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ABSTRACT

In this paper, an alternative approach to modeling and simulating spreads between crude oil and petro-
leum products is proposed. The aim is to provide a model that can be used as a risk management tool
for risk quantification purposes. In particular, the relationship between the crude oil and gasoline
spread and crude oil price was assessed. The methodology proposed is based on first-order Markov
chain simulations. We demonstrate that although the proposed model is based on the empirical
behavior of energy commodity spreads, this risk management tool reduces misquantifications of the
risk generated by the price differentials of particular concern to this study and that this modeling
alternative can help diminish model risk with respect to other existing models.
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RESUMEN

En este articulo, se propone un enfoque alternativo para modelar y simular los diferenciales entre el
precio del petréleo crudo y el de sus productos refinados. El objetivo es proporcionar un modelo
que pueda utilizarse como herramienta de administracion de riesgos, particularmente en lo que se
refiere a la cuantificacion de riesgos. Para el desarrollo de la metodologia propuesta se evalud par-
ticularmente la relacion entre la dispersion del petréleo crudo y la gasolina y el precio del petréleo
crudo. La metodologia propuesta en el presente documento se basé en simulaciones de la cadena de
Markov de primer orden. Demostramos que, a pesar de que el modelo aqui propuesto se basa en el
comportamiento empirico de los diferenciales de las materias primas energéticas, esta herramien-
ta de gestion de riesgos reduce la mala cuantificacion del riesgo generado por los diferenciales de
precios de especial interés para este estudio y que esta alternativa de modelizaciéon puede ayudar-
nos a disminuir el riesgo de los modelos en comparacion con otros modelos existentes.
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INTRODUCTION

Performing risk quantification analyses for portfolios conformed of crude oil and
refined products is an important issue for refiners, integrated oil companies and any
other entity that is particularly exposed to portfolios with short and long posi-
tions on these products. Clearly, one of the most important risk factors affecting
financial results and determining the cash flows at risk in this type of entities is the
spread between the prices of these energy commodities.

The differential between these prices is commonly known as refining margin,
and it is a key factor in determining profits and losses of the aforementioned entities
to a greater or lesser extent. As mentioned in Garcia Mirantes ef al. (2012), “Refining
is a margin business,” so refiners’ profits, in particular, are essentially independent of
oil and product prices in nominal terms. In other words, the profits of a refining
company depend only upon the difference between the prices of crude oil and the
refined products. Integrated oil companies, on the other hand, are exposed to both:
crude oil and refined product price levels and the refining margin itself to vary-
ing degrees.

It can be inferred that having models that make it possible to adequately repli-
cate the behavior of the refining margin is fundamental for the valuation of port-
folios composed of crude oil and its refined products, and their appropriate imple-
mentation constitutes a major challenge for companies in the oil industry. With this
type of models, integrated oil companies and refineries can generate different
scenarios that they might face during a project or fiscal year and thereby assess
potential economic performance to consider in the decision-making process.

When it comes to the behavior of the refining margin, it is important to bear
in mind that, as pointed out in Garcia Mirantes et al. (2012), the spread between
these commodity prices does not always rise when both the crude oil price and that
of the corresponding commodity increase, and contrariwise. Therefore, analysts
must be cautious when selecting a model should they be willing to replicate this
feature of the spread behavior.

Several studies have aimed at finding the main factors determining the spread
distribution between crude oil and its refined product prices. For instance, the
results of econometric analyses carried out by Kauffmann and Laskowski (2005)
claim to show that the behavior of the spread between motor gasoline and crude oil
prices can be attributed to refinery utilization rates and inventory behavior, whereas
contractual arrangements between retailers and consumers is argued to be one of
the main factors that explain the behavior of the spread between home heating oil
and crude oil prices.
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As summarized in Zhang et al. (2015), among other factors that have been ar-
gued to explain the behavior of the spreads between crude oil and refined petroleum
product prices over time are: physical storage availability, transportation constraints,
the driving season, and technological changes on the demand side.

The spread-driving factors mentioned above are usually variables whose
value is not feasible to model when attempting to carry out simulation analyses
for risk quantification purposes. Additionally, they may become less relevant when
carrying out long run risk management analyses. Given this, the aforementioned
factors will not be explicitly incorporated into the spread modeling process in
this study.

