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Resumen
En este trabajo se muestra la pertinencia de incluir en la ecuación de estado de Kamerlingh-Onnes, 

interacciones múltiples no aditivas de fuerzas entre partículas. Estas fuerzas son de carácter electrodinámico. 
A partir de la ecuación de estado así generalizada se obtienen las isotermas en la vecindad del punto crítico y 
del punto triple para sistemas polares o no polares. Se desarrolla el ejemplo del agua. Se generaliza la ecuación 
de estado para el manto desarrollada por Birch, y en particular se obtiene la compresibilidad isotérmica para el 
manto terrestre. Se presentan las formas que toman, bajo esta generalización, algunas leyes de la mecánica y 
electrodinámica.

Palabras clave: Ecuación de estado, fases, energías no aditivas, energías binarias, isotermas, compresibilidad isotérmica.

Abstract
This study analizes the pertinency of including in the state equation of Kamerlingh-Onnes, non additive, 

potentials of multiple-interactiions of particles. These forces are indeed real and of a electrodinamic character. 
From the state equation no gerenalized, we obtained the isotherms in the vecinity of the critical point, and of the 
triple point for polar (or no polar) systems. We developed the example of water. We generalized the state equa-
tion for the mantle developed by Birch, and in particular, we obtained the isothermal compressibiliy for the earth 
mantle. We present, the forms that, under this generalization assume several laws of classical mechanism and 
electrodinamics.
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Introduction

In an earlier paper (Robles-Dominguez et al., 2007) 
we derived the equation of state for a one-component 
fluid and in general, for a fluid of 1, 2, 3 . . . phases. This 
result was based on introducing inter-molecular potential 
energies such as additive binary, non-additive tertiary, 
non-additive quaternary interactions and so on:

 ∞
 p =    

G1    +S  Gq (1)
 V* - b*

 q=2 
(v*)q

where p is pressure on a container of volume V, V* is the 
molar volume, b* is the molar volume of all molecules, 
G1 , G2 , … are functions of absolute temperature T. Here 
G1 is the mean field of all rigid shells of a molecule, G2 is 
the mean field of all additive binary interactions between 
pairs of molecules, G3  is the mean field of all non-additive 
ternary interactions and so on. The term “non-additive” 
means that the interaction among, say, 4 particles is 
different from the other interactions so that they cannot 

be included in a sum of binary interactions or in a sum of 
interactions of three particles, and so on. We also consider 
the mean field approximation for all these energies.

In Section II, we derive our equation (1) in a new basis 
of functions, which is (r*)r, r = 1, 2, 3, ... , where r*  is 
the molar density. In Section III, we obtain the isotherms 
in the vicinity of the critical point and of the triple point 
of any system, polar or not, and applied it to water as an 
example.

Section IV, provides exist, and it is shown that, the 
new forces develop a generalization of electrodynamics, 
classical mechanics, etc. In Section V, we derive the 
isothermal compressibility for the Earth’s Mantle after 
Birch (1947). Section VI, contains the conclusions.

The equation of state in base (r*)l,  l = 1, 2, 3

If the    1    term in Equation (1) is expanded in a Taylor 
series in terms of V*-m, where V* >> b* and DV* = -b* , we 
find:

V - b*
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 ∞ 
 1      =S  1  

(DV*    d  )s 1 ⎪ =  1   +b*    1    + (b*)2     1    + ... 

 
V*-b*

 s=0 s! dV* V* V* V* (V*)2 (V*)3 

(2)

or
 ∞ 1        = S am       

1 (3) V*-b* 
m=1

 (V*)m

The coefficients am are the same found by Ursell and 
Mayer (c.e., Uhlenbeck and Ford, 1963).

We replace (3) into (1) and we obtain:

 ∞ ∞ ∞ 
 p = G1

 Sam    
1    + SGq      

1    = Sdn   1 (4) 
m=1

 (V*)m q=2
 (V*)q 

n=1 (V*)n

where:

 d1 = G1a1

 d2 = G1a2 + G2

 d3 = G1a3 + G3 (5)

etc.

Note that the equation of state (4) contains linear 
independent vectors     1     , n=1,2,3,... thus the Kamerlingh-
Onnes equation is derived from statistical mechanics. The 
parameters am and G2 were calculated from additive binary 
potentials that contain all additive binary interactions 
(c.e., Uhlenbeck and Ford, 1963). The parameters Gq, q≥3, 
were obtained from non-additive potentials. Thus, d3 ≠ a3, 
d4 ≠ a4, and so on. Since d3 = G1a3 + G3, the quantity G1a3 is 
identical to the coefficient of van der Waals, or Ursell & 
Mayer. Not so G3, our coefficient for non additive tertiary 
potentials. Also, G4 is our coefficient for non additive 
quaternary potentials, and so on.

