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Resumen

El presente trabajo muestra la propagación de 
ondas de interfaz de Scholte en la frontera de un 
medio acústico (fluido) en contacto con un medio 
sólido elástico, para una gama amplia de mate-
riales sólidos. Se ha demostrado que mediante 
un análisis de ondas difractadas en un fluido, 
es posible inferir las propiedades mecánicas del 
medio sólido elástico, específicamente, sus velo-
cidades de propagación. Con este fin, el campo 
difractado de presiones y desplazamientos, de-
bido a una onda de presión inicial en el fluido, 
son expresados empleando representaciones 
integrales de frontera, las cuales satisfacen la 
ecuación de movimiento. La fuente en el fluido 
es representada por una función de Hankel de 
segunda especie y orden cero. La solución a 
este problema de propagación de onda es obteni-
da por medio del Método Indirecto de Elementos 
Frontera, el cual es equivalente al bien conocido 
teorema de representación de Somigliana. La va-
lidación de los resultados se lleva a cabo usando 
el Método del Número de Onda Discreto y el Mé-
todo de Elementos Espectrales. Primeramente, 
presentamos espectros de presiones que ilustran 
el comportamiento del fluido para cada material 
sólido considerado, después, mediante la apli-
cación de la Transformada Rápida de Fourier se 
presentan resultados en el dominio del tiempo, 
mediante simulaciones numéricas que muestran 
la emergencia de las ondas de Scholte.

Palabras clave: propagación de ondas, interfa-
ses fluidas-sólidas, ondas de Scholte, elementos 
frontera, ondas de interfaz, Funciones de Green.

Abstract

The present work shows the propagation of 
Scholte interface waves at the boundary of a fluid 
in contact with an elastic solid, for a broad range 
of solid materials. It has been demonstrated that 
by an analysis of diffracted waves in a fluid it is 
possible to infer the mechanical properties of the 
elastic solid medium, specifically, its propagation 
velocities. For this purpose, the diffracted wave 
field of pressures and displacements, due to an 
initial wave of pressure in the fluid, are expressed 
using boundary integral representations, which 
satisfy the equation of motion. The source in 
the fluid is represented by a Hankel’s function 
of second kind and zero order. The solution to 
this wave propagation problem is obtained by 
means of the Indirect Boundary Element Method, 
which is equivalent to the well-known Somigliana 
representation theorem. The validation of the 
results is carried out by using the Discrete 
Wave Number Method and the Spectral Element 
Method. Firstly, we show spectra of pressures 
that illustrate the behavior of the fluid for each 
solid material considered, then, we apply the 
Fast Fourier Transform to show results in time 
domain. Snapshots to exemplify the emergence 
of Scholte’s waves are also included.

Key words: wave propagation, fluid-solid inter-
face, Scholte’s waves, boundary elements, in-
terface waves. Green´s functions.
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Introduction

The study of waves that propagate in the 
interface of a fluid medium and an elastic solid 
has its origins in the pioneering work of J. G. 
Scholte (1942 and 1947), and therefore, this 
kind of waves are known as Scholte waves. 
This interface wave is one of the three basic 
types of interface waves presented in isotropic 
media; sharing this classification with Rayleigh 
and Stoneley waves, for interfaces between 
vacuum-solid and solid-solid media, respectively 
(Rayleigh, 1885; Stoneley, 1924).

For interface waves, the concentrated energy is 
located at the interface and decreases exponentially 
with depth. However, energy decrement rate versus 
distance is less than for compressional and shear 
waves (Meegan et al., 1999). This concentration of 
energy has enormous implications in some areas 
of physics and engineering. For example, Rayleigh 
waves are extensively studied in the earthquake 
engineering and seismology due to their catastrophic 
effects during strong seismic motions. 

Some other applications for particular cases 
have been reported by Biot (1952), Ewing et al. 
(1957), Yoshida (1978a, 1978b), they focused 
mainly on the understanding of the interface 
waves at the ocean bottom. Specific features 
about wave propagation at interfaces, such as 
attenuation, layered medium behavior, porosity, 
etc., have been studied by Mayes et al. (1986), 
Nayfeh et al. (1988), Eriksson et al. (1995), 
Wang et al. (2004), and Gurevich et al. (2006).

