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RESUMEN
En este trabajo fueron analizadas las variaciones fractales y de lagunaridad de los registros geofísicos de pozo, con el fin

de asociarlos con las propiedades estratigráficas y petrofísicas del yacimiento naturalmente fracturado de Cantarell, en el Golfo
de México. Los registros considerados fueron: porosidad neutrón (NPHI), densidad (RHOB, DRHO, PEF), resistividad (LLD,
LLS, MSFL), radiactividad natural (GR, CGR, URAN, POTA, THOR) y caliper (CALI). Los registros de resistividad produjeron
valores de lagunaridad notablemente altos, especialmente en las rocas generadoras y almacenadoras, a diferencia de los demás
registros, cuya homogeneidad de traza implicó una baja lagunaridad. Los resultados indican que la lagunaridad observada
depende de la resolución y profundidad radial de penetración del método geofísico estudiado y aumenta sistemáticamente en el
siguiente orden: Λ(RHOB) < Λ(CALI) < Λ(PEF) < Λ(URAN) < Λ(GR) < Λ(NPHI) < Λ(POTA) < Λ(CGR) < Λ(THOR) <
Λ(MSFL) < Λ(DRHO) < Λ(LLS) < Λ(LLD).

PALABRAS CLAVE: Lagunaridad, análisis fractal, autosemejanza, método R/S, escalamiento, registros de pozo.

ABSTRACT
Lacunarity and fractal variations in geophysical well logs are associated with stratigraphic and petrophysical properties of

the naturally fractured Cantarell field in the Gulf of Mexico. Neutron porosity (NPHI), density (RHOB, DRHO, PEF), resistivity
(LLD, LLS, MSFL), natural radioactivity (GR, CGR, URAN, POTA, THOR) and caliper (CALI) logs are studied. The resistivity
logs yielded remarkably high lacunarity values, especially in the hydrocarbon source- and reservoir rocks. Lacunarity Λ was
found to depend on the resolution and radial depth of penetration of the logging method. It systematically increased in the
following order: Λ(RHOB) < Λ(CALI) < Λ(PEF) < Λ(URAN) < Λ(GR) < Λ(NPHI) < Λ(POTA) < Λ(CGR) < Λ(THOR) <
Λ(MSFL) < Λ(DRHO) < Λ(LLS) < Λ(LLD).

KEY WORDS: Lacunarity, fractal analysis, self-similarity, R/S method, scaling, well logs.

fitting random fractals to describe the behavior of well logs.
The Hurst exponent H may be extracted from the variation
sequence of each log. It is used to infer whether the
sedimentation process has been persistent (1/2 < H < 1) or
antipersistent ( 0 < H < 1/2). In a persistent process there are
no unexpected sudden changes, while an antipersistent one
may contain rapid unpredictable variations (Feder, 1988).
In the limit case H→1, traces are smooth and weakly
irregular, while for H→0 they are very irregular and
intermittent.

1.2. Fractals in signal processing

Fractal signals can be either self-similar or self-affine.
A self similar signal y = s(x) preserves its shape under a
similarity transformation of the two axes x’ = λαx, y’ = λαy;
while for self-affine signals the two axes need a different
scaling x’ = λα x, y’ = μβy in order for the shape of y’ = s’(x’)

1. INTRODUCTION

1.1. Fractal nature of well logs

The physical formation properties, such as porosity,
density, resistivity, velocity, and others, may be determined
in a well by geophysical tools using neutron, gamma-gamma,
sonic, induction, resistivity or other logging techniques
(Hearst et al., 2000).

Two leading mechanisms control sedimentation:
thermal subduction of the crust and sea-level changes, in
geological time (Turcotte, 1997). Sea-level changes arise as
a sum of random variables, resulting in random porosity
variations (Korvin, 1992), as found on well logs, which can
be conveniently considered as statistical fractals (Hewett,
1986). Hardy and Beier (1994) found that fractal Gaussian
noise (fGn) and fractal Brownian motion (fBm), are the best-
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to remain the same as y = s(x). Images and patterns are often
modeled as self-similar fractals, while signals (such as well
logs or seismic traces) are considered self-affine (Turcotte,
1997; Mandelbrot, 1999). For example, if the scaling factor
of x is λ

x 
= 3, while for y it is λy 

= 2, we can write (Turcotte,
2002):

 λx = λ (1)
 λy = λH, (2)

with

    H = log(λy) / log(λX), (3)

where H is the Hurst exponent. However, the fractal
dimension of the trace is related to the Hurst exponent as
(Barton and La Pointe, 1995)

          D = 2 - H . (4)

1.3. Geophysical well logs

Geophysical well logs are of basic importance in
identifying hydrocarbon reservoirs. The technique, widely
used since 1927, consists of lowering measuring instruments
to the borehole and recording the instrument response as
function of depth (Johnson and Pile, 2002). The
measurements can be classified in three broad categories:
electric, nuclear, and acoustic. All of them are, in some
particular and indirect way, dependent on the rock-physical
properties, as well as on the lithology, porosity, shale content,
grain size, water saturation and permeability, among others.
All this information is essential to evaluate the productivity
of a given formation. An important aspect of this evaluation
is the prediction of porosity and permeability based on log
data, and to extrapolate these values away from the well
(Bassiouni, 1994).

