙ Σ ΣΣ Σ ΣΣ Σ
+ = = −( ) = −( )− −

A A A A at t t r1 1

π π π π .
∆   

  (6.23)
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the coarse-mesh (i.e., the domain decomposition) 
used. The coarse-mesh is constituted by a family 
of non-overlapping subdomains {W1,..., WE} of W, 
the domain of definition of the boundary-value 
problem to be solved. In all the examples that 
are presented in this article, the constraints are 
fully determined by the primal-nodes and consist 
in requiring continuity of the derived-vectors at 
them.

Several codes were developed to treat the 
examples, which were written in C++ language, 
using the MPI library for the communications. In 
the computational implementations, the methods 
of solution used to treat the original-problems are: 
CGM, when such a linear system is symmetric and 
positive-definite and GMRES when the discrete 
system is non-symmetric or indefinite. Both 
are applied with a tolerance of 10-6. Each DVS-
algorithm was applied to each one of the examples 
considered, except for that referring to elasticity. 

The results obtained for Examples 1 to 5 are 
summarized in Tables 1 to 5, respectively. In 
them, the acronym dof stands for to the number of 
degrees of freedom of the original problem, but it 
should be mentioned that the procedures used to 
treat such examples are such that the nodes that 
lie on the external boundary do not contribute to 
the dof. The notation to indicate the meshes that 
were adopted is as follows: In 2D cases, we use 
(nxm)x(qxr), where (nxm) refers to the coarse-
mesh, while (qxr) to the fine-mesh; and similarly, 
in 3D cases, we use (nxmxp)x(qxrxs), where 
(nxmxp) define the coarse-mesh and (qxrxs) the 
fine-mesh. The constrains are imposed on the 
primal nodes, in all of our experiments the primal 
nodes were located at vertex in 2D and at edges 
in 3D of the subdomains, this coinciding with the 
algorithm “D” in [Toselli et al., 2005].

Each Table contains at most ten columns. The 
first four indicate respectively: 1) the meshes 
used, 2) the number of subdomains of the coarse-
mesh, 3) the dof, and 4) the number of primal-
nodes used. The figures appearing in columns 5 
to 9 correspond to the number of iterations that 
were required for convergence of each one of the 
algorithms applied. Columns 9 and 10 were only 
included in Table 3. For Example 3, in order to 
cover a wide range of values of the Peclet-number, 
the diffusion coefficient in Eq. (7.3), v, was varied 
and the tenth column in Table 3 indicates the 
different values of v for which the corresponding 
boundary-value problem was solved. Furthermore, 
the results obtained when the DVS-algorithms 
were applied were compared with those obtained 
in [Da Conceição et al., 2006] for the same 
problem, using the standard version of BDDC. 

6.4 Application of a  and j .

We use the notation

 
a a i j= ( )( )( ), ,α β  (6.24)

then [Herrera et al., 2010]:

 

a
m i

i ji j ij, , ,α β δ α β( )( ) = ( ) ∀ ∈ ( ) ∀ ∈ ( )1   and Ζ Ζ
 

  (6.25)

while j a= −Ι  therefore,

 
jw w aw w W= − ∈, for every  

 (6.26)

Therefore, only the evaluation of au  requires 
exchange of information between subdomains. 
In general, such numbers are very small; for 
example in application to single-equation problem, 
when an orthogonal grid is used, they are at most: 
4, for problems in 2D, and 8 for problems in 3D.

As for the right hand-sides of Eqs. (4.14), all 
they can be obtained by successively applying to 
f
∆
some of the operators that have already been 

discussed. Recalling Eq. (4.14), we have

 f R f A A R f
Π ΠΠ Π

≡ ( ) − ( )−� �1

∆∆∆  (6.27)

The computation of R f


 does not present 
any difficulty and the evaluation of the actions of 

A
ΠΠ( )−1

 and A
Π∆
 were already analyzed.