In the field of numerical methods for studying 
this phenomenon, various formulations designed 
to model complex interface configurations and 
more realistic cases have been developed. Some 
of these include: Finite Element (Zienkiewicz et 
al. 1978), Finite Difference (van Vossen et al., 
2002; Thomas et al. 2000), Boundary Element 
(Godinho et al. 2001; António et al., 2005; 
Rodríguez-Castellanos et al., 2010), Spectral and 
pseudo Spectral Element Methods (Komatitsch 
and Barnes, 2000; Carcione and Helle, 2004; 
and Carcione et al., 2005), among others.

In this paper we extend the use of the 
Indirect Boundary Element Method (IBEM) to 
study interfaces of water in contact with a wide 
range of solid materials, frequently used in 
engineering. Here, the emergence of interface 
waves is pointed out. This numerical technique is 
based on an integral representation of the stress, 
pressure and displacement wave fields, which 
can be considered as a numerical implementation 
of the Huygens’s principle, which is equivalent, 
mathematically speaking, to the Somigliana’s 
representation theorem.

The results are expressed in both time and 
frequency domains. The materials considered 
in the analysis, characterized by their wave 
velocities and densities, represent a wide range 
of materials used in engineering. In the following, 
the main equations used to develop the IBEM 
and the Discrete Wave Number Method (DWN) 
are summarized. Results from both formulations 
match satisfactorily.

Brief description of the indirect boundary 
element method

Equation of motion and incident fields of 
pressures and displacements

If we assume that the equation that governs the 
wave propagation in the fluid is given by the well-
known equation of motion, then: 
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Where: rF=density of the fluid. If we consider 
that stresses in the fluid are related to the 
pressure generated by the incident pulse, 
subsequently, one can express this last equation 
as:
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Therefore, the displacement field in the fluid 
can be represented by its well-known form:
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The incident pulse at the fluid, as shown in 
Fig. 1a (inset), can be given as:

p C H r c
F F0

0
2x( )= ( ) ( )( )ω ω

where p0F(x)=incident pulse at the fluid, 
x={ }x x1 3, ,C(w)=scale factor for the incident 
pulse, H0

2( ) •( )=Hankel function of second 
kind and zero order, w=circular frequency, 
cF=compressional wave velocity in the fluid and 
r=r(x) is the distance from the receiver to the 
source.

Integral representation for diffracted wave fields

To represent the diffracted wave fields (for 
pressures and displacements) in the fluid due to 
the incident pulse impacting the solid medium 
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(elastic solid wall), we suggest the following 
integral representations:
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Ψ •( )=force density for the fluid, GF •( )= 
Green function for the fluid, and c1 defines the 
region orientation and can assume a value of 
-0.5, 0 or 0.5 (see explanation for c2, given 
below).

The whole pressure and displacement fields in 
the fluid, besides, free and diffracted one, can be 
expressed, respectively, by: 

 p p pF dF F
x x x( )= ( )+ ( )0 ,  (8)
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Since the source is only applied to the fluid, 
it is expected that, in the solid, only diffracted 
waves will appear and they can be established 
as follows.

Consider a domain V, bounded by the surface 
S. If this domain is occupied by an elastic 
material, the displacement field under harmonic 
excitation can be written, neglecting body forces, 
by means of the single-layer boundary integral 
equation as follows:
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where ui(x)=i-th component of the displacement 
at point x, Gij(x;ξ ) = Green’s function, which is 
the displacement produced in the direction i at x  
due to the application of a unit force in direction 
j at point ξ , f is the force density in direction j 
at point ξ  (the subscripts i, j are restricted to be 
1 or 3 and the summation convention is applied, 
i.e. a repeated subscript implies summation over 
its range, 1 and 3 in this case). This integral 
representation can be obtained from Somigliana’s 
identity (Sánchez-Sesma, 1991).

This integral representation allows the 
calculation of stresses and tractions by means 
of the direct application of Hooke’s law and 
Cauchy’s equation, respectively, except at 
boundary singularities, that is, when x is equal 
to ξ  on surface S. From a limiting process based 
on equilibrium considerations around an internal 
neighborhood of the boundary, it is possible to 
write, for x on S,

t c T dSi
d
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(11)

where ti(x) is the i-th component of traction, 
c2=0.5 if x tends to the boundary S “from inside” 
the region, c2=-0.5 if x tends S “from outside” the 
region, or c2=0 if x is not at S. Tij(x;ξ ) is the traction 
Green’s function, that is to say, the traction in 
the direction i at a point x, associated to the unit 
vector ni(x), due to the application of a unit force 
in the direction j at ξ  on S. The two-dimensional 
Green’s functions for an unbounded space can be 
found in (Rodríguez-Castellanos et al., 2007; and 
Ávila-Carrera et al., 2009).