1.4. Fractal analysis of well logs

The reconstruction of the HC reservoir geology from
core-, well-log-, and 2-D or 3-D seismic data obtained at
different scales is the basic challenge facing petroleum
industry. An efficient way to integrate such multiscale
information, taking into account their temporal and spatial
variability, is based on the analytic techniques of fractal
geometry. The method is especially useful in describing the
spatial heterogeneity of geologic patterns, and has been
documented to significantly improve the chances of HC
exploration and production (Barton and La Pointe, 1995).
When applied in petroleum geology, these novel techniques
permit a fractal simulation of the fractured reservoirs, and
extraction of the fractal behavior of their structural and
sedimentological properties (Barton and La Pointe, 1995,
Chap. 12). Fractal geometry provides the adequate
framework to analyse typical well-logs, and to model

reservoir structures (Tubman and Crane, 1995). Both
seismic- and well-log interpretations can be made more
precise by assuming that the observed noise, which obeys
certain scaling laws, has an inherent fractal nature
(Todoeschuck, 1995). This realization suggests to directly
analyse “raw” data, wihout the necessity of filtering out noise
(Oleschko et al., 2003).

A scale-invariant process can be described by means
of its statistical distribution which has a special form, called
“power law” (or “fractal-”, or “Pareto-”, or “hyperbolic
distribution”; Korvin, 1992; Mandelbrot, 2002; Turcotte,
2002). Such power-law-type distributions, as well as the
scale invariance, are typical in several processes encountered
in earth sciences. One of the best example is porosity
distribution in sedimentary reservoirs (Turcotte, 2002).

1.4.1. Regular fractals

Fractal distributions, because of their intermittent and
discontinuous nature, do not completely fill out the Euclidean
space (E) but contain a characteristic pattern of gaps or holes
(Mandelbrot, 1983). The fractal dimension is a parameter
that quantitatively describes these distributions. As it is well
known, if we want to cover completely a regular E-
dimensional Euclidean object, embedded in a spatial domain
of size L, by using smaller objects of size r << L, we shall
need a number N of these small objects to do this, where

       N L
r

E
= ( ) (5)

(Hewett, 1986). For example, to cover a L-length linear
segment (E = 1) with r = L/3 length-intervals, one needs

N L
L= ( )

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

3

1

=3 small “yardsticks”. Similarly, we need 9

squares of side L/3 to cover a square (E=2) of side L, and 27
cubes of side L/3 to cover a cube (E=3) of side L. In case of
fractal objects however, which do not fill out the space
gaplessly, the number of r-size objects required will scale
as

      N L
r

D
= ( )  , (6)

where the fractal dimension D is a fractional value, satisfying
D < E. A well-known example for a deterministic regular
fractal is the Sierpinski carpet. It is constructed by starting
out from a large equilateral triangle, dividing it to 4 smaller
triangles, and omitting the inverted middle one (Mandelbrot,
1983). Repetition of this step at gradually smaller scales will
result in a fractal object of dimension

         D
N
r= − = =

log
log

log
log .

3
2 1 585 . (7)
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Note that D < 2, that is the object’s dimension is less
than that of the embedding space. The basic property of this
object, which is apparent at first sight, is its scale-invariance.
With a proper magnification, a small sub-triangle of any scale
can be made identical with the entire object (Mandelbrot,
1983; Korvin, 1992).

1.4.2. Statistical fractals

In addition to the “deterministic” fractals, it has been
found (Hardy, 1992) that statistical (or “random”) fractals
are even more useful to model natural phenomena. In case
of statistical fractals, the mean value, standard deviation,
covariance and spectral density (Isaaks and Srivastava, 1989)
of their measurable properties scale with the object size
according to a power law.

Two statistical fractal models are especially important
for well log analysis: the fractional Brownian motion (fBm)
and the fractional Gaussian noise (fGn) (Wornell, 1996). For
the fBm the standard deviation of the process grows as a
fractional power of the observation time. For the fGn, its
covariance function is hyperbolic.

Hewett (1986) first suggested to model well logs using
statistical fractals, such as fBm and fGn. He applied the
model to study the density log from a sandstone formation.
He normalized 2189 data to zero mean and unit variance,
and observed that their empirical probability distribution
function (pdf) was narrower than a Gaussian pdf, and it was
slightly skewed. Then he applied rescaled range analysis
(Hurst et al., 1965), which is a basic fractal analysis tool, to
the normalized log and obtained a Hurst exponent 0.855
which indicated that the density log was a self-affine fractal
with dimension D = 2 – H = 1.145. He also computed the
power spectral density of the normalized log. For fGn, the
high-frequency part of the power spectrum fell off as a β
power of frequency. From the double logarithmic plot of
the spectrum Hewett got a slope β = 0.7 which, using β =
2H – 1 (Korvin, 1992) yields again H = 0.855. As a third
check of the log’s fractality, he also calculated the
semivariogram of the sequence that gave 2H= 1.71, in accord
with the other estimates.

