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RESUMEN
El uso de las probabilidades condicionales de recurrencia representa una manera válida y razonable de estimar la posible

ocurrencia de grandes sismos. En este trabajo suponemos la distribución gama y logarítmico normal para los intervalos de
recurrencia de los temblores. El proceso sísmico en el segmento de Acapulco-San Marcos puede modelarse como un proceso de
renovación usando un catálogo de grandes sismos (M

s
≥7). Para el modelo gama, un sismo grande puede ocurrir antes de agosto

de 2016 ± 5.14 años. Para el modelo logarítmico normal un sismo grande podrá ocurrir antes de julio de 2016 ± 5.15 años.

PALABRAS CLAVE: Sismos, predicción probabilística, densidad condicional, distribución gama, distribución logarítmico
normal, tiempo de recurrencia, error de predicción.

ABSTRACT
Conditional probabilities for recurrence times of large earthquakes are a reasonable and valid form for estimating the

likelihood of future large earthquakes. In this study we assume a gamma and a lognormal distribution for the recurrence time
intervals of large earthquakes. The seismic process in the Acapulco-San Marcos fault-segment can be modelled as a renewal
process, using a list of historical strong earthquakes (M

s
≥7). For the gamma model, a highly damaging earthquake (M

s
≥7) may

occur approximately before August 2016 ± 5.14 (yrs). For the lognormal model, a highly damaging strong earthquake (M
s
≥7)

may occur aproximately before July 2016 ± 5.15 (yrs).

KEY WORDS: Earthquakes,  probabilistic prediction, conditional density, gamma distribution, lognormal distribution, recurrence
time, prediction error.

INTRODUCTION

Mexico City lies over 200 miles (320 km) from the
subduction zone of the Cocos and North America plates.
The 19 September 1985, Michoacán, Mexico, earthquake
(M=8.1), claimed 10 000 lives and left an estimated
250 000 homeless (Astiz et al., 1987).

Sykes et al. (1999) proposes 10 or 30 years as warning
time for long-term predictions with average repeat time and
statistical variations in individual repeat times for a fault-
segment, and the time elapsed since the previous earthquake
occurred. The physical basis is the slow build up of stress.

In Mexico a 30-year prediction time is appropriate for
active fault-segments of the Mexican subduction zone,
extending over a length of about 1000 km along the Middle
America trench from Jalisco-Colima to Oaxaca region.

By combining data from many different faults,
Nishenko and Buland (1987) obtained a reasonably good fit
of a lognormal distribution to recurrence times. McNally
and Minster (1981) have argued that a Weibull distribution
is appropriate. Other stochastic models have been used for

seismic hazard evaluation, the most common hazard model
being the Poisson process (Cornell, 1968).

The Working Group on California Earthquake
Probabilities (1988) produced a conditional probability map
for the San Andreas fault for the time period 1988-2018.
They used a very similar method to Nishenko and Buland
(1987), except that they modified the dimensionless
coefficient of variation σ=0.21 of the lognormal distribution
to account for uncertainties in the data for each fault segment.

Davies et al., (1989) add two important ingredients to
the lognormal model. First, they account for the time since
the last earthquake in estimating σ and δ. Second, they
account for the uncertainty in the parameters Γ and δ in
estimating earthquake risk. Unlike Nishenko and Buland
(1987), they do not assume a single worldwide value for the
coefficient of variation in the lognormal process. Rather,
they estimate σ and δ independently for each fault segment
from earthquake history.

In this paper, we do not calculate lognormal conditional
probabilities for the occurrence of the next expected strong
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earthquake (M≥7). We try to estimate or predict
approximately the recurrence time τ for the occurrence of
the next strong earthquake (M≥7) in the Acapulco-San
Marcos fault-segment of the Mexican  subduction zone.

Following Wesnousky et al. (1984), we consider a
single fault or fault-segment. We assume that the fault or
fault segment last ruptured at time R

t
 and further define τ

for this fault as the expected time interval from R
t
 until the

next expected rupture of the fault. Let t be the time elapsed
since the most recent earthquake. Wesnousky et al. (1984)
pointed out that they are interested in determining the
probability that the next rupture time will occur during the
time interval (t, t+Δt) conditional to t years having elapsed
since the last rupture at time R

t
.

Following Utsu (1984), we adopt a renewal process
for earthquakes. We use the following notation:

R
t
: time of the last rupture of the fault or fault-segment.

t: the time elapsed since the last rupture to present.
τ: next expected prediction recurrence time.