Boundary Conditions

In the IBEM is convenient to divide the domain 
into two regions (S for the solid and F for the 
fluid), in which proper boundary conditions that 
represent the problem under consideration have 
to be established. These boundary conditions for 
fluid-solid interfaces can be expressed as:
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Writing the boundary condition (12) as 
function of the diffracted field (10) for the solid 
and incident (3) and diffracted (6) fields for the 
fluid, we obtain:
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The condition traction free (13) can be 
expressed from the integral form (11), obtaining,
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The boundary condition (14), can be written by 
means of (11), (4) and (5), and then we have
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Discretization scheme

In this section, we show the discretization of the 
Eqs. (15) to (17). Assuming that force densities 
f(x) and Y(x) should be constant on each ele-
ment that forms the surfaces of regions S and F, 
respectively, and Gaussian integration (or ana-
lytical integration, where the Green’s function 
is singular) is performed, then, Eq. (15) can be 
written as,
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Eq. (16) leads to:
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Eq. (17) can be expressed as:
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Eqs. (18), (21) and (23) form a system of 
integral equations that has to be solved and, 
therefore, force densities f(x) and Y(x) can be 
found. Once the force densities have been ob-
tained, the whole displacement and pressure 
fields in the fluid can be found by means of Eqs. 
(8) and (9). For the solid, the entire traction and 
displacement fields can be obtained by means of 
Eqs. (10) and (11).

Brief description of the formulation by 
means of the discrete wave number

The discrete wavenumber method is one of the 
techniques to simulate earthquake ground mo-
tions. The seismic wave radiated from a source 
is expressed as a wavenumber integration 
(Bouchon and Aki, 1977). The main idea of the 
method is to represent a source as a superposi-
tion of homogenous plane waves propagating in 
discrete angles. As long as the medium has no 
inelastic damping, the denominator of the inte-
grand becomes zero for a particular wavenum-
ber and, consequently, the numerical integration 
becomes impossible. To solve this problem, a 
method to incorporate a complex frequency was 
proposed as early as the proposal of the discrete 
wavenumber method itself (Bouchon and Aki, 
1977).

The incident pulse in the fluid, as shown in 
Fig. 1a (inset), can be given as:

(25)
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If we assume that the whole pressure field in 
the fluid is represented as the sum of free field 
and diffracted one, then, it can be expressed, 
respectively, by:



Geofísica internacional

January - march 2013      25

Table 1. Material properties used as validation 
and numerical examples.

Model     cp     cs p
  (m s-1) (m s-1) (kg m-3)
Water-Pitch 2443 1000 1270
Water-Granite 6100 2977 2700
Water-Iron 5837 3247 7874
Water-Limestone 4810 2195 2500
Water-Sandstone 2670 1090 2200
Water-Plaster 3372 1872 1908
of Paris
Water, for  1501    - 1000
all models

Compressional wave velocity, cp, shear wave 
velocity, cs, and mass density, p, were included 
in Table 1. These materials were previously 
considered by Borejko (Borejko, 2006), who 
developed theoretical and experimental 
techniques to show the emergence of interface 
waves in several materials like those from Table 
1. His results showed good agreement between 
theoretical and experimental results.

Figure 1 shows the pressure spectra for the six 
models analyzed for which the wave propagation 
velocities and densities are displayed in Table 1. 
For all cases, the initial pressure (source) was 
generated at a distance of 0.05 m (see inset 
in Fig.1a) from the elastic solid boundary. The 
receiver is placed at a horizontal distance of 1.0 
m from the source (as shown in the detail of Fig. 
1a). The frequency analysis is done considering 
a frequency increment of 150 Hz and reaching a 
maximum of 19200 Hz. The discretized surface 
is located between x1=-3.5 m and x1=3.5 m, 
within this interval spurious waves inside the 
zone of interest were eliminated. Moreover, 6 
boundary elements per S-wave wavelength were 
considered.