Having established that the porosity distribution around
a borehole has a fractal pattern, the next practical step would
be to evaluate how does this affect the fluid transport in the
reservoir. For this purpose, Hewett (1986) applied stochastic
interpolation of the measured porosity values between
boreholes, using the obtained Hurst exponents, and got a
realistic contour map of porosity distribution.

In another study (Crane and Tubman, 1990), it was
proved that reservoir variability can be modeled by
considering the measured logs as stochastic fBm or fGn

processes. As well known, the pure Gaussian noise (better
known as “white noise”), has the same spectral power for
all frequencies. The double logarithmic plot of power versus
frequency for such noise is flat, with zero slope:

    Power ∝ 1/f 
0 . (8)

The previously mentioned two fractal models are
related, because the fBm is the integral of fGn. The pure
Brownian motion has a spectra decaying according to the
hyperbolic law with a log-log slope 2:

     Power ∝ 1/f 
2 . (9)

The spectra of more general fractal noises decay as

    Power ∝ 1/f 
β . (10)

It follows from the previous discussion that the larger
the value of β, the smoother the corresponding time series
graph. Consequently, the fBm is always smoother than the
fGn. There are many natural phenomena (from coast-lines,
topographies and river levels to voice and music) whose
spectra are simply 1/f, lying between the 1/f0 and 1/f2

processes (Feder, 1988).

The exponent (-β) has a direct connection with the
fractal dimension (Mandelbrot, 1983). If the β values are in
the range -1 ≤ β ≤ 1, the trace can be considered as fGn
(fractional Gaussian noise); if 1 ≤ β ≤ 3, it should be modeled
as fBm (fractional Brownian motion).

More recently, Hardy (1992) has gone much beyond
of Hewett’s (1986) ideas of fractal well-log analysis. He
studied core samples from boreholes and found a fractal
behavior characterized by the same Hurst exponent H as in
case of the corresponding porosity logs. With this H value,
he used a multivariant fGn process to generate a core model
with fractal porosity distribution. He found that using H
determined from the power spectra of the core photos, the
computed models reproduced the original images with high
accuracy. Also, the model could be applied to generate
transverse petrophysical profiles across the reservoir, which
were statistically equivalent with the models obtained from
boreholes. His analyses of the scaling of transverse porosity
and permeability profiles have proved without doubt the
effectiveness of the fractal technique.

Crane and Tubman’s (1990)-simulation study
demonstrated that fractal modeling significantly improves
the prediction of a reservoir’s productivity. They used the
R/S technique for three horizontal wells and four vertical
wells in a carbonate formation, and found that all recorded
logs can be fit by fGn models, with H fluctuating between
0.88-0.89 in vertical wells, and 0.85-0.93 in the horizontal
ones.
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The main analytical tool utilized in the present work
will also be fGn analysis of the well log data (Arizabalo et
al., 2004).

1.5. Structure and aim of this study

The main objective of this study is to realize a
multiscalar fractal characterization and modeling of the
spatial variability of the properties of a fractured reservoir
(Cantarell), located in the Gulf of Mexico, using recorded
well log data.

We will establish criteria to decide whether the
assumptions of fractal behavior, scaling or scale-invariance,
are valid models to describe the distribution of reservoir
properties with respect to depth and geologic time. In further
studies, we plan to utilize these models in order to compare

the fractal parameters estimated from transverse profiles
with those derived directly from boreholes. The data used
are logs from a well drilled off-shore by Petróleos
Mexicanos (PEMEX), at southeastern Gulf of Mexico
(Figure 1).

We will correlate the calculated rugosities (Hurst
exponents) and lacunarities with geology, in order to infer
the multiscaling behavior of the petrophysical properties of
a naturally fractured reservoir at southeastern Gulf of
Mexico.

The fractal analysis is realized by means of the
“BENOIT” software, which runs under Windows and has
been recommended as a reference program for fractal
analysis of both self-similar and self-affine sets (Seffens,
1999). We hope the study will contribute to a better

Fig. 1. Location map of the Cantarell oil field in the Gulf of Mexico (After Schlumberger, 1984).
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understanding and interpretation of the spatial-temporal
variabilities of the indicated off-shore reservoir.

2. LACUNARITY

2.1. Its definition

Mandelbrot (1982) proposed the concept of lacunarity
as a quantitative measure of the distribution of holes or gaps
in a texture. It describes the way the pieces of a pattern fill
out the space and is a complementary parameter to the fractal
dimension, which only specifies the amount of space
occupied by an object (Tolle et al., 2003). Frequently,
patterns with the same fractal dimension have quite different
textures, and in such cases their lacunarity measures can be
very different. High lacunarity values are associated with
the presence of large gaps. Small lacunarity implies a
uniform distribution of pores of similar size.