7. Numerical Results

Taking into account the general description of the 
DVS-framework given of Section 2, it can be seen 
that each one of the DVS-algorithms is uniquely 
defined by:

1. The original-matrix;
2. The partition of the set of original-nodes, 

which is induced by the coarse-mesh that 
is applied; and

3. The set of constraints.

In turn, the original-matrix is determined by 
the partial differential equation, or system of such 
equations, the discretization method chosen and 
the fine-mesh adopted. As explained in Section 2, 
the partition of the set of original-nodes depends 
when the fine-mesh has already been defined, on 
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7.1 Application of the DVS-algorithms to 
a Single-Equation

The applicability of the DVS-algorithms is wide, 
as previously said it can be applied to general 
equation systems. In Section 3, it was announced 
that in this paper we present examples for which 
d, the number of equations of the system, is 
one and three. In this Subsection the examples 
for which d=1 will be discussed, leaving for the 
next Subsection the treatment of static-elasticity 
models, for which d=3.

Four boundary value problems corresponding 
to a single-equation will be presented. The first 
two are symmetric and positive definite boundary-
value problems, whose definition involves the 
Laplace differential operator. The other two 
correspond to advection-diffusion transport, and 
the corresponding boundary-value problems are 
non-symmetric and indefinite. The discretization 
methods used in this Subsection are based on 
central finite differences (CFD), which are directly 
applicable to the symmetric problems. To apply 
CFD to the advection-diffusion problems it was 
necessary to stabilize the advection-diffusion 
differential-operator and to this end artificial 
diffusion was incorporated.

Despite the simplicity of the examples 
presented in this Subsection, they are very 
important because a wide range of geophysical 
systems give rise to similar problems [Herrera 
and Pinder, 2012]. The diversity of physical 
interpretations of the boundary-value problems 
here discussed is enormous. All the differential 
operators involved can be classified as advection-
diffusion operators, since Laplace operator is 
obtained from the general advection-diffusion 
differential-operator when the transport-velocity 
vanishes. Transport processes of heat and solutes 
occur in a great diversity of geophysical systems. 
However, the physical processes governed by such 
differential-equations go far beyond transport 
phenomena.

Example 1. Poisson equation in two-dimensions.

 − = ( ) ( ) ( ) ∈ −  × −u n nx ny x y2 1 1 1 12π π π2 sin sin , , , ,   =

= ∂

,  

       

n

u on

100

0 Ω

∆  
  (7.1)

We can see from Table 1, that the four algorithms 
perform very well as the number of subdomains 
and the degrees of freedom (dof) are increased. 
In this example, the DVS-DUAL algorithm presents 
the best performance, requiring only 11 iterations 
from 12x12 until 30x30 subdomains, and the same 
number of dof. All other algorithms show similar 
behavior. The numerical solution of this example 
can be seen in the Figure 5.

Example 2. Similar to Example 1, but it is 
formulated in a 3D domain.

 
− = ( ) ( ) ( ) ( ) ∈ −u n nx ny nz x y z3 1 12π π π π2 sin sin sin , , , ,   × −  × −  =

= ∂

1 1 1 1 100

0

, , ,  

       

n

u on Ω

∆

             
− = ( ) ( ) ( ) ( ) ∈ −u n nx ny nz x y z3 1 12π π π π2 sin sin sin , , , ,   × −  × −  =

= ∂

1 1 1 1 100

0

, , ,  

       

n

u on Ω

∆
    

   

− = ( ) ( ) ( ) ( ) ∈ −u n nx ny nz x y z3 1 12π π π π2 sin sin sin , , , ,   × −  × −  =

= ∂

1 1 1 1 100

0

, , ,  

       

n

u on Ω

∆

  (7.2)

In Table 2, we observe a similar performance 
of the algorithms as in the two-dimensional case. 
One more time the DVS-DUAL algorithm presents 
a little better behavior with respect all others.

Example 3. The boundary-value problem 
treated is:

 

− + = ( ) ∈  ×   ≡ ( )ν u b u x y b

u x

• 0 0 1 0 1 1 3; , , , , ,

,

   

yy
x y

x y
( ) = ( ) ∈

( ) ∈






0

1
1

2

, ,

, ,

  

  

ψ

ψ

∆ ∇

 
  (7.3)

This is an advection-diffusion transport 
problem in 2D, for which the differential operator 
is not self-adjoint.

This example is very interesting because it 
contains diffusion and advection terms, which 
are common in several complex geophysics 
phenomena. In this example, the Péclet number 
is defined as Ρe b L= / ν , where L is a 
characteristic length (in this case L = 1). We also 
define a local Péclet number as Ρe b hh = / ν . 
Using these definitions, fixing the global partition 
to h=1/512, and the varying the viscosity from 
0.01 to 0.0001, we have that the Péclet number 
varies from 316 to 316,227, and the local Péclet 
number varies from 0.617 to 617. In this case 
the linear system is non-symmetric, therefore 
we choose the GMRES method with a tolerance 
of 10-6.