In this figure, the results obtained by the 
IBEM (dotted line) and by DWN (continuous line) 
are displayed. There is an excellent agreement 
between the two methods for the frequency range 
studied. It can also be seen that for the models 
of Water-Pitch and Water-Sandstone, resonant 
effects are slightly manifested. However, in 
both cases, from the frequency of 6000 Hz, the 
curves describe a performance almost identical 
and become asymptotic. This behavior can be 
attributed due to the fact that their shear wave 
velocities are lesser than the compressional 
wave velocity for the fluid.

(26)
and

(27)

For the solid, we assume that 
potential of displacement has the form  

 and ,
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sional and shear wave velocities, respectively. 

The displacement field for the solid can be ex-

pressed as 
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The stress field is obtained by the well-known 
equation:
	 sij(x)=lekkdij+2meij (28)

where sij(x)=stress tensor, l and m are the Lamé’s 
constants, eij=strain tensor and dij Kronecker’s 
delta.

The boundary conditions to be applied are 
represented by Eqs. (12) to (14). Once the 
boundary conditions have been applied, the 
unknown coefficients An, Bn and Cn are obtained 
and the whole pressure field in the fluid is finally 
determined by means of the Eq. (26).

Testing and numerical examples

To test the accuracy of our formulation, we 
selected several interface cases considering 
a broad range of properties (soft to hard) of 
solid materials, characterized by their wave 
propagation velocities and densities. The material 
properties that were used in the calculations are 
shown in Table 1, where six cases are presented.
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For all other models (Figures 1b, c, d, f) 
the spectrum of pressure shows a simple and 
monotonous behavior, describing oscillations of 
small-scale in every case. One can notice that for 
the Figure 1a and e the pressures registered are 
almost negligible, after 6000 Hz.

Figures 2a and b show the time response for 
the complete 2D Water-Pitch interface model. 
For this analysis, a grid of 51 x 51 receivers, 
spaced using a distance increment of 0.04 m, is 
used. Column a) shows the results of pressure 
in the fluid and displacements in the x1 direction 
for the solid, while, column b) shows pressures 
in the fluid and displacements in the x3 direction 
for the solid. This phenomenon is shown for 
three different times.

For the time t=0.000911 s, the initial wave 
of pressure has hit the solid boundary and a 
reflected wave in the fluid and diffracted waves in 
the solid can be seen, generating the emergence 
of P and S wave fronts. For the time t=0.001432 

s, the above mentioned waves go away from the 
source while the presence of interface waves 
is clearly evident to this instant. These are the 
Scholte’s waves and are highlighted using circles 
in Figures 2a and b. For the time t=0.001953 s, 
the propagation of interface waves is very visible 
and shows a delay with respect to the P and S 
wave fronts in the solid. Scholte’s waves for this 
case propagates with a velocity of 823.5m s-1.

Figures 2c includes synthetic seismograms of 
pressures (top figure), x1 horizontal displacement 
(middle figure) and x3 vertical displacement 
(bottom figure) for seven receivers located near 
to the interface. The first receiver is located at 
a horizontal distance of 0.50 m from the source 
and the others are separated every 0.25 m.

In the seismogram of pressures, the last 
wave front corresponds to the Scholte’s waves, 
which clearly carry the most of interface energy, 
as expected. The same effect can be seen in the 
case of displacement seismograms. It is relevant 

Figure 1. Pressure spectra for six interface materials shown in Table 1. The receiver is located at a=0.05 m and 
b=1.00 m. Results obtained by IBEM are plotted using dotted lines, while those obtained by means of DWN are drawn 

with continuous lines.
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Figure 2. Snapshots by IBEM for the complete 2D Water-Pitch interface model. A grid of 51 x 51 receivers, spaced 
every 0.04 m, is used. Column a) shows the results of pressures in the fluid and displacements in the x1 direction for 
the solid, while, column b) shows pressures in the fluid and displacements in the x3 direction for the solid. Column c) 
displays synthetic seismograms of pressures (top figure) and displacements x1 and x3 directions respectively (middle 

and bottom figures).