2.2. Its computation for patterns

There are several proposed algorithms to compute
lacunarity (Gefen et al., 1984; Lin and Yang, 1986). In this
work we shall use a simple statistical method for its
estimation (Allain and Cloitre, 1991) based on sliding boxes.
In this method, a box of side r is placed at the origin of the
point-distribution to be analysed. One counts the number of
points occupied by the box (“its mass s”), then the box slides
one unit step to the right, left, up, or down, until all parts of
the pattern has been covered. At each position the “mass” of
the box is determined. Next, the procedure is repeated with
sliding boxes of gradually increasing size. As a result, one
gets the frequency distribution which can be converted to a
probability distribution P(s,r) by normalizing with the
number of boxes N(r) of size r. Compute the first two
moments of the pdf, as (Korvin, 2002):

M r sP s r
s

r
( ) ( ) ( , )1

1

=
=
∑   , (11)

M r s P s r
s

r
( ) ( ) ( , )2 2

1

=
=
∑   . (12)

Allain and Cloitre (1991) define lacunarity as

Λ( )
( )

( )

( )

( )
r

M r

M r
=
[ ]

2

1 2   . (13)

The computed lacunarity is dimensionless and it is
related to the width of the histogram of the point distribution
(Korvin, 2002).

2.3. Scaling of the lacunarity

As shown by Allain and Cloitre (1991), the lacunarity
Λ(r) scales as a power law

      Λ( )r r
L

D E
∝ ( ) −

, (14)

where L is the domain size, r is box size, D is the fractal
dimension and E the Euclidean dimension of the embedding
space. In a logarithmic (LOG) plot Eq.(14) becomes
asymptotically linear, and for self-similar mono-fractals its
slope will be D - E (Plotnick et al., 1996). For self-affine
sets, recalling the relation D – E = –H between Hurst
exponent and fractal dimension, the slope of LOG[Λ(r)] vs
LOG(r) will be related to H.

We shall see later, when computing the lacunarity of
well logs, which the asymptotic linearity is almost perfect
for traces that can be modeled as fractal.

2.4. Lacunarity definition for self-affine functions

Another way to represent Eq. (13) is based on the fact
that (Korvin, 2002)

       M r s r( ) ( ) ( )1 =   , (15)

M r r s r( ) ( ) ( ) ( )2 2= +σ 2   , (16)

where <s(r)> is the mean, and σ2 the variance of the number
of points occupied by a randomly placed r-sized box.
Accordingly, Plotnick et al. (1996) defined lacunarity as

 Λ( )
( )

( )
r

r

s r
= +σ 2

12  . (17)

(Note that for a uniform distribution the variance is zero,
and the lacunarity is 1.) Equation (17) holds in a range of
box sizes from r = 1 up to some maximal size which is a
given fraction of the size L of the whole set. Plotnick et al.
(1996) suggest r = L / 2 as the optimal upper bound. Several
conclusions can be drawn from the observed dynamics of
the change of lacunarity with box-size:

(1) Scarcely populated point sets have higher lacunarities
than dense ones, for the same size of the sliding box.

(2) Larger boxes tend to be more translation-invariant (the
second moment decreases with the increase of box size,
with respect to the first moment). So, the same set shows
lower lacunarity when measured with boxes of increasing
size (Plotnick et al., 1996).

(3) For a given box size and given fraction of occupied sites,
a larger lacunarity indicates a stronger clustering of the
data points (Plotnick et al., 1996).
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3. FRACTAL AND LACUNARITY ANALYSIS OF A
SELECTED WELL

3.1. Geology description

Due to reservoir heterogeneity, we selected for fractal
analysis the lithologic units of the Cantarell oil field, Gulf
of Mexico: Kimmeridgian, Upper Jurassic (JSK), Tithonian,
Upper Jurassic (JST), Lower Cretaceous (KI), Middle
Cretaceous (KM), and Paleocene Tertiary Breccia - Upper
Cretaceous (BTPKS). [See Angeles-Aquino (1988); Araujo-
Mendieta (2004); Basañez (1987) and Pacheco (2002)].

3.2. Types of logs used

In the study the following well logs were used:

Neutron porosity (NPHI = Compensated Neutron Porosity
(matrix)),

Density (RHOB = Bulk density, DRHO = Delta RHO,
PEF=Photoelectric Factor), Resistivity (MSFL =
Microspherically Focused Log, Laterolog Deep (LLD) and
Shallow (LLS)),

Natural gamma ray (GR = Natural Gamma Ray, CGR =
Gamma Ray Contribution from Thorium and Potassium,
URAN = Uranium concentration, POTA = Potassium
content, THOR = Thorium content) and Caliper (CALI).

3.3. Method of analysis

In general terms, the lacunarity calculation followed
Mandelbrot (1983). More specifically, we used techniques
described in Gefen et al., (1984), Lin and Yang (1986), Allain
and Cloitre (1991) and Plotnick et al., (1993, 1996). All

lacunarity curves shown were computed by a FORTRAN
program based on Eq. (17) (Lozada and Arizabalo, 2003).