In Table 3 presents the results that the DVS-
algorithms yielded and compares them with 
those obtained in [Da Conceição et al., 2006]. 
We observe that, with fixed coarse and fine 
meshes, as the viscosity coefficient is reduced, 
so that the Péclet number increases, generally 
the iterations required for convergence reduce. 
Increasing the Péclet number implies that the 
effect of the advection term enlarges, and the 
numerical solution generally becomes unstable. 
However, the performance of the discretization 
strategy based on CFD combined with stabilization 
of the numerical-scheme by means of artificial 
viscosity is resilient to Péclet-number variations. 
For comparison purposes, the examples presented 
here were chosen to be the same as those 
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presented in [Da Conceição et al., 2006], where 
the standard BDDC algorithm was applied with 
the same set of constraints; namely, the same 
set of subdomains and vertex nodes were chosen 
to be primal. As can be seen in Table 3, when 
the comparison criterion is based on the number 

Table 1. Number of iterations made by the four DVS algorithms. The primal nodes were located at the 
vertices of subdomains.

Figure 5. The numerical solution 
for the 2D case, here we use n=4.

Table 2. Number of iterations made by the four DVS algorithms. The primal nodes were located at edge.

of iterations required for convergence, the 
observed performance of the DVS-algorithms in 
these examples is slightly better than that of the 
standard BDDC algorithm. Finally, an illustration of 
the kind of numerical solution obtained is shown 
in Figure 7.

PARTITION SUBDOMAINS DOF PRIMALS DVS-BDDC DVS-FETI-DP DVS-PRIMAL DVS-DUAL

(2x2x2) X (2x2x2) 8 27 7 1 1 1 1

(3x3x3) X (3x3x3) 27 512 80 4 4 4 3

(4x4x4) X (4x4x4) 64 3,375 351 5 4 4 3

(5x5x5) X (5x5x5) 125 13,824 1,024 6 5 6 5

(6x6x6) X (6x6x6) 216 42,875 2,375 7 6 7 5

(7x7x7) X (7x7x7) 343 110,592 4,752 7 6 7 5

(8x8x8) X (8x8x8) 512 250,047 8,575 8 6 8 5

(9x9x9) X (9x9x9) 729 512,000 14,336 8 6 8 6

(10x10x10) X (10x10x10) 1,000 970,299 22,599 9 6 9 6

PARTITION SUBDOMAINS DOF PRIMALS DVS-BDDC DVS-FETI-DP DVS-PRIMAL DVS-DUAL

(2x2) X (2x2) 4 9 1 1 1 1 1
(4x4) X(4x4) 16 225 9 1 5 5 4
(6x6) X (6x6) 36 1,225 25 8 8 8 7
(8x8) X (8x8) 64 3,969 49 10 10 10 9
(10x10) X (10x10) 100 9,801 81 11 11 12 10
(12x12) X (12x12) 144 20,449 121 12 11 12 11
(14x14) X (14x14) 196 38,025 169 12 12 12 11
(16x16) X (16x16) 256 65,025 225 13 11 13 11
(18x18) X (18x18) 324 104,329 289 13 11 13 11
(20x20) X (20x20) 400 159,201 361 13 11 13 11
(22x22) X (22x22) 484 233,289 441 13 12 14 11
(24x24) X (24x24) 576 330,625 529 13 12 13 11
(26x26) X (26x26) 676 455,625 625 13 12 14 11
(28x28) X (28x28) 784 613,089 729 13 12 14 11
(30x30) X (30x30) 900 808,201 841 13 12 14 11



Geofísica internacional

July - september 2013      305

The relative-residual decay for a coarse 
mesh (16X16) and several fine meshes is 
presented in Figure 8. We consider in these 
computations b=(1,3) and v=0.00001, in such a 
way that Pe=3.16e+5. We observe that the best 
convergence is obtained when the fine mesh is 
increased, and the convergence slows when the 
dof occurring in the subdomains is reduced.

Example 4. The boundary-value problem 
treated is:

 
− + = ( ) ∈  ×   ×  u b u x y z b• 0 0 1 0 1 0 1; , , , , , ,   ==

( ) = + + ∂

( , , )

, , exp( )

1 1 1

u x y z x y z  on Ω

∆ ∇  
  (7.4)

This is an advection-diffusion transport 
problem in 3D, for which the differential operator 
is not self-adjoint.

