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Dark Matter: A Result of nonadditive gravitational forces
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Resumen
 
Basándonos en los datos experimentales en 
fluidos encontramos, en referencias Robles-
Domínguez et al. (2007) y Robles-Gutiérrez et 
al. (2010), que en el Campo Electromagnético 
existen realmente nuevas fuerzas no-aditivas 
entre 3 o más moléculas; postulamos que 
también existen nuevas fuerzas no-aditivas en el 
Campo Gravitacional y al agregarlas a la Ley de 
Gravitación Universal de Newton éstas dan lugar 
a la Masa Obscura.

Palabras clave: materia oscura, fuerzas no 
aditivas.

Abstract
 
Experimental data in fluids suggest that 
nonadditive electromagnetic forces between 3 
or more molecules account for the existence of 
critical points, triple states and phase transitions 
(Robles-Domínguez et al., 2007; Robles-Gutiérrez 
et al., 2010).  Similar nonadditive forces between 
3 or more molecules in the gravitational field 
incorporated into Newton’s universal gravitational 
law may also explain the existence of dark matter.
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Introduction

Zwicky (1933) interpreted some observations of 
the Coma Cumulus and concluded that its gra-
vitational mass is several times the luminous 
mass. He called the difference the dark mass. This 
work is regarded as the starting point of the Dark 
Matter problem. Sciama (1993) discussed several 
theories intended to explain this interesting 
phenomenon, including the existence of new 
particles which do not emit electromagnetic 
radiation but contribute to the gravitational mass, 
but without experimental confirmation. Other 
solutions involve a mathematical modification of 
Newton’s laws but insufficient physical reasons in 
support of such modification have been presented.

Robles-Domínguez (2007) and Robles-
Gutiérrez (2010) proposed new intermolecular 
forces in field theory that arise from interactions 
between three and more molecules. We 
showed that such interactions have not been 
previously considered, and that such nonadditive 
electromagnetic forces are needed in order to 
account for the experimental data on critical 
points in fluids, triple states, and liquid-solid 
phase transitions. We call these forces nonadditive 
because their mathematical form differs from that 
of binary, or additive, forces. Nonadditive forces 
are important within relatively short distances. 
In gases the mean intermolecular distances are 
large and nonadditive forces are not significant 
as compared with additive forces. In liquids and 
solids, however, the density is large and the 
mean intermolecular distance is very short. In 
this case the nonadditive forces may overcome 
the additive forces. We show that the existence 
of liquid and solid phases is experimental proof 
for the existence of nonadditive forces.

In Section 2 of this paper we provide a short 
derivation of the equation of state in fluids from 
statistical mechanics as provided in greater 
detail elsewhere (Robles-Domínguez, 2007; 
Robles-Gutiérrez, 2010). This derivation includes 
nonadditive forces. In Section 3 we apply the 
equivalent equation from section 2 to the 
gravitational field using data from Begeman 
(1987) on galaxy NGC 3198, and we show how 
dark mass will arise.

2. Nonadditive forces in fluids

Molecules in a fluid interact mainly through the 
electromagnetic field: the gravitational, weak and 
strong nuclear fields are irrelevant. We consider a 
monocomponent fluid that contains N molecules 
at an absolute temperature T, inside a volume V, 
which is described in Statistical Mechanics by the 
canonical partition function Z:

 Z T V N E d( , , ) exp( )= −∫ β Γ
Γ , (1)

where β =
1
k TB

, kB  is Boltzmann’s cons-tant, E is 

the Energy of the system, Γ Γ= =( )i ir p i N, , ...1

is the phase space of the system, ir  and ip  are 

the vector position and momentum of the ith 
particle, N is the total number of molecules, V is 
the volume of the system, and T is the absolute 
temperature. We may write

 E K= + Φ  (2)

where K is the total kinetic energy of the system 
and F is the total potential energy; and

 
d dr dp

i

N

i iΓ =
=
π

1  (3)

as we are considering a single-component fluid.

Integration of (1) over the momenta is well 
known (Reichl, 1998) and the result is

 

 Z(T, V, N)=(N!λ3N)-1 ∫... ∫ dr1 ... drN exp(−βΦ) 
  (4)

where λ π=
−

h mk TB( )2
1
2  and h is Planck’s 

Constant.