4.1 Results and discussion of lacunarity of geophysical
well logs

We applied lacunarity analysis to Neutron Porosity
(NPHI), Density (RHOB, DRHO, PEF), Resistivity (LLD,
LLS, MSFL), Natural Gamma Ray (GR, CGR, URAN,
POTA, THOR), and Caliper (CAL) logs. All logs belong to
a single well in the Cantarell naturally fractured limestone
reservoir in the Gulf of Mexico, traversing five geologic
strata: Tertiary Paleocene Breccia - Upper Cretaceous
(BTPKS), Middle Cretaceous (KM), Lower Cretaceous (KI),
Jurassic Tithonian (JST) and Jurassic Kimmeridgian (JSK).

The results are presented as a series of figures, where
values of resistivity, fractal dimension and lacunarity are
indicated, referred to entire well logs or to specific geologic
units studied. Slopes (α) from the LOG(lacunarity) vs
LOG(r) plots, and values of the “lacunarity dimension”
defined as D(Λ) = 2 - |α| , will also be given.

Here the term “lacunarity dimension” is used to
distinguish between the dimension extracted from the
lacunarity and the fractal dimension measured with the
BENOIT software (Seffens, 1999).

4.1.1. Lacunarity of the neutron-porosity log (NPHI)

Figures 2 and 3 show the neutron porosity log for all
the geological layers above mentioned. The entire trace
contains 3528 data, with a fractal dimension obtained by
the R/S method (Korvin, 1992; Feder, 1988), D

R/S
 = 1.72,

that is to say, a Hurst coefficient H = 2 - D = 0.28, which
indicates strong rugosity (Figure 2).

Fig. 2. Neutron porosity NPHI well log [percent units] vs. sampling intervals [x 0.30 m]. Lacunarity (box size one) = 1.489; fractal
dimension (by the R/S method) D

R/S
 = 1.722.
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The variation curve of LOG(lacunarity) vs LOG(box
size), corresponding to r = 1, gives the maximal lacunarity
(Λ(1) = 1.49), this lacunarity is greater than one (topologic
limit for an homogenous distribution). The fractal self-similar
nature of this log is indicated by the linearity of its behavior
through several scales, with high correlation coefficient (R2

~ 0.98) and slope |α| ~ 0.06 (Figure 3).

4.1.2. Lacunarity of the density logs (RHOB, DRHO, and
PEF)

For density logs, the RHOB lacunarity value for unitary
box size, is only Λ(1) = 1.001. As this value is close to the
topologic limit, this log shows translation invariance along
the entire trace. The fractal dimension obtained by the R/S
method for the RHOB trace is 1.716. The function’s linearity
is observed, with a very low slope of 0.0002 and high
correlation coefficient (0.96). Consequently, the density
values are very uniform throughout the layers.

The lacunarity behavior of DRHO, with Λ(1)=3.05, is
similar to the previous one, with a slightly greater absolute
slope of 0.16 corresponding to a lacunarity dimension D(Λ)=
2–|α|=2–0.16=1.84 [D

R/S
=1.68] with high correlation

coefficient 0.99, that is to say, it exhibits a linear behavior
for all box sizes used. This dimension (1.84) is remarkably
larger than that measured one from trace rugosity (1.68),
which confirms the low resolution of density methods with
respect to lacunarity. For PEF, Λ(1)=1.07 the absolute slope
is 0.01 (with R2=0.967), which lies between the previous
values.

The density tools are interpreted as low sensitivity
techniques with respect to lacunarity because of the trace
homogeneity.

4.1.3. Lacunarity of resistivity logs (MSFL, LLD, and
LLS)

MSFL logs (Figures 4 and 5) detected strong
resistivity variations in the different layers. The lacunarity
value for the entire trace is high, approaching the maximum
lacunarity value for r = 1, Λ(1) = 2.92. The absolute slope
is ~ 0.13, with R2 = 0.8, giving D(Λ) = 1.87. The fractal
dimension measured with BENOIT from these data D

R/S
 is

somewhat less, 1.8.

On the other hand, in Figure 6 an irregular behavior
in the LLS log is noted. The log has a fractal dimension
smaller than for the previous logs (1.69), but a greater initial
lacunarity Λ(1) = 5.06, surpassing many times the
topological minimum. In addition, slope breaks are
observed in the distribution of lacunarity (Figure 7). The
slope (0.22) was greater than in the previous case, with a
good linear fit (R2 = 0.92), corresponding to a lacunarity
dimension of 1.78. The LLS average resistivity throughout
the entire log is 379 ohm-m, smaller than the MSFL average
resistivity.

For LLD (Figures 8 and 9), Λ(1) = 7.3, which is in
fact one of the highest values among the analyzed logs.
The slope is also high (~0.26 with good linearity, R2 ~ 0.96),
and gives a lacunarity dimension of 1.74 comparable with
the value D

R/S
 =1.68 measured directly from the trace. This

means that the LLD has maximum resolution for the
measurement of lacunarity and, consequently, to
differentiate between petrophysical details and lithology.
The fractal dimension of the LLD log, computed with
BENOIT, is 1.68, lower than the dimensions extracted from
LLS and MSFL. Average LLD resistivity is 1745 ohm-m.

Fig. 3. Lacunarity curve for the NPHI well log. Linear fitting |slope| = 0.061; correlation coefficient R2 = 0.98.