The diffusion and advection-diffusion 
differential-operator appears in the equations 

Figure 6. ∂W. Figure 7. The numerical solution for v=0.01.

Table 3. Comparison of the DVS-algorithms against the BDDC implemented in [Mandel et al., 1996].

of the examples presented above. They are very 
important in natural and industrial phenomena. 
For example, the flow and transport of solutes 
in subsurface groundwater, the movement of 
aerosol and trace gases in the atmosphere, mixing 
of fluids in processes of crystal growth, among 
many other important applications [Tood, 1980; 
Pinder et al., 2006; Herrera et al., 1969; Herrera 
et al., 1973; Herrera et al., 1977; Herrera G.S. 
et al., 2005; L.M. de la Cruz et al., 2006]. In all 
our examples, we have shown that the DVS-
algorithms obtain the numerical solution efficiently 
on parallel machines. In this respect, we remark 
that for advection-diffusion problems the matrices 
of the discrete linear systems are non-symmetric. 

7.2 Application to a System-Equations 

We use the DVS-framework to solve a Dirichlet 
boundary value problem, where displacements 
are zero over the boundary of the elastic body 
that occupies the domain W of the physical space. 

PARTITION SUB- DOF PRIMALS DVS- DVS- DVS- DVS- BDDC v
 DOMAINS   FETI-DP BDDC PRIMAL DUAL   

(8x8) X (64x64) 64 261,121 49 12 11 11 11 12 0.01
(8x8) X (64x64) 64 261,121 49 8 8 8 7 9 0.001
(8x8) X (64x64) 64 261,121 49 7 7 7 7 9 0.0001
(8x8) X (64x64) 64 261,121 49 7 7 7 7 9 0.00001
(16x16) X (32x32) 256 261,121 255 19 17 17 18 20 0.01
(16x16) X (32x32) 256 261,121 255 14 14 13 13 17 0.001
(16x16) X (32x32) 256 261,121 255 13 13 13 13 15 0.0001
(16x16) X (32x32) 256 261,121 255 13 13 13 13 16 0.00001
(32x32) X (16x16) 1,024 261,121 961 33 29 29 31 33 0.01
(32x32) X (16x16) 1,024 261,121 961 26 25 25 25 30 0.001
(32x32) X (16x16) 1,024 261,121 961 25 25 25 25 28 0.0001
(32x32) X (16x16) 1,024 261,121 961 25 25 25 26 29 0.00001
(64x64) X (8x8) 4,096 261,121 3,969 53 52 53 59 52 0.01
(64x64) X (8x8) 4,096 261,121 3,969 46 46 46 47 53 0.001
(64x64) X (8x8) 4,096 261,121 3,969 45 47 45 47 53 0.0001
(64x64) X (8x8) 4,096 261,121 3,969 45 47 45 48 54 0.00001
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Over each one of such subdomains is solved a 
local problem by FEM, using linear functions as 
basis.  On each node a of the mesh is defined a 
vector valued function uα  with each component 
identified as uai for i=1, 2, 3.

Because our operators are symmetric and 
positive definite, we use CGM as an iterative 
procedure to solve those linear systems of 
equations that we have defined in the DVS 
framework.

The code used in the previous section, which 
was originally developed to solve a single equation 

using finite differences, was adapted for solving 
systems of equations with FEM. We added the 
corresponding functionality in order to be able 
to solve systems of equations, in this case the 
elasticity problem.

Example 5. A system of partial differential 
equations in three-dimensions has also been 
treated. This is the system of differential equations 
of static elasticity; namely:

 λ µ µ+( ) + =u u f
Ω

Ω,  in ∇∇ ∆⋅  (7.5)

Table 4. Number of iterations made by the four DVS algorithms. The primal nodes were located at edges 
of the subdomains.

Figure 8. Relative residual decay for the local mesh (16X16).