If dn = 0, n ≥ 2 equation (4) should become the equation 
for an ideal gas, namely:

 p = RT (6) V*

where R is the universal gas constant. This is because:

 d1 = RT   . (7)

If we set

 1  = r* (8)
 V*

where r*  is the molar density, we may write (4) as: 

 ∞ 
 p =Sdn r

*n
  (9) 

n=1

The isotherms in the neighborhood of the critical and 
triple points of water

Equation (9) is an appropriate equation of state which 
yields the isotherms of polar or non polar fluids.  Let us 
derive the critical isotherm by means of the well known 
conditions:

 ∂p  =⎪T=Tc
*  

= 0 (10)
 

∂p*

 r*=rc

 ∂2p  =⎪T=Tc
*  

= 0 (11)
 

∂p*

 r*=rc

 p = (Tc, r
*) (12)

where rc
* is the critical molar density and Tc is the critical 

temperature. In equation (12), if we substitute p = pc  and 
r* = rc

*, we may use (10), (11) and (12) in order to obtain 
d2c, d3c, d4c assuming dnc = 0, for n > 4. Thus we obtain 
the critical isotherm in the neighborhood of the critical 
point:

 ( 2rc
*
 3rc

*2
 4rc

*3 ) (d2c)  (      -RTc       )  2 6rc
* 12rc

*2
  d3c =     0 (13)

  rc
*2     rc

*3 rc
*4  d4c  pc - RTc rc

*

Now we calculate the solutions of  these equations for 
water, using data of Black and Hartley. (1993):

 pc = 2.209 (10)7 Pa
 Tc = 647.3 K
 Vc

* = 0.0568   m
3

 kmol

 rc
* =   1   = 17.605633 kmol

 Vc
* m3

 R = 8.314 (10)3     J

 
kmolK

The solution of (13) is

 d2c = -0.225823519(10)6  Pa m6

 
(kmol)2

 

d3c = -0.261188216(10)3  Pa m9

 
(kmol)3

 

d4c = 1.295731881(10)2  Pa m12

 
(kmol)4

For these values the non additives interactions between 
three and four molecules are necessary to explain the 
Critical Point, and the isotherm in the neighborhood of 
the critical point is:

(V *)n
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 p = RTc r
* + d2c r

*2 + d3c r
*3 + d4cr

*4 (14)

Van der Waals could not obtain this isotherm because he did 
not consider potentials of 3, 4. molecules respectively.

When a wider interval of molar densities is desired, 
more experimental data will be required; in this case the 
critical isotherm will be of degree n > 4 which will enable 
us to compute the values of dnc to a higher precision.

We consider now the isotherm in the neighborhood 
of the triple point in a system, polar or otherwise. As an 
example we consider water. The minimum curve near the 
triple point to provide stability in (p3, rg3, T3), (p3, rs3, T3) 
y (p3, rl3, T3), must be of fifth degree. Let the right sub 
index 3 denote “triple point”, and let g, s, and 1 be the 
three phases. The equation (8) is reduced to:

 p3
 = d13 r

* + d23 r
*2 + d33 r

*3 + d43 r
*4 + d53 r

*5 (15)

where

 d13
 = RT3 (16)

R is the Universal Gas Constant and T3  the absolute 
temperature of the triple point in the system. The remaining 
four unknown constants in (15) may be determined as 
follows. Let the molar densities be rg3 < rd3 < rs3 < rb3 < rl3 
where rs3 y rl3 are obtained by experiment from the solid 
and liquid phases of water at the triple point. The other 
molar densities are restrained by Maxwell’s constructions 
for triple point:

 rb3
* = 

rs3
* + rl3

* 

(17)  2

 rd3
* = 

rg3
* + rs3

*

 (18)  2

According to Keenan and Keyes (1978) we have, for 
water,
 Vg3

* = 3302 pu lg3
 
 

  kmol

 Vs3
* = 0.01747 pu lg3

  kmol
 

Vl3
* = 0.016022 pu lg3 (19) 

 

  kmol

 T3 = 32.018 °F

 p3 = 0.008866    lb 
  

  pu lg2

and recalling (r* =  1  ) we find:
 V*

 rg3
* = 18.4809 kmol 

 
 

  m3

 
rd3

* = 1.746545658 (10)6 kmol 
 
 

  m3

 rs3
* = 3.493072835 (10)6 kmol 

 
 

  m3

 rb3
* = 3.650917446 (10)6 kmol (20) 