106

R. D. Arizabalo et al.

The lacunarity dimensions D
Λ
 = 2 - |α|; average

resistivities, and D
R/S 

dimensions satisfy the following
inequalities:

R
ave

(LLD) > R
ave

(LLS) < R
ave

(MSFL),
Λ(LLD) > Λ(LLS) > Λ(MSFL),
D

R/S
 (LLD) < D

R/S
 (LLS) < D

R/S
 (MSFL).

The inequality observed between the resistivity values
LLD and LLS indicates a separation between the deep and
shallow resistivity curves, which - combined with the low
values of density, implies a possible presence of fractures.
Resistivity is directly proportional to lacunarity, while
lacunarity shows inverse correlation with the fractal
dimension.

Fig. 4. Resistivity MSFL [ohm-m] vs sampling intervals [x 0.30 m]. Lacunarity(1) = 2.922; D
R/S

 = 1.801.

Fig. 5. Lacunarity curve for the MSFL log. Lacunarity(1) = 3.02; linear fitting |slope| = 0.128; correlation coefficient R2 = 0.804.
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The slopes |α| of the LOG(lacunarity) vs LOG(r) plot,
are greater in all cases than the Hurst exponents calculated
directly from the logs. Nevertheless, fractal dimensions
calculated from lacunarity satisfy the same inequalities as
found by the R/S method, that is to say:

D
Λ
(LLD) < D

Λ
(LLS) < D

Λ
(MSFL).

4.1.4. Lacunarity of natural radioactivity logs (GR, CGR,
URAN, POTA, THOR)

Natural radioactivity logs display low values of
generalized lacunarity. Lacunarity extracted from gamma

ray log (GR) has an initial value near Λ(GR) = 1.28.
Linearity is lost for scales approaching r = 52 m. The
correlation coefficient is 0.84

For the CGR log, an irregular behavior is observed,
because Λ(CGR) = 1.83 with a correlation coefficient of
0.82. Linearity abruptly breaks when r approaches 56 m.

The URAN log has an initial lacunarity near one
Λ(URAN) = 1.17, with slight variations along the well. A
good linear fit (0.98) is observed, with increasing box
size.

Fig. 7. Lacunarity of the LLS well log. Lacunarity(1) = 5.055. Linear fitting |slope| = 0.218; correlation coefficient R2 = 0.916.

Fig. 6. LLS resistivity log [ohm-m] vs sampling intervals [x 0.30 m]. Lacunarity(1) = 5.055; fractal dimension by the R/S method D
R/S

 =
1.692.
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The POTA lacunarity distribution Λ(POTA) = 1.77, is
similar to CGR, with steep fall, a plateau and then again a
smooth fall. The correlation coefficient is lower (0.85).

The THOR log has an even more variable lacunarity:
Λ(THOR) = 2.04, with a slope of 0.1 (R2 = 0.83). In general,
natural gamma ray logs are not sensitive to lacunarity.

4. 1. 5. Lacunarity of the caliper log (CALI)

In the LOG(lacunarity) vs LOG(r) plot for CALI, the
slope is very low (0.006). This indicates a great homogeneity

of values. We found linear behavior at almost all scales, up
to box sizes near to 152 m, Λ(CALI) = 1.03.

4.2. Strata lacunarity for the resistivity logs

4.2.1. Lacunarity for the LLD log by strata (BTPKS, KM,
KI, JST, JSK)

The lacunarity data calculated from the LLD log were
correlated with the lithology of the geological layers of
interest. For the Tertiary Breccia - Upper Cretaceous
(BTPKS), the lacunarity Λ(1) reached its maximum value

Fig. 8. Resistivity LLD well log [ohm-m] vs sampling intervals [x 0.30 m]. Lacunarity(1) = 7.302. Fractal dimension by the R/S method
D

R/S
 = 1.675.

Fig. 9.Lacunarity of the LLD well log. Lacunarity(1) = 7.302. Linear fitting |slope| = 0.216; correlation coefficient R2 = 0.958.
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of 7.43, with fractal dimension D
R/S

 of 1.62. This layer is
considered a hydrocarbon reservoir.

The fitted slope of LOG(r) vs LOG(lacunarity) plot is
0.33, with R2 = 0.96. The lacunarity dimension equals 1.67.
The lacunarity curve has two slope breaks around 30 m and
150 m the average resistivity for the BTPKS is 302 ohm-m.

For Middle Cretaceous (KM), the generalized lacunarity
value is also high (7.01), with fractal dimension 1.67. Figure
9 shows large gaps between the resistivity highs. The slope
is 0.31 with R2=0.97. The fractal dimension extracted from
the lacunarity curve is 1.69 (~D

R/S 
=1.67). The average

resistivity for this geological unit is 320 ohm-m.

The maximum generalized lacunarity of 9.88 (LLD log),
corresponds to the Lower Cretaceous (KI), here the fractal
dimension D

R/S
 equals 1.76. The high-resistivity values are

located in specific zones of the geologic unit, with good linear
fit (~0.94) and slope 0.22, yielding the lacunarity dimension
D

Λ
 = 1.78, very similar to the D

R/S
. The average resistivity

for the KI is 247 ohm-m.