2.1 van der Waals equation of state

Equation (4) considers only the positions of 
all N molecules in the system. Ornstein and van 
Kampen (in Reichl, 1998), consider than the 
molecules interact with the next binary additive 
potential energy
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where hc stands for “hard core”. The subscript 2 
denotes binary additive interaction; ir  and jr  are 
position of molecules i and j respectively, and it is 
assumed that the molecules have a hard core of 
radius a and a smooth attractive binary-additive 
interaction F2 with a very long range. Ornstein 
and van Kampen assume that the density is high 
enough and the range of the attractive interaction 
is wide enough so that many molecules will 
interact simultaneously. Volume V may be divided 
in cells of volume D large enough to contain many 
molecules but small enough so that the attraction 
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between molecules within a given cell is constant 
regardless of separation in the cell. If the number 
of molecules in cell a is Na we may write, from 
(4) and (5):

Z T V N N N
N

NN

N
( , , ) ( ¡ ) ' !

!
exp= ( ) 
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where

 
γ δα α

αN N N( ) = −( )∆
 (7)

and d is the volume of the hard core of one 
molecule.

The most probable distribution of molecules 
in V at thermodynamic equilibrium is the uniform 
distribution

 
N N

Vα =
 (8)

for all a, and defining

 

W0 Φ=∑ α α
α

, '
'  (9)

for all a.

We use mean field theory and the definition of 
Helmholtz energy A:

 A T V N Z T V N, , ln , ,( ) = − ( )1
β  . (10)

The thermodynamics of the systems is deduced 
from Helmholtz energy A, ie,: fluids. Pressure p 
is defined as

 p A
V T N

= −
∂
∂





 ,

 . (11)

Using equations (5) through (11) we obtain 
van der Waals equation of state

 
p

N
V
N
V

N
V

W=
−




− 





β δ1

1
2

2

0
 . (12)

Let us express this equation in terms of fluid 
density:

 
ρ =

mN
V  (13)

where m is the mass of one molecule; and we find

 
p

m
a=

−( ) +
ρ

β ρδ
ρ2

 (14)

where

 a W
m

= − 0
22  . (15)

In equation (14) the first term of the right-hand 
side contains the hard core contribution and the 
second contains all binary-additive interactions. 
This equation can approximately represent the 
pressure of the gaseous phase but cannot descri-
be the pressures of the liquid and solid phases in 
the fluid (Reichl, 1998).

In the van der Waals equation of state (14), 
we note three important properties:

1. The second term on the right-hand side 
contains all binary-additive intermolecular 
interactions;

2. The two terms on the right-hand side are 
linearly independent in a functional-analysis 
sense; and

3. This equation cannot reproduce the 
experimental data in fluids.

Fourier theory (Kolmogorov and Fomin, 1961) 
may be used to describe a function as a Fourier 
series. Properties 2 and 3 above mean that the 
van der Waals equation contains only two terms 
of the infinite series which we need to reproduce 
the experimental data of fluids. Property 1 means 
that the last right-hand terms must be expressed 
in terms of new forces. Thus in terms of linearly 
independent nonadditive forces, the third term will 
contain all third-order nonadditive interactions, 
the fourth term all fourth-order nonadditive 
interactions and so on. The total pressure may 
be written as follows:

 p p p p phc= + + + +2 3 4 ...  , (16)

where phc contains the hard core interactions, p2 
the total scalar additive binary potential energy, p3 
the total scalar third-order or triadic nonadditive 
potential energy, p4 the total scalar fourth-order 

D

D

D
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(or tetradic) nonadditive potential energy, and 
so on. Thus

 
p

mhc = −( )
ρ

β ρδ  (17)

 p a a2
2

2
2= =ρ ρ  (18)

 p a3 3
3= ρ  (19)

 p a4 4
4= ρ  (20)

Equations (17), (18), etc. constitute an infinite 
Fourier series of independent linear functions.

The hard core cannot allow the fluid volume 
to vanish and the density cannot be infinite: thus 
the Fourier series can converge.

Nonadditive forces in the gravitational field

In Robles-Gutiérrez et al. (2010), we postulated 
the existence of nonadditive gravitational forces 
in the gravitational field. Before we extend the 
theory to galaxies let us describe the astronomical 
observations of galaxy NGC 3198 (Begeman, 1987). 
Figure 1 shows Begeman’s graph of rotational 
velocity vs. radius in minutes of arc between the 
vector from Earth to the object and the vector from 
Earth to the center of NGC 3198. The distance 
from Earth to NGC 3198 is 9.2 Mpc. The maximum 
distances of masses from the center of the galaxy 
should provide information on the total mass of 
the galaxy.