There has also been an intensive discussion around whether the relationship
between the prices of crude oil and refined petroleum products is asymmetric when
analyzing co-movements of these prices. Numerous studies that explore the relation-
ship between crude oil and refined petroleum product prices, such as Kaufmann
and Laskowski (2005), claim there is an asymmetric response of refined petroleum
product prices —gasoline in particular- to crude oil price movements, whereas
in recent analyses, Zhang et al. (2015) argue that a threshold error correction
model reveals an “almost symmetric” relationship between the prices of these
commodities.

For the purposes of this paper, whether or not an asymmetric relationship
exists between the prices of crude oil and refined petroleum products shall not be
taken into consideration, since as we will explain later, the value of the spread
between crude oil and refined petroleum products will be modeled without explicit-
ly considering variable co-movements. Additionally, and also to be explained
later, evidence has not been found in this study of co-movements between the crude
oil price and the spread between this commodity and the crude oil and refined pe-
troleum products price differentials.

Unfortunately, it is not common in the literature to find models that adequately
emulate the behavior of the aforementioned price differentials, previously referred to
as refining margins, and are, therefore, suitable for performing risk quantification
analyses. In contrast, research regarding price differentials usually focuses on the
development of models generally designed and calibrated to estimate the price of
energy spread derivatives, such as options, forwards and swaps, as their main
objective, but we barely find models aimed merely at carrying out risk quantifi-
cation analyses.

Thus, since valuation of derivatives is the main objective for developing the
most popular price differential models, they are designed under the risk neutral
probability measure and may, consequently, be inadequate for risk quantification
analysis.
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Carmona and Durrelman (1998), for instance, focus their study on demonstrat-
ing how Kirk’s formula provides an accurate approximation for pricing options but
do not spend time proving whether the mathematical framework used to model
price differentials is appropriate to describe the behavior of the spreads whose
options are to be priced. This kind of model allows the spreads to take on unre-
alistic values in the long run. Most of the existing models may not, therefore, be
the most appropriate for using as risk management tools.

When modeling stochastic variables, it is important to keep in mind that if
aiming to carry out risk quantification analyses, the main objective in selecting an
appropriate model must be to avoid choosing one that either overestimates or under-
estimates the actual risk embedded in the variables to be analyzed. Ideally, a model
should be selected that does not only avoid these mismeasurements but also best
describes the behavior or the risk factors.

Consequently, the hypothesis for this research consists of checking whether the
development of a model based on first-order Markov chains, under the real proba-
bility measure, could be considered a more efficient tool for carrying out risk mea-
suring necessary for company decision-making. To this end, the performance
of such a model should be compared with the results offered by some of the most
popular models for price differentials in the known literature.

In addition, this model can be used to evaluate projects such as the revamping
and rehabilitation of a refinery or a refining system, like future ones planned for
Mexico, in order to identify if such projects might be profitable, as well as the proba-
bility of them being more profitable than required by such projects.

Thus, the two main contributions of this research are: i) to provide a model for
energy product price differentials based on first-order Markov chains, and i) that the
model will be based on dynamic transition matrices and conditioned to the price
range containing crude oil, as an explanatory variable.

Section I will provide a literature review of some of the most popular existing
one-factor models for energy spreads. Section II will present the definition of the
variables we will be working with, their main features and the model fitting issues
found through exploratory data analyses, as well as an explanation of some of the
main limitations of the existing one-factor models presented in section I as risk
management tools. Section III will introduce our proposed model for energy
spreads, based on empirical distribution and using switching first-order Markov
chain Monte Carlo simulation. Finally, section IV will compare the results of a risk
quantification analysis carried out with two different models, the first one using
the correlated two-factor Clewlow and Strickland model to simulate the individu-
al legs of the spread between crude oil and gasoline prices as correlated variables,
and the second obtained from the model proposed in section III and showing how
it can help avoid misquantifications in this kind of analyses.

112



MODELING CRUDE OIL AND REFINED PETROLEUM PRODUCT SPREADS:
AN ALTERNATIVE TOOL FOR RISK QUANTIFICATION

I. THE CURRENT FRAMEWORK:
MOST POPULAR ONE-FACTOR MODELS

For spread modeling, Blanco et al. (2012) introduce some of the most popular me-
thodologies to model two-asset price spreads and explain their main uses and limi-
tations. While presenting these models, the authors emphasize one critical question
that any analyst must deal with before modeling spreads. This question is “whether
to model the spread explicitly as a stochastic variable or to model the individual legs
of the spread as correlated variables”

In this section, some of the most popular methodologies for modeling two-asset
price spreads will be introduced. Later, section II will present the price differentials
we will be working with and analyze their behavior to determine whether these
models are appropriate for the energy spreads involved.