For the Tithonian (JST), the lacunarity value decreases
to 4.3, and the fractal dimension to 1.7. The slope is relatively
low (0.13) and the linear fit is not so good (R2 = 0.76). The
lacunarity dimension is 1.87, significantly greater than D

R/S
.

The average resistivity is 1669 ohm-m. This layer corresponds
to the hydrocarbon source rock.

In the Kimmeridgian (JSK), the LLD log has a similar
behavior as in the previous layer. The generalized lacunarity
is 3.09 (lowest in the interval) and the fractal dimension is
also relatively low (1.56). The lacunarity curve shows a slope
break, but has a meaningful linear fit (slope = 0.26, R2 =
0.92), giving a lacunarity dimension of 1.75. The resistivity
in JSK is high (5109 ohm-m).

Figure 10 shows an inverse linear behavior of the LLD
resistivity in function of lacunarity. It is observed that the
corresponding Cretaceous data (KS, KM, KI) tend to cluster
in the upper left region of the straight line, corresponding to
high lacunarity and medium resistivity. In contrast, the
Jurassic data (JST, JSK) occupy the other side of the straight
line, with low lacunarity and high resistivity. The Cretaceous
data correspond to reservoir rocks, the Jurassic to source
rocks: the differences in their lacunarities and fractal
dimensions extracted from the resistivity logs are clearly
observed (Figure 10).

4.2.2. Lacunarity for the LLS resistivity log by strata
(BTPKS, KM, KI, JST, JSK)

For the shallow resistivity log (LLS) in BTPKS the
lacunarity is lower (Λ(1) = 1.34) than the previously discussed

values, with a relatively homogeneous resistivity
distribution. The R/S fractal dimension is also low, D

R/S
 =

1.61. Resistivity variation is smaller than 100 ohm-m (with
an average of 29 ohm-m). The slope of the lacunarity curve
is also low (0.06) with R2 = 0.97.

In the Middle Cretaceous (KM), the shallow resistivity
distribution (LLS) appears homogeneous, with low
lacunarity, similar to the previous one (1.34) and a fractal
dimension slightly greater than in the preceding case D

R/S
 =

1.67). The maximum resistivity is smaller than 100 ohm-m,
the average being 40 ohm-m. The slope of the lacunarity
curve is low (0.08), with R2 = 0.93.

For the Lower Cretaceous (KI), the lacunarity decreases
further (Λ(1) = 1.15), with a simultaneous increase of fractal
dimension (D

R/S
 = 1.73). The average resistivity is 37 ohm-

m. The distribution tends to be homogeneous, the slope is
low (0.024), with R2 = 0.93.

In the Tithonian (JST), the lacunarity value (1.67)
increases towards the medium and lower parts of the interval.
The maximal resistivity reaches 1500 ohm-m, with an
average of 294 ohm-m. The fractal dimension remains
practically the same as in the previous layer (D

R/S
 = 1.73).

Given the nature of the resistivity distribution, with high
local values, the lacunarity curve presents slope breaks at
box sizes greater than 30 m. There is low slope (0.09), with
R2 = 0.89.

The LLS log changes radically in the Kimmeridgian
(JSK), where its lacunarity increases (Λ(1) = 1.92) and the
fractal dimension decreases (D

R/S
) = 1.43). The resistivity

maximum is close to 5000 ohm-m, but the average resistivity
is only 1212 ohm-m. The lacunarity function has slope breaks
at box size ~80 m, for which the slope increases (0.12), with
R2 = 0.86.

Figure 11 displays the relation between lacunarity and
resistivity by geological unit. For Cretaceous data, the points
are clustered in the range of low values of lacunarity and
resistivity; for the Jurassic in relatively high values of both
lacunarity and resistivity.

The LLS log should be considered as of low sensitivity
and not apt for the exact calculation of fractal parameters of
contrasting geologies. As a consequence, the tendency of
the lacunarity change is inverse to that observed in Figures
10 and 11.

4.2.3. Lacunarity for the MSFL resistivity log by strata
(BTPKS, KM, KI, JST, JSK)

In the Upper Cretaceous (BTPKS) the micro-
spherically focused resistivity log (MSFL), is heterogeneous,



110

R. D. Arizabalo et al.

with high lacunarity (Λ(1) = 6.59) and an R/S fractal
dimension equal to 1.64. The resistivity’s upper limit is 2000
ohm-m, with an average of 91 ohm-m. The lacunarity
function is approximately linear with scale, having a high
slope (α ~ 0.24), with R2 = 0.96, resulting in a lacunarity
dimension 1.76, close to D

R/S
.

For the Middle Cretaceous, the lacunarity decreases
(to 3.77), but the fractal dimension increases (D

R/S
 = 1.86),

indicating increased rugosity, measured by the Hurst
exponent (H = 2 – D = 0.15). The upper limit of the resistivity
values is again 2000 ohm-m with an average of 178 ohm-m.
The slope (|α| ~ 0.18) in this particular case approaches the
value of H, resulting in a D

Λ
 = 1.82. The linear fitting is

excellent (R2 = 0.94).