Following Papoulis (1990, p. 187), the time to the next
earthquake is the time interval τ from the last rupture R

t
 to

the next rupture. This interval is a random variable τττττ ≥ 0
with distribution F(t)=P(τ ≤ t). The difference

R(t) = 1 - F (t) = P(τ τ τ τ τ > t) (1)

is the earthquake system reliability. And F(t) is the
probability that the earthquake system rupture prior to time
t, and R(t) is the probability that the earthquake system
function at time t. The conditional distribution

F P t
t

( ( , , )τ τ| > t) =ττ ττ ττ
ττ
≤ ≥

≥( )P (2)

is the probability that the earthquake system will fail prior
to time τττττ.

Clearly, F (τ | τττττ > t) = 0 if τττττ < t  and

       F F F t
F t

τ τ τ  > t   ,  > t.ττ( ) = −
−

( ) ( )
( )1 (3)

Differentiating with respect to τ, we obtain the
conditional density

            f t f
F t

τ τ τ  ,     > tττ ≥ =
−( ) ( )

( )1  , (4)

where f (τ | τττττ ≥ t) dT is the probability that the earthquake
system will rupture in the time interval (τ,τ +dτ), assuming
that it has not ruptured at time t.

THE CRITERION OF MAXIMUM CONDITIONAL
PROBABILITY DENSITY

We have obtained the conditional probability density
of earthquake occurrence f(τ|τττττ≥t), equation (4). This equation
represents the occurrence of fractures (or earthquakes) in
the earthquake system. Thus, assuming a probability
distribution f (τ) for the recurrence times (τ), it is possible
to obtain a theoretical conditional probability density model
of earthquake occurrence based on a mathematical theory.

A reasonable prediction criterion for the occurrence
interval τ between the last and the next earthquake is the
one which maximizes the conditional probability density
 f (τ | τττττ ≥ t). It is the mode of the conditional probability

∂
∂τ

τf t  ττ ≥( ) = 0  . (5)

So the estimator of τ̂  is the solution of equation (5).

Next, we discuss the application of equations (4) and
(5), using the gamma and lognormal distributions models.

THE GAMMA PROBABILITY DENSITY MODEL

A distribution which plays an important role in statistics
is the gamma distribution. According to Blake (1979), τ has
a gamma probability distribution if its probability density
function is given by

        f eτ
γα

α
τα γτ τ( ) =

( )
− −

Γ
1 ,    > 0 . (6)

This distribution depends of two parameters α and γ
of which we require α > 0, γ > 0.

If τ has a gamma distribution given by equation (6) we
have the mean and variance

E τ
α
γ

( ) = (7)

and

V τ
α

γ
( ) =

2  . (8)

The cumulative distribution for the lognormal random
variable is

F s e dssτ
γ
α

α
α γτ

( ) =
( )

− −∫ Γ
1

0  . (9)

It should be noted that the gamma cumulative
distribution may be estimated by numerical methods.
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The gamma probability density function takes on a
wide variety of shapes depending on its two parameters α
and γ, and is a useful probability density function in terms
of modeling random phenomena.

If α=1, then the probability density function of τ is

      f (τ) = γ exp (-γτ),   τ > 0, γ > 0 (10)

which is simply an exponential random variable with
parameter γ.

Substituting equation (6) and (9) in equation (4) we
obtain the gamma conditional probability density of
earthquake occurrence, as follows

f t

e

s e dsr s

τ

γ
α

τ

γ
α

α
α γτ

α
α γ

ττ ≥( ) =
( )

−
( )

− −

− −∫

Γ

Γ

1

0
11

 
.

(11)

It should be noted that since the observed elapsed time
t is a constant, the cumulative distribution of the gamma
random variable in equation (11) is a constant equal C. Thus,
we can write the gamma conditonal probability density of
earthquake occurrence, equation (11), as follows

    f t W e( )τ
γ

α
τ

α
α γτττ ≥ =

( )
− −

Γ
1

 , (12)

where W
C

=
−
1

1
.

Now, we proceed to find the recurrence time (τ̂ ) which
maximizes the gamma conditional probability density of
earthquake occurrence, equation (12). We find the maximum
of f(τ | τττττ ≥ t) by calculating its derivative and setting it equal
to zero, as follows

     
d

d
f t e

τ
τ

γ
α

τ
α

τ
γ

α
α γτττ ≥( ) =

( )
−( )

−
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=− −

Γ
1 1

0 . (13)

From equation (13), the maximum of f(τ|τττττ ≥ t) appears at

         τ̂
α
γg = −1

, (14)

except that if α < 1, the maximum falls outside the range of
definition (x≥0) and in this case the conditional probability
density of earthquake occurrence is a monotonically
decreasing function to 0 when x → ∞.