 

  m3

 rl3
* = 3.808762057 (10)6 kmol 

 
 

  m3

 T3 = 273.16 k

 p3 = 6.1131 (10)2  N
  

  m2

 R = 8.314 (10)3 J  
  kmolK

The system of equations is as follows:

 (rd3 rd3 rd3 rd3) (d23) ( p3 - d13rd3 )  rs3 rs3 rs3
 rs3   d33   =    p3 - d13rs3 (21)

  rb3 rb3 rb3
 rb3   d43     p3 - d13rb3

  rl3 rl3 rl3
 rl3   d53     p3 - d13rl3

and the solution is:

 d23 = -5.82338 (10)-16 Pa (  m3  )2 
 
 

  kmol

 d33 = -1.02516 (10)-6 Pa (  m3  )3  

  kmol

 d43 = 3.7457 (10)-13 Pa (  m3  )4 
 
 

  kmol

 d53 = -3.84676 (10)-20 Pa (  m3  )5 
 
 

  kmol

which yields the isotherm of water in the neighborhood of 
the triple point:

 p3=RT3r
* - 5.82338(10)-16(r*)2 - 1.02516(10)-6(r)3

 + 3.7457(10)-13(r*)4 - 3.84676(10)-20(r*)5 (23)

For these values the non-additive interactions 
between three, four and five molecules are absolutely 
indispensable, for all fluids, to obtain the isotherm for the 
triple state; the explicit isotherm for the triple state for the 
water is  equation (23), where the term of non-additive 
interactions between three molecules is the dominant 
term; this equation is derived, using statistical mechanics, 
for the first time.

Existence of an infinity of new electromagnetic forces, 
and generalizations of electrodynamics, classical 

mechanics.

Robles-Domínguez et al. (2007) derived expression 
(1), the first two terms of which reduce to the van der 
Waals equation. While van der Waals had considered 
all binary interactions in the fluid, his expression does 

* *

*

*

* * * * *

*

*2 *3 *4 *5 *

*2 *3 *4 *5 *

*2 *3 *4 *5 *

*2 *3 *4 *5 *
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not fit adequately the experimental data. We therefore 
considered additional interactions such as non-additive 
tertiary, non-additive quaternary and so on, which are 
the Fourier coefficients of the development based on 
Functional Analysis (see Courant and Hilbert, 1953; and 
Kolmogorov and Fomin, 1957) which reproduce exactly  
the experimental isotherm. The new forces are real.

But in a fluid the interactions are electromagnetic.  
Therefore these new interactions are electromagnetic 
interactions. In equation (1), G3 represents the mean field 
of the non-additive interaction between molecular triplets. 
Coulomb could not obtain these results. Thus equation (1) 
contains an infinity of additional new electromagnetic 
forces. If these forces are not considered, e.g. by making 
G3, G4,… to vanish, functional analysis suggests that we 
may not succeed in reproducing the experimental results.

When those new fields are considered, in the Electro-
magnetic case, the Maxwell’s Laws are generalized. Thus 
the fourth Law of Maxwell takes the form:

 ∇ x (H2 + H3 + H4 + ...) = J +  ∂  (D2 + D3 + D4 + ...) (24)
 ∂t

Where H is the Magnetic Field, D is the Electric 
Displacement Field, J is the Electric Current and sub-
script 2 is employed for binary additive fields, sub-script 
3 is employed for ternary non-additive, etc.

In Classical Mechanics, Newton’s Second Law is 
generalized to the form:

 F2 + F3 + F4 + ... = ma (25)

where F2 is the resultant of the additive binary forces 
upon m, F3 is the resultant of the non-additive tertiary 
forces upon m, and so on. Here m is mass and a is 
acceleration.

Generalized conservation of energy
 b Ka+j2a+j3a+... = Kb+j2b+j3b+...-∫a (F2+F3+F4+...)•dl  (26)

here K is kinetic energy, a and b are two points of the path 
of the particle, j2, j3, … are the energies of all additive 
binary, non-additive ternary, non-additive quaternary 
conservative forces, and so on, and the integral is the total 
work done by all binary additive non-conservative forces, 
tertiary non-additive non-conservative forces, etc.

In Quantum Field Theory are obtained:

Generalized Klein-Gordon equation with electromagnetic field

( ih  ∂ -j2 -j3 -...)
2y = (- ihc ∇ - A2 - A3 - ...)

2y + (m0c
2)2y

 2p ∂t 2p 
(27)

• j2 is the additive scalar potential energy operator
• j3 is the non-additive tertiary scalar potential energy 

operator.
• etc.
• A2 is the additive binary vector potential  operator.
• A3 is the non-additive ternary vector potential operator.
• etc.

All these operate on the Wave Function. (for the case 
with additive binary interaction only see Björken and 
Drell, 1964).