The galaxy may be likened to a gas inside a jar. 
The jar exerts a pressure on the gas. In a state 
of equilibrium the pressure should be constant 
everywhere in the gas. In the case of a galaxy 

the peripherical stars plus gas are confined to 
a galactic volume by a pressure called galactic 
pressure, which equals gravity per unit area. It is 
equal to the centripetal force per unit area, and it 
is not identical at all points of the galaxy.

The centripetal force on an object l is equal 
to the gravitational force on this object, which is 
the sum of all gravitational interactions, additive 
and nonadditive:

 F F Fi centrip l grav lj
j

= =
=

∞

∑
2

 , (21)

where subscript l refers to the peripheral stars or 
gas clouds observed by Begeman in NGC 3198 
galaxy and subscript j refers to the forces. Let j = 
2 refer to binary additive forces, j = 3 to ternary 
nonadditive forces and so on. We omit the hard-
core term because ml is far away from the galaxy.

If we divide (21) by the unit of area we obtain 
the equation of the pressures, as in a fluid:

 p p pl centrip l grav lj
j

= =
=

∞

∑
2

. (22)

But a similar expression should obtain for the 
centripetal and gravitational accelerations, after 
dividing equation (21) by ml which is necessary 
because the mass ml is unknown. Thus the 
centripetal acceleration equals the gravitational 
acceleration gl generated by the total galaxy mass 
including the dark mass, over ml, which is the 
sum of all binary-additive contributions g12 plus 
all third-order nonadditive accelerations g13, and 
so on, over ml:

 
a g gl centrip l grav lj

j
= =

=

∞

∑
2  . (23)

Here the first term of the summand is Newton’s 
acceleration of gravity:

 a g G
M
r

g gl centrip l grav
l

l
l l= = + + +lum

2 3 4  ,

  (24)

Written out as
 

a g GV
r

M
V

g g GV
rl centrip l grav

l

l

l

l
l l

l

l

= = + + + =2 3 4 2
lum

 ρρl l lg g+ + +3 4 

 
  (25)

By analogy with the case of a fluid we may 
write gl in terms of an infinite density series:Figure 1. Observations of NGC 3198 (From Begeman, 1987).
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a GV
r

g g B Bl centrip
l

l
l l l l l l l= + + + = + +2 3 4 2 3

2ρ ρ ρ 

   (26)

where the density rl equals the luminous mass 
Ml lum within a sphere of radius rl from the center of 
the galaxy to ml, over the volume of the sphere. 
Equation (26) may be written

a GV
r

g g G
r
M Bl centrip

l

l
l l l

l
l lum l l= + + + = + +2 3 4 2 3

2ρ ρ  == + +
G
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2


 
  (27)

or

 

a G
r
M B

V
M G

r
M

B

l centrip
l

l lum
l

l
l lum

l
l lum= + + = +2

3
2

2
2 1

ll

l
l lum

l
l lum

l
l lum

V
M

G
r
M

G
r

M

3
2

2

2

2 1

+



















=

=



++ +


















B r M
GV

l l l lum

l

3
2

2 

   (28)

If

 

B r M
GV

l l l lum

l

3
2

2 0+ >

 (29)

this term will contribute to dark matter.

The series of equation (28) converges because 
the density is finite. We may consider only the 
first and second terms of the series and neglect 
the small higher terms. Thus

 a V
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  (30)

from which

 

M
M

B r M
GV

dark

l lum

l l l lum

l

= 3
2

2
 (31)

and the terms inside the square brackets are the 
real mass.

Begeman (1987) obtained the following values 
of rl=30 kcp, Vc=150 km/s for this galaxy:

 

M
M

dark

l lum

= 2 99.
 (32)

From Equations (30), (31) and (32) we find

 M kgl lum = 78 236 1039. * , (33)

and by introducing this value in (31) we obtain, 
for l=30 kcp,

 
B m s kgl3

30 7 2 2 1
9 89036 10 0= ( ) >− −
. *

 (34)

As this value is positive, we find that

 M Mreal l lum>  . (35)

This result proves that the dark mass must be 
due to the presence of nonadditive forces.

Conclusions

Whenever nonadditive interactions, that are multi-
body terms, are taken into account, Newton’s law 
of universal gravitation is sufficient to explain the 
astronomical observations of a “dark mass”. The 
example of Galaxy NGC 3198 (where substantial 
amounts of dark matter had been detected) 
shows that nonadditive terms in Equation (25), a 
generalization of Newton’s law of gravitation, can 
provide a satisfying explanation of the difference 
between luminous and gravitational matter.
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