Figure 3. Pressure synthetic seismograms registered 
by the receiver located as shown in Fig. 1a (inset) for 
materials detailed in Table 1. Arrival of P and Scholte’s 
wave fronts are also highlighted. Stars indicate arrival 
times for Scholte’s wave fronts obtained by Strick and 

Ginzbarg, and Strick et al. (1956).
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to note that for the x3 direction displacement 
amplitudes are larger than those for the x1 
direction. This can also be seen in Figures 2a and 
b (middle and bottom).

Figure 3 displays results in time domain for the 
materials shown in Table 1. The material tagged 
with “ * “ was added for comparison with regard 
to the results published by Strick and Ginzbarg, 
and Strick et al. (Strick and Ginzbarg, 1956; 
Strick et al, 1956). The properties for this material 
(Sandstone* in Fig. 3) are cp=3740 m s-1, cs=1645 
m s-1 and density of 2400 kg m-3. The location of 
the receiver is illustrated in Figure 1a, for all the 
cases. Synthetic seismograms in this figure were 
placed considering the shear wave velocity of 
each material. The highest speed corresponds to 
Steel (cs= 3247 m s-1) and the lowest to Pitch (cs= 
1000 m s-1). The time is normalized with regard 
to the compressional wave velocity cp=1501 m s-1 
(velocity of water) and r1, which is the distance 
from the image source and the receiver. In this 
figure, pressures registered by the receiver (for 
each material) are plotted.

The pressure waves diffracted by rigid 
interfaces (as Granite and Steel) show higher 
values, while, those diffracted by less rigid 
interfaces, like Sandstone and Pitch, show lower 
values. Additionally, for these last two cases, the 
wave fronts tend to be less noticeable. Arrivals of 
P and Scholte’s wave fronts are indicated using 
dashed-dot lines.

For comparative purposes, Scholte’s wave 
front obtained by Strick and Ginzbarg, and Strick 
et al. (1956) is also included. This is represented 
with stars in the figure, good agreement 
between the results is observed. It is clear that 
the Scholte’s wave is evident from the Limestone 
and manifests a significant delay for the Pitch.

Finally, a sinusoidal interface is considered. 
Figure 4a shows the model used to deal with this 
geometry. Material properties for this case are: for 
the elastic medium cp=3400 ms-1, cs=1963 ms-1 and 
r=2500 ms-1, while for the acoustic one cp=1500 
ms-1 and r=1020 kgm-3. The source time function 
is a Ricker wavelet with a dominant frequency 
of 10 Hz. The source and receiver locations are 
depicted in Figure 4a. Synthetic seismograms are 
shown in Figure 4b and c for vertical and horizontal 
displacements, respectively. Results by IBEM are 
plotted with a dotted line, while those obtained 
by means of the Spectral Element Method (SEM, 
Komatitsch et al. 2000), are drawn with a solid 
line. The agreement between both methods is 
good. Here, the direct wave is clearly observed 
since the source point and the receiver are very 
close to each other. Moreover, multiple reflections 
are presented because of the interactions between 
the direct wave and the sinusoidal interface, as 
expected; this effect is clearly seen in Figure 
4b and c. The possibility of modeling arbitrary 
interface shapes is one of the main advantages 
of the IBEM. Additionally, another advantage of 
this method relies on the use of Green´s functions 
for unbounded space, which have a simple form 
and can be easily programmed. The use of these 
functions has provided accurate numerical results.

Conclusions

In this paper we extended the use of the Indirect 
Boundary Element Method to study the propaga-
tion of elastic waves in fluid-solid interfaces. In 
this numerical technique, based on the Huygens’ 
principle and the Somigliana’s representation the-
orem, the fields of pressures and displacements 
are expressed in terms of single layer boundary 
integral equations. Full space Green’s functions 
for tractions and displacements are used, but 
they are forced to meet the proper boundary con-
ditions that prevail at the fluid-solid interfaces.

Figure 4. a) Model of a sinusoidal interface. Synthetic seismograms b) vertical displacements; c) horizontal 
displacements. Results by IBEM are plotted with a dotted line, while those obtained by Komatitsch et al. (2000) are 

drawn with a solid line.
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A wide range of solid materials characterized 
by their wave velocities and densities was 
analyzed. In every case, the presence and 
propagation of Scholte’s waves is noticed, 
highlighting the important amount of energy that 
they carry.

The results obtained from our numerical tech-
nique were compared with those obtained by 
the DWN and SEM. Therefore, we conclude that 
there is a good agreement between the different 
approaches studied. 
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