The generalized lacunarity in the Lower Cretaceous is
Λ(1) = 3.18, with fractal dimension D

R/S
 = 1.65. The

resistivity remains under 500 ohm-m, except a few peaks of
approximately 1500 ohm-m. The average is 92 ohm-m. Such
a distribution produces a curve that smoothly descends,
indicating some tendency for homogenization for large box
sizes. Consequently, the fit is poor (R2 = 0.77), and the low
slope (0.09) causes a significant difference between the
lacunarity dimension and D

R/S
.

The distribution of resistivities is more homogeneous
in the Tithonian, where lacunarity significantly decreaseses
(Λ(1) = 1.88) and fractal dimension increases (D

R/S
) = 1.9).

The resistivity remains below 2000 ohm-m, with an average
of 677 ohm-m. The lacunarity curve has slope breaks,
indicating multifractal behavior. The correlation coefficient
is low (R2 = 0.77) and the slope is also low (~0.07).
Nevertheless, the MSFL method is still more sensitive to
lacunarity variations than the LLS.

In the Kimmeridgian, the lacunarity decreases still
more Λ(1) = 1.59, with D

R/S
 = 1.85. The upper resistivity

limit is 2000 ohm-m, the average is 880 ohm-m. There are

slope variations at box sizes ~150 m, the linear fit produces
a low slope (0.08), with R2 = 0.86.

As is the case of Λ extracted from the LLD logs, the
lacunarity values in the KS, KM and KI strata are clustered
in the region of high lacunarity and low resistivity, contrary
to those of JST and JSK, where they have low lacunarity
and high resistivity.

4.3 Lacunarity of different log types as function of the
radial penetration depth

Plotting the absolute value of the slope |α| versus
generalized lacunarity Λ(1) for each geophysical log, we
obtain Figure 12, where it is evident that with greater
lacunarity, better resolution of each method is observed. The
slope obtained with this linear fit (0.3), shows the behavior
of lacunarity scaling.

In the plot, the density log (RHOB) has the lowest
resolution, the LLD resistivity log has the greatest resolution.
The lacunarity varies as function of the resolution of each
logging method. Lacunarity increases in the following order
for the various logs: RHOB, CALI, PEF, URAN, GR, NPHI,
POTA, CGR, THOR, MSFL, DRHO, LLS and LLD. This
can be explained by considering the radial penetration of
each method. We can imagine that around the well, five
cylindrical layers with different radius L exist, at increasing
distances from the wall of the borehole.

The RHOB, CALI, PEF, URAN, GR, POTA and THOR
logs collect information in nearby cylinders of about 15 cm
radius. The MSFL log has greater radial penetration, of
approximately 50 cm (corresponding to the flushed-out
zone). In case of the DRHO log, the corrected density is
based on backscattered neutron- and gamma- rays, so the
penetration is somewhat greater than of the previously
mentioned RHOB log, because of the higher energy of
neutrons. The LLS log is focused on the intermediate zone,

Fig. 10. Plot showing the lacunarity variation of the entire LLD
well log as a function of the LLD resistivity with strata.

Fig. 11. Plot showing the lacunarity variation of the entire LLS
well log as a function of the LLS resistivity with strata.
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that is to say, between 50 cm to 1 m, so that L ~ 75 cm.
Finally, the information of the LLD comes from a maximum
radius that reaches 1 m or more. By Eq. (14), the variation
of lacunarity obeys a scaling law:

        Λ( )r r
L

D E
∝ ( ) −

 , (14)

where r is the box size, L is the system size. As D < E, and
the system size of the well logs increases in the exact order
previously mentioned (for RHOB, this is a region of 15 cm
diameter around the borehole and for LLD greater than a
meter), the scaling law (14) explains the observed systematic
increase of lacunarity.

5. CONCLUSIONS

We presented results of fractal and lacunarity well logs
analysis. In a well traversing a carbonate reservoir of the
Gulf of Mexico, different logs were subjected to fractal and
lacunarity analyses (NPHI, RHOB, DRHO, PEF, LLD, LLS,
MSFL, GR, CGR, URAN, POTA, THOR and CALI).
Through the mathematical definition of lacunarity, it has been
found that the resistivity logs (LLD, LLS, and MSFL) have
larger lacunarity than other logs. Lacunarities and fractal
dimension extracted from the resistivity logs are clearly
observed. Cretaceous data (KS, KM, and KI) correspond to
high lacunarity and medium resistivity. In contrast, Jurassic
data (JST, JSK) are associated with low lacunarity and high
resistivity. The Cretaceous data correspond to reservoir
rocks, the Jurassic to source rocks. For all analyzed logs, it
has been shown that geology (BTPKS, KM, KI, JST, JSK)
decisively affect the fractal dimension and lacunarity of the
formations’ stratigraphic properties. Some investigation is
in progress in order to develop a general theory that explains
the lacunarity variation as function of the resolution of each
logging method.
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