THE LOGNORMAL PROBABILITY DENSITY
MODEL

According to Sornette and Knopoff (1997), the estimate
of the time until the next earthquake depends on a precise
estimate of the tail of the probability density function model
and is unstable with respect to presently available data for
the occurrence of large earthquakes.

The lognormal model is an example of a distribution
whose tail decays slower than an exponential.  The lognormal
distribution is similar in tail shape to the Rayleigh
distribution near time t=0 but has a much more slowly
decaying tail for large times. One important characteristic
of the lognormal distribution is that the “tail” of the
distribution is higher than for the normal distribution, so
that events several standard diviations from the mean are
more likely than for a normally distributed variable.

It is necessary to define mathematically the lognormal
distribution.  According to Cooper and McGillen (1971) the
lognormal distribution is a two-parameter family of

distributions, the parameters being σY
2  and Y . The lognormal

probability density function is

    f
y

e
Y Y

τ
τσ π

τ σ

( ) = − −( )1

2

2 2 2
ln

/

 
.

(15)

If the random variable τ has a lognormal distribution
with probability density function given by equation (15),
the mean is

     E e
Y Y( )τ

σ
=

+
1

2
2

(16)

and the variance is

        V e eY Y Y( )τ σ σ
= −

⎛
⎝
⎜

⎞
⎠
⎟+2 2 2

1  . (17)

The cumulative distribution for the lognormal random
variable is

F
S

e ds
Y

In Y Y( )
( )

τ
σ π

τ τ σ
= ∫ − −1

20

22
2

. (18)

It should be noted that the lognormal cumulative
distribution must be evaluated by numerical methods.

Substituting equations (15) and (18) in equation (4),
we obtain the lognormal conditional probability density of
earthquake occurrence
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f t Q

e

s
e ds

y

Y

y

t s Y

Y

Y

( )

(ln )

(ln )
τ

τσ π

σ π

τ
σ

σ

ττ ≥ =

−

− −

− −

∫

1

2

1
1

2

2
2

0

1 2
2

2

2  
.

(19)

It should be noted that since the observed elapsed time
t is a constant, then, the cumulative distribution of the
lognormal  distribution F(t) is equal to a constant D. Thus,
we can write the lognormal conditional probability of
equation (19), as follows:

f t Q e
y

Y
Y( )

(ln )
τ

τσ π

τ
σττ ≥ =

− −1

2

2
2 2

, (20)

where

Q
D

=
−
1

1
.

To estimate the prediction recurrence time ˆlnτ , we find
the maximum of the lognormal conditional probability
density f (τ | τττττ ≥ t), equation (20), by calculating its derivative,
and setting it equal zero, as follows

    
d

dT
f t Q

d

d T
e

Y

Y
Y( )

(ln )
τ

τ σ π

τ
σ  ττ ≥ =

⎧
⎨
⎩

⎫
⎬
⎭

=
− −1

2
0

2
2 2

(21)

from which we obtain the mathematical condition

  ln
(ln )

τ σ
τ

σ−( ) +[ ] =
− −

Y eY

Y
Y2

2
2 2

0 (22)

from which we obtain the equation

lnτ σ−( ) + =Y y
2 0 (23)

and the solution

     lnτ σ= −Y Y
2  . (24)

Using equation (24) we can estimate or predict the
lognormal recurrence of the next expected large earthquake
event.

It should be noted that in the theory of the conditional
probability density by definition of recurrence time the
predicted recurrence time includes the elapsed time t.
However, equation (24) indicates that for the lognormal

model predicted recurrence time ˆlnτ  is independent of the
elapsed time t since the last large earthquake.

In order to apply the lognormal probability density

model, it is first necessary to estimate the parameter σY
2  and

the parameter Y  of the lognormal distribution.

Assuming that the distribution of recurrence times in
the Acapulco-San Marcos fault-segment can be represented
by the lognormal probability distribution and the estimated
sample mean and sample variance are represented by μ and
ν, respectively, the equations (16) and (17) may be used to
determine the lognormal  parameters σY

2  and Y  directly (see
Winkler and Hays, 1975, p. 516) as follows:

         μ
σ

=
+

e
Y Y

1
2

2
(25)

and

ν σ σ= −+e eY Y Y2 2 2

1( ) . (26)

To solve these two equations simultaneously, we note that

        μ
σ σ2

1

2

2

2
2

2

=
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

+
+e e

Y
YY

Y
 . (27)

Substituting equation (27) in equation (26) and solving for

σY
2 , we obtain

σ
ν

μY
2

2 1= +
⎧
⎨
⎩

⎫
⎬
⎭

ln (28)

and from equation (27), we obtain

Y Y= −ln μ σ
1

2
2
 . (29)

Substituting equation (28) in equation (29), we obtain

     Y = − +
⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎩

⎫
⎬
⎭

ln lnμ
ν

μ

1

2
1

2  . (30)

THE ACAPULCO-SAN MARCOS SEGMENT

Selection criteria for choosing sequences for
earthquake catalogs have not been formalized. Thus selection
of boundaries for a fault-segment is not a rigorous process
for which one set of rules can apply to all situations. At
present rupture dimensions of past large earthquakes are
commonly used to define dimensions of current seismic
segments.

The boundaries of the Acapulco-San Marcos fault-
segment were defined on the basis of  great and large
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earthquakes and their associated aftershocks by McNally,
(1981); Singh et al., (1982); Nishenko and Singh, (1987, a,
b). McNally (1981) suggests that the boundaries for the
Acapulco area may be based on the aftershock zone of the
1957 (M

s
=7.5) earthquake. The last major earthquakes

(M
s
>7.5) in this general region occurred in 1957 (M

s
=7.5),

1937 (M
s
=7.5) and 1907 (M

s
=8.0). Singh et al. (1982)

pointed out that the earthquake of 1845, which generated
tsunami waves at Acapulco most probably ruptured the same
area as the 1907 and 1957 events. The 1820 event, which
also generated a tsunami at Acapulco, quite likely ruptured
the same area.

Thus the most likely seismic area for the Acapulco-
San Marcos fault-segment is between latitudes 16.6°-17.7°
N and longitudes 98.1°-99.6° W.  The events that occurred
in this region between 1820 and 1989 are listed in Table 1.

Table 1

Catalog of strong earthquakes (M
s
≥7) in the Acapulco-San

Marcos fault-segment of the Mexican subduction zone,
during the period 1820-1989. Source Anderson et al. (1994).

Occurrence Ocurrence Lat. Long. Recurrence Magnitude
     date date (yrs.) (°N) (°W) time (yrs.) M

s

1820-05-04 1820.43 17.2 99.6 7.6
1845-04-07 1845.35 16.6 99.2 24.92 8.1
1874-03-16 1874.29 12.7 99.1 28.94 7.3
1907-04-15 1907.37 16.7 99.2 33.08 7.7
1937-12-23 1938.06 17.1 98.1 30.69 7.5
1957-07-28 1957.66 17.1 99.1 19.60 7.5
1989-04-25 1989.40 16.6 99.5 31.74 6.9

Following Olsson (1982) and Utsu (1984), in the case where
more than one large earthquake has taken place withing a
short time interval, we may consider all but the largest as
aftershocks and eliminate them from Table 1.

ESTIMATE OF THE GAMMA PREDICTION

Using the data given in Table 1 for the Acapulco-San
Marcos fault-segment, we estimate the sample mean
μ=28.1617 and sample variance ν=25.56066. Next we
estimate the parameter α and γ. To do this, equations (7)
and (8) and the estimated sample mean μ=28.1617 and
sample variance γ=25.56066 (see Winkler and Hays, 1975,
p. 516), as follows

μ
α
γ

ν
α

γ
=       and      =

2  . (31)

We calculate α  and γ, solving equations (31)
simultaneously, and we find α=31.02742 and γ=1.10176.

To estimate or predict the recurrence time ( τ̂ g ), using the

gamma model, we substitute the values of the parameters in
equation (14) and we obtain

ˆ
.

.
. ( )τ g yrs=

−
=

31 02742 1

1 10176
27 25    .

Finally, we estimate or predict the occurrence time of
the next expected strong earthquake (M

s
≥7). To do this we

add to the predicted gamma recurrence time τ̂ g =27.25 (yrs.)

the occurrence time of the last observed earthquake
R

t
=1989.40. Thus we conclude that using the gamma model,

the next large earthquake may occur approximately before
the year 2016.65, or equivalently before August 2016.

PREDICTION ERROR FOR THE GAMMA
PREDICTION

Following Benjamin and Cornell (1976, p. 176), any
predictor of τ, say τ̂ , has a square error:

ε τ τ τ μ ττ
2 2 2

= −( )⎡
⎣⎢

⎤
⎦⎥

= [ ] + −( )E Varˆ ˆ , (32)

where μ
τ
 is the mean of the sample τ i{ }.

Using the data given in Table 1, we have calculated
μ
τ
=28.1617 (yrs.) and Var [τ]=25.56066 (yrs2). Thus using

equation (32) we estimate the square error (ε2) for the

predicted gamma recurrence time τ̂ g =27.25 (yrs.) as follows:

εg yrs yrs yrs yrs2 2 2 225 56066 28 1617 27 25 29 39186= + − =. ( ) ( . . ) . ( )

or equivalently

ε
g
= ± 5.14 (yrs.)

Using this value of the prediction error, the gamma
occurrence time of the next expected strong earthquake
(M

s
≥7) in the Acapulco-San Marcos fault-segment can be

written t
g
=August 2016±5.14 yrs.

ESTIMATE OF THE LOGNORMAL PREDICTION

Using the data given in Table 1 we have estimated the
sample mean μ=28.1617 and sample variance γ=25.56066.

To estimate the parameters σY
2  and Y  we use equations (28)

and (30), and we obtain σY
2  =0.02956 and Y  =3.32454.

To estimate or predict the recurrence time (τ̂
ln
) using

the lognormal model, we substitute the values of the

parameters Y =3.32454 and σY
2 =0.02956 in equation (24)

and we obtain
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ln ˆ . .τ σ= − = −Y y
2 3 32454 0 02956

from which we obtain

ˆlnτ =27.20 (yrs) .

Next, to estimate or predict the lognormal occurrence
time of the next strong earthquake (M

s
≥7) in the Acapulco-

San Marcos fault-segment, we add to the precited recurrence

time ˆlnτ =27.20 (yrs) the occurrence time of the last observed
earthquake Rt=1989.40. Thus, we conclude that the next
expected strong earthquake in the Acapulco-San Marcos may
occur approximately before the year 2016.60 or equivalently
before July 2016.

PREDICTION ERROR FOR THE LOGNORMAL
PREDICTION

Using the data given in Table 1, we have calculated
μ

τ
=28.1617 (yrs) and Var [τ]=25.56066 (yrs2). Using

equation (32) we estimate the square error (ε2) for the

predicted lognormal recurrence time ( ˆlnτ =27.20 yrs) as
follows:

εln . ( ) ( . . ) . ( )2 2 2 225 56066 28 1617 27 20 26 48553= + − =yrs yrs yrs yrs

or equivalently

ε
ln
 = ± 5.15 (yrs) .

Using this value of the error, the lognormal occurrence
time of the expected strong earthquake (M

s
≥7) in the

Acapulco-San Marcos fault-segment can be written

t = July 2016±5.15 (yrs) .

CONCLUSIONS

We attempted a probabilistic analysis of the problem
of forecasting the occurrence time of the next strong
earthquake (M

s
≥7) in the Acapulco-San Marcos fault-

segment of the Mexican subduction zone. In order to do
this, we use the conditional probability density of earthquake
occurrence and the criterion that the conditional probability
density of earthquake occurrence is a maximum when the
earthquake occur.

We have adopted the gamma distribution and the
lognormal distribution models because Nirigasawa (1972),
Rikitake (1976), Utsu (9184) and Jacob (1984) carried out
statistical studies of the recurrence time interval for great
earthquakes mostly occurring at a number of subduction
zones. They generally concluded that the gamma or
lognormal distribution fit most of the existing recurrence
data fairly well.

In addition, we have adopted the lognormal distribution
to determine the conditional probability density of
earthquake occurrence, to illustrate improvements in
probabilistic earthquake prediction methodology and
facilitate the comparison with previous applications of the
lognormal distribution to earthquake prediction studies.

The lognormal distribution has been used for
earthquake conditional probabilistic studies for about 20
years. The new contribution here is to use it to make the
prediction of the future recurrence time t of the next expected
large earthquake. To do this we introduce the conditional
probability density and the criterion that the conditional
probability density is maximum when the new earthquake
occurs.

We estimate a recurrence time τ̂
g
=27.25 (yrs) with an

error ε
g
= ± 5.14 (yrs) for the occurrence of the next expected

strong earthquake (M
s
≥7) in the Acapulco-San Marcos fault-

segment, using as criterion the maximum of the gamma
conditional density f(τ | τττττ ≥ t) of earthquake occurrence. We

also estimate or predict a recurrence time ˆlnτ =27.20 (yrs)
with a prediction error ε

ln
 = ± 5.15 (yrs.) for the occurrence

of the same expected strong earthquake (M
s
≥7) in the

Acapulco-San Marcos fault-segment, asuming as criterion
of the maximum of the lognormal conditional density f(τ |τττττ
≥ t) of the earthquake occurrence.

Thus we conclude that both predictions agree that a
strong earthquake (M

s
≥7) may occur in the year 2016 in the

Acapulco-San Marcos fault-segment.  This highly damaging
earthquake will affect the city of Mexico.
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