PARTITION SUBDOMAINS DOF PRIMALS DVS-BDDC DVS-FETI-DP DVS-PRIMAL DVS-DUAL

(2x2x2) X (2x2x2) 8 27 7 4 3 3 4
(3x3x3) X (3x3x3) 27 512 80 7 5 6 5
(4x4x4) X (4x4x4) 64 3,375 351 9 6 7 6
(5x5x5) X (5x5x5) 125 13,824 1,024 10 7 8 7
(6x6x6) X (6x6x6) 216 42,875 2,375 11 7 9 8
(7x7x7) X (7x7x7) 343 110,592 4,752 12 8 10 8
(8x8x8) X (8x8x8) 512 250,047 8,575 13 8 11 8
(9x9x9) X (9x9x9) 729 512,000 14,336 14 8 11 9
(10x10x10) X (10x10x10) 1,000 970,299 22,599 15 9 12 9
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which was subject to the following Dirichlet 
boundary conditions:

 u = ∂0,  on Ω  (7.6)

The domain of study for our numerical 
experiments is a homogeneous isotropic linearly 
elastic unitary cube. In all of our experiments 
the primal nodes were located at edges of the 
subdomains, which is enough for At

 not being 
singular.

We consider constant coefficients l and m equal 
to one. With these conditions we have a problem 
that has analytical solution, and is written as 
follows:

 u = (sinpx sinpy sinpz, sinpx sinpy sinpz,   
               sinpx sinpy sinpz)  
  (7.7)

The Tables 5, summarizes the numerical results 
obtained using the DVS methods with a tolerance 
of 10-7.

8. Conclusions

Mathematical models of many geophysical systems 
lead to a great variety of partial differential 
equations (PDEs) whose solution methods are 
based on the computational processing of large-
scale algebraic systems [Herrera and Pinder, 
2012]. Parallel computing is outstanding among 
the new computational tools and, in order to 
effectively use the most advanced computers 
available today, massively parallel software is 
required. Domain decomposition methods (DDMs) 
have been developed precisely for effectively 
treating PDEs in parallel [DDM Organization, 
2012]. What domain decomposition methods 
ideally intend to do has been summarized in 
this paper in the “DDM-paradigm”: to develop 
algorithms that ‘obtain the global solution by 
exclusively solving local problems’.

In conclusion, in this paper:

1. We have presented a non-overlapping 
discretization method (the DVS-discretization) 

-in the sense that it uses a system of nodes such 
that each one of them belongs to one and only 
one subdomain of the coarse-mesh- applicable 
to a wide class of well-posed boundary problems 
associated with elliptic systems of equations. 
In particular, the differential operators may be 
symmetric, non-symmetric or indefinite (non-
positive-definite);

2. Four algorithms –the DVS-algorithms 
[Herrera et al., 2011]-, which were derived using 
the DVS-discretization and achieve the DDM-
paradigm have been explained. Two of them 
are the result of using the BDDC and FETI-DP 
algorithms after applying DVS-discretization to 
the boundary value problem considered. The other 
two are obtained when two new algorithms, which 
had not been reported previously in the literature, 
were used instead;

3. Numerical procedures that permit achieving 
the DDM-paradigm with each one of the DVS-
algorithms have been also presented;

4. Codes were developed and applied to several 
boundary values problems that occur in the 
modeling of certain geophysical phenomena, such 
as transport of solutes by both, free-fluids and 
fluids in a porous medium. We also present results 
for a static elasticity problem, which thereby 
illustrates the application of the algorithms to 
systems of differential equations; and

5. Besides their attractive parallelization 
properties, in the numerical examples the DVS-
algorithms exhibited significantly improved 
numerical performance with respect to standard 
versions of BDDC and FETI-DP. 

Acknowledgement

The authors express their gratitude to Alberto 
Rosas-Medina e Iván Contreras-Trejo, both PhD 
students of the Earth-Sciences Graduate Program 
at UNAM, for having permitted us to reproduce 
some numerical results of their research work.

Luis M. de la Cruz wishes to acknowledge the 
support from the project PAPIIT-UNAM TB100112 
to develop this research.

Table 5. Results for DVS Algorithms.

PARTITION SUBDOMAINS DOF PRIMALS DVS-BDDC DVS-FETIDP DVS-PRIMAL DVS-DUAL

(5x5x5) X (5x5x5) 125 41,472 1,024 8 7 9 9

(6x6x6) X (6x6x6) 216 128,625 2,375 8 8 10 10

(7x7x7) X (7x7x7) 343 331,776 4,752 8 8 11 11

(8x8x8) X (8x8x8) 512 750,141 8,575 8 8 12 12
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