As mentioned in Blanco et al. (2012), one of the first models proposed for the
spread between two asset prices is based on the assumption that this risk factor could
follow a lognormal distribution and that it could be estimated through a one-factor
model, as the one used in the well-known Black model.

dSt = aStdt + UStth (1)

As explained in the study mentioned above, the main reason for researchers
making this assumption is that since the primary purpose of using this model is to be
able to value spread options by standard option pricing tools, it should be estimated
under a risk-neutral measure. One of the main weaknesses of the model is that it
does not allow for negative values. The next section will verify whether this results in
an adequate assumption for the energy spreads being studied.

Now on to the second most popular one-factor model, presented by Poitras
(1997), the Wilcox Spread Option Formula, carried out for cases where prices would
follow an arithmetic Brownian motion. With this model, changes in the spread are
assumed to be normally distributed variables. This assumption does allow negative
values for the spread, so the problem identified with the first model seems to be
taken care of. The arithmetic Brownian spread process is given by:

As an improvement, a mean-reversion factor with a mean-reverting fixed level
can be incorporated to this normally distributed one-factor model. The stochastic
spread process equation appears below:

dS, = a (S — S,)dt + o dW, (iii)
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This process corresponds to the continuous time analogue of the discrete
time AR(1) process and is pulled towards an equilibrium level $ at a rate a with
volatility o per square root time. To determine the stochastic integral of this pro-
cess, a variation of parameters procedure is required. To do this, it is necessary to
define a new function:

f(Set) = See® (iv)

Finding the derivative via Ito’s lemma, we obtain

df(St, t) =a Steatdt + eatd St (V)

Integration from ¢ to T gives

Sp=e~®T-0[5, — S|+ S+ \/% (1 —e2a(T-)) x ¢ (vi)

where e~N(0,1). At this point, it is important to highlight that the main handicap of
this model is that it results in a symmetric distribution.

So far, we have reviewed the most widely used one-factor models. In the next
section, we will introduce the energy price differentials subject to the investigation
and analyze the main features of those energy spreads, to verify whether the models
presented above could be suitable for any of them.

II. VARIABLES: DEFINITION, MAIN FEATURES
AND MODEL FITTING ISSUE

Although, as we will see later, without assuming the spread between refined
petroleum products and the level of crude oil prices to be totally independent,
in this section we aim to show why the spread should be modeled as an explicit
stochastic variable, consistent with the one-factor models presented in Blanco
et al. (2012).

To prove this statement, we worked with prices of the NYMExX Division New
York Harbor unleaded gasoline blendstock for oxygen blending (RBOB), New York
Harbor uLsp heating oil (Diesel) and West Texas Intermediate crude oil (wTI)
first month future contracts. Historical data from November 2003 to April 2017
were used to carry out the analysis presented below (source: Bloomberg; first month
future contracts).
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Firstly, the spreads between RBOB and wTI (RBOB-WTI Spread) and Diesel
and wtt (Diesel-wTi Spread) prices were obtained in U.S. dollars per barrel. Second-
ly, the day-to-day changes in these two spreads as well as the changes in w1 prices
in absolute terms were calculated. Thirdly, both, the correlations for the full pe-
riod and those based on one year rolling window for the changes in RBOB-wTI
Spread and w1 price levels and for the changes in Diesel-wT1 Spread and w1 prices
were calculated. Scatter plots, as well as rolling window correlation graphs, are
shown below.

Figure 1. One-Year Rolling Window Correlation between
Changes in RBOB-WTI Spread and WTI Price Changes.

Figure 2. Scatter Plot of Changes in RBOB-WTI Spread vs.
wTI Price Changes.
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Figure 3. One-Year Rolling Window Correlation between Changes
of Diesel-wTi Spread and wri Price Changes.
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Figure 4. Scatter Plot of Changes in Diesel-wTi Spread vs.
wTI Price Changes.
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As the scatter plots (figures 2 and 4) show, neither changes in the RBOB-wTI
Spread nor changes in the Diesel-wTi1 Spread seem to show any correlation with
changes in w1 price levels. In addition, the rolling window linear correlation graphs
(figures 1 and 3) show that linear correlations are far from stable given that they
move from positive to negative values throughout the period of study. Based on this,
it would be natural to infer that there is no empirical evidence to assume the exis-
tence of either a positive or negative linear correlation between the two series.

Nevertheless, statistical tests were run to verify the findings. The cross-cor-
relation function was obtained to corroborate whether there is a linear correlation
between changes in both spreads and crude oil price changes, and findings show
that in both spread cases, the correlation exceeds the 95% confidence interval for
some function lags.
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Figure 5. Cross Correlation AwIT vs. A(WTI-RBOB).
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Notwithstanding, given that all values in the cross-correlation function were
low (less than 0.17), additional tests were carried out by sampling several different
sizes in the data.

The sampling showed no consistency in lags of the correlation function for
which confidence levels were exceeded, so no significant correlation can be con-
cluded for any particular lag. Moreover, the cross-correlation level changed from
positive to negative depending on the sample.

Finally, to complement the linear correlation verification, a zero cross-cor-
relations test was performed on the full data and various samples resulting from
sampling. Known as the “multivariate portmanteau,” the test consists of proving
the null hypothesis Hy: p;; = 0 Vi,j = 0,1, ... m versus the alternative hypothesis
Hg:p;j # 0 for some i, j. The tests reveal that the correlations for some samples
can be considered statistically equal to zero, whereas there is rejection of white noise
for some others. Since no consistency was found by carrying out this test, cross-
correlation between price differential changes and crude oil price changes can be
rejected in both cases (RBOB-wTI and Diesel-wT1 Spreads).
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As a result of this, it can be concluded that modeling the RBOB-WTI Spread
and the Diesel-wTI Spread as explicit stochastic variables without incorporating
co-movements between them and w1 crude oil price results appropriate for these
price differentials. The next section of the paper will quickly review some of the
most popular models proposed for these price spreads and discuss their potential
effectiveness as risk management tools.

I1.1. Assessing the Lognormal Model

Considering that with the lognormal model, energy spreads would follow the process
shown in equation (i), it can easily be observed that this would result in an unrealistic
assumption for most of the energy price spreads. It is particularly inadequate for the
crude oil and RBOB gasoline spread, since as seen in the graph shown below (see fig-
ure 7), the RBOB-wTI Spread can take on negative values even if only for short periods
of time, while that could never happen with a lognormal distribution for spreads.

Figure 7. Historical Behavior RBOB-WTI Spread.
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Figure 8. Historical Behavior Diesel-wTi Spread.
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In the case of Diesel-wTi Spread, there is not enough empirical evidence to up-
hold that the price differential can have negative values, although values below zero
should not be discarded given the nature of the variable. In any event, to verify
whether the Diesel-wT1 Spread could be considered to follow lognormal distribu-
tion, the assumption of In (Diesel-wTi Spread) following a random walk was tested.

The Homoscedastic Increments test was used for this. In other words, we
tested whether there is statistical evidence that variance of In(S) - In (S, ) could
be considered to be twice the variance of In(S) - In (S, ) and whether the variance
of In(S) - In (S, ;) could be considered to triple the variance of In(S) - In (S, ).
From this point forth, we shall denote S, as the value of the spread we are studying
at time £.

The results of the test show that the assumption that In(Diesel-wT1 Spread)
follows a Random Walk must be rejected (statistics are shown in Table 1); the
errors of the variable In(Diesel-wTI Spread) do not behave as independent and
identically distributed Gaussian random variables. Consequently, the lognormal
model is not an appropriate model for this price differential.

Table 1. Homoscedastic Increments Test for In(Diesel-wTi Spread).

n 0.00060

G’ 0.00715

N 0.00635

(2n)*34 -0.06088

20050, %(2*2)*° -0.01663
25050, %(2%2)*° 0.01663
(2n)*%), -8.51815
205%2°° 2.32617
2505%2%° 2.32617
20,025%2%° 2.77181
Z557e¥2™° 2.77181

With 95% confidence, the hypothesis of errors being
independent and identically distributed is rejected.

As additional evidence to test lognormal distribution assumption, the impli-
cation that “the spread volatility in absolute terms would increase as the size of the
spread increased” was verified, in line with what Blanco stated (2012). Even though
we have already provided evidence that the lognormal assumption for RBOB-WTI
and Diesel-wrt1 Spreads does not result in an adequate assumption, these final
tests were performed to verify for both spreads whether volatility increases in abso-
lute terms as size augments.
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First, using a one-month rolling window and the one-month spread level
average, the standard deviation of the spreads was calculated for each of the two
spreads. Additionally, the scatter plot for the levels of the spreads versus the value
of their absolute changes was obtained. The resulting graphs are shown below
(see figures 9 to 12).

Figure 9. RBOB-WTI Spread Level vs. RBOB-WTI
Spread Changes.

Figure 10. One-Month Moving Average vs. One-Month Rolling
Window Volatility of RBOB-WTI Spread.

RBOB-WTI Spread Volatility

RBOB-WTI Spread Moving Average
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Figure 11. Diesel-wTi Spread Level vs. Diesel-wTi
Spread Changes.

10 A

Figure 12. One-Month Moving Average vs. One-Month Rolling
Window Volatility of Diesel-wTi Spread.

As seen in the scatter plots of both the RBoB-wTI and Diesel-wT1 spread
levels versus changes, there is no evidence that high spread levels imply greater
changes in the spreads. Also, comparing one-month rolling window volatility
with their respective one-month moving average graphs does not show any clear
relationship between rRBOB-wTI and Diesel-wTI spread levels and their respective
volatility.
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Finally, an F-test to prove equal variance was carried out for different levels of
the spreads. Although findings showed that for some levels of the spreads the null
hypothesis of equal variance should be rejected, for some cases in the medium and
high spread levels the assumption of equal variances holds with 95% confidence for
both spreads.

It can thus be concluded that assuming lognormality to model RBOB-wTI and
Diesel-wTI spreads is inadequate considering the behavior of crude oil and refined
petroleum product spreads.

I1.2. Assessing the Arithmetic Brownian Motion Model

The second one-factor model we will test is the arithmetic Brownian motion model
shown in equation (ii). As mentioned above, the drawback to this model is that
it implies that the values taken by the stochastic variable are symmetric, as Blanco
et al. (2012) point out; the model can be improved by incorporating an additional
jump term in the spread price process.

Nevertheless, even with the incorporation of jumps, the main disadvantage
of the process shown above is that the spread distribution is almost symmetrical.
Without incorporating jumps, the long run distribution of the spread would
provide practically the same probability of being above and below the mean re-
version level.

As a result of the feature described above, this one-factor model permits spread
values that can be above or below the empirical mean reverting value of the RBOB-
wt1 and Diesel-wTi spread with the same probability, as opposed to what has been
observed historically. Although we are not affirming these spreads cannot take
values outside those historically observed, it is clear that there must be a lower
boundary for those spread values, since should gasoline or diesel prices remain
below the crude oil price for long, refineries and integrated oil companies would
stop processing those products due to lack of profitability. Moreover, by using this
model there could be a misquantification of the asymmetry observed historically,
which could lead to overestimating the financial results of this type of companies.

Consequently, it can be shown that the risk metrics generated from this model
will not be consistent with those that could be inferred from the empirical distri-
bution of the spreads, which could lead to erroneous conclusions when carrying
out risk quantification analyses.

The next section of the paper will propose a model based on the empirical
distribution of the RBOB-wTI Spread. A switching Markov chain model will be
proposed, as it could result in a more appropriate risk quantification tool and might
reduce model risks that could lead to spread risk mismeasurement.
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ITI. MODEL: AN ALTERNATIVE METHODOLOGY TO SIMULATE
THE VALUE OF PRICE SPREADS

So far, we have observed that some of the most popular methodologies for mod-
eling the value of spreads between crude oil and refined petroleum products —as
explicit stochastic variables— contain important model risks for carrying out risk
quantification analyses. In this section, an alternative methodology for modeling
the value of this type of spreads will be introduced. In the scope of this study, we will
particularly focus on modeling the value of the RBOB-wTI Spread.

It is important to bear in mind that the main purpose of the methodology
proposed here is to provide analysts with a risk management tool for risk quan-
tification and not for valuation of spread derivatives, as opposed to Poitras (1997)
and Blanco et al. (2012), whose main goal is to price these hedging instruments and
for which some of the main handicaps are inconsistency with the absence-of-ar-
bitrage accomplishment and lack of market pricing information. In other words,
the methodology proposed herein is intended be used for quantification of risk
in the real world in contrast with that used in most models, which is designed to
carry out risk-neutral pricing. Since the models designed to price derivatives
incorporate market expectations about future spread value for both the risk-neu-
tral expected value (based on either the forward or future values of the spread)
and implied spread volatility (usually obtained from option prices), using the
methodology we propose would lead to significantly different values from those
quoted in the market, given that these values neither can be nor are intended to be
integrated in the model.

The proposed methodology consists of a simple model based on switching
Markov chain Monte Carlo simulations, where the Markov chain determining the
spread level changes will depend on the crude oil price level. Thus, the value of
the Crude Oil and Refined Petroleum Product Spread at time ¢ will not only depend
on the value of the spread at time ¢-1 but also on a simulated value of the crude
oil price at time ¢. The latter price will be simulated by one of the most popular
models for commodity prices, which will be introduced later on: the Clewlow and
Strickland model.

The motivation for proposing a spread level model that depends on both the
value of the spread at time ¢-1 and the value of crude oil price at time ¢ is that after
carrying out exploratory data analysis, it was found that the values that RBOB-wTI
Spread have taken over time do vary depending on variations in crude oil prices.
To show this, we will first present the scatter plot of the values of the RBOB-wTI
Spread versus the wt1 crude oil price levels (see figure 13).
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Figure 13. RBOB-WTI Spread vs. wTI Crude QOil Price.
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As seen in the chart, when crude oil values have fallen below levels of around
U.S. 60 dollars per barrel, the price differential between crude oil and RBOB gasoline
has not exceeded levels of U.S. 30 dollars per barrel.

In order to test whether this empirical result is statistically significant, in other
words whether significant differences exist between the behavior of the RBOB-wTI
Spread when the wTt crude oil price has fallen below U.S. 60 dollars per barrel
and the behavior when this crude oil price has been above that level, the following
steps were carried out.

First, the RBOB-wTI Spread sample was divided into six subsamples of approx-
imately equal size stratifying the sample based on the prices of the RBOB-wTI
Spread crude oil price from lowest to highest, two of them corresponding to values
where the wTI crude oil price has fallen below U.S. 60 dollars per barrel and four
of them to values above this price.

Secondly, the hypothesis of same means and same variance under normal
distribution assumption was tested for each pair of samples.

Finally, the two-sample Kolmogorov-Smirnov test was used to test equality of
these continuous one-dimensional probability distributions.

As a result, statistical evidence was not found to reject the hypothesis that
sample 1 and 2 below are equally distributed. In other words, the same mean
and same variance hypothesis was accepted with 99% confidence. Moreover, based
on the Kolmogorov-Smirnov test we can consider that samples 1 and 2 follow
the same distribution.

Similarly, for samples 3, 4, 5 and 6, the samples corresponding to the range
where the w1 crude oil price has taken values above U.S. 60 dollars per barrel,
it was found that the null hypothesis of same mean and same variance was accepted
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with 99% confidence. Regarding the Kolmogorov-Smirnov test, even though
the null hypothesis of equal distribution was rejected for some pairs of samples, the
hypothesis of the RBoB-wTI Spread crude oil having the same distribution through-
out the range can be considered to hold where the wTI crude oil price has taken
values above U.S. 60 dollars per barrel.

On the other hand, the null hypothesis of distribution of samples 1 and 2 having
same mean, same variance and following the same distribution as samples 3 to 6 has
been rejected in all cases. Based on this, we can assume there is sufficient empirical
evidence to determine the null hypothesis that the RBoB-wTI Spread crude oil
has the same distribution for the range where the w1 crude oil price has taken
values below U.S. 60 dollars, and the range where w1 has been above this value must
be rejected. The plots of some pairs of distributions are shown below (see figures 14
to 17) only for illustrative purposes.

Figure 14. Histogram Sample 1 vs. Sample 2.

Figure 15. Histogram Sample 2 vs. Sample 3.
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Figure 16. Histogram Sample 1 vs. Sample 2.
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Figure 17. Histogram Sample 2 vs. Sample 3.
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Nonetheless, as will be explained later, our simulation model will allow for the
existence of RBOB-wTI Spread values above U.S. 30 dollars per barrel for