Generalized Dirac equation for the electromagnetic field

g1( 
ih  ∂  -j2 -j3 -...)y = g2•(- 

ihc ∇ -A2-A3- ...)y + g3 m0c
2y

 2p ∂t 2p 
(28)

where gs, s = 1, 2, 3 are Dirac matrices (for the case 
with additive binary interaction only see: Björken et al., 
1964).

Isothermal compressibility in the Earth’s Mantle

The geophysicist F. Birch obtained a state equation for 
the Earth’s Mantle (Birch,1947) which is:

 7 5

 p =  3   [( r )3
- ( r )3 ] (29) 2χ0 

r
0 

r
0

 

where p is pressure, χ is isothermal compressibility and r 
is the density of the Earth’s Mantle; the sub-script zero is 
used for quantities evaluated to atmospheric pressure.

The density is:

 r =  m (30) V

where m is the mass and V the volume.

The mass can be expressed in terms of the moles 
number n:

 m = Mn (31)

where M  is the molecular mass, and ρ  can be expressed 
in terms of n  as follow:

 r = M  n (32) V
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and the Molar Density r* is:

 r* =  n (33) V

then:

 r = M r* (34)

and:

 r*
 =  M  r =  r

*
 (35) r0 M  r0

* r0
*

Birch’s equation can be rewritten as follows:

 7 5

 p =  3   [( r* )3
- ( r* )3 ] (36) 2χ0 r0

*
 r0

* 

Our State Equation (1) is valid for gases, liquids and 
solids; of course Birch’s Equation is a particular case of (1).

We can express that equation in the base {rl, l = 0, 1, 
2, 3, 4, 5, ...}developing it in Taylor series near r0 :

 ∞ (   d   )l

 ( r*  )r
= ( 1  )r S 

Dr*

 dr*    
r*r⎪r*=r

0
* (37) r0

*
 r0

* 
l=0

 l!

where r can take the values 7 & 5 , and Dr*=r*- r0 3 3

 ∞ ( d  )l

S 
Dr*

dr* 
r*r⎪r*=r

0
* =r*r+r(r*-r0

*
 

)r*r-1+ r(r-1)(r*-r0
*
 

)2r*r-2+ 
l=0

 l! 2!

 r(r-1) r(r-1) (r*-r0
*
 

)3r0
* r-3 + ... (38) 3!

and Birch’s equation is:

 p =   3  [    1    (r*)
7/3-    1     (r*)

5/3]=  3  {[ 4  -  7  
r*r0

* -1 +  2χ0 (r0
* )7/3 (r0

* )5/3 2χ0 81 27

 28 r*2r0
* -2 + 14r*3r0

* -3 +...]-[ 4 - 10 r*r0
* -1 + 20 r*2r0

* -2 - 27 81 81 27 27

 5 
r*3r0

* -3 +...]} (39)
 81

and Birch’s state equation is:

 p =  3   ( 8 - 17 r0
* -1r* + 8 r0

* -2 r*2+ 19 r0
* -3r*3 +...)      (40) 2χ0 81

 
27

 
27

 
81

This state equation shows, at this approximation, that 
the non –additive interactions of three bodies are relevant.

The isothermal compressibility is:

 χ = -  1  ( ∂V )  (41) V ∂p T

Or in terms of r*:

 ∂
 1

 χ = - r* (  r* ) = 1 ( ∂r* )  (42)
 ∂p 

T

 r* ∂p T

Implicit derivation applied to the last equation of p  
gives:

(∂r*) = 1 = ∂   3  ( 8 -17 r0
* -1r*+ 8 r0

* -2r*2+ 19 r0
* -3r*3 +...) ∂p T ∂p 2χ0 81 27 27 81

 (43)

and the isothermal compressibility is expressed as 
follow:

 χ = 
χ0 

 ( - 17 r0
* -1r* + 8 r0

* -2r*2+ 19 r0
* -3r*3 +...) (44)

 18 9 18

According to this equation, if the molar density 
increases the isothermal compressibility decreases.

We can use other equations for the Earth’s Mantle, 
but Birch’s equation is more simple and we want to show 
only the existence of the term of tertiary non-additive 
interactions in the Earth’s Mantle.

Conclusions

In this paper we show that there is an infinite number 
of new molecular forces in a fluid; these forces are of 
electromagnetic nature. Here we present the corresponding 
generalization of the equations of electrodynamics and 
classical mechanics and quantum field theory in which 
comprising these new forces.  We propose that any field 
in nature must be associated with a corresponding infinite 
set of new non-additive forces. Also, the Earth’s Mantle 
equations must contain these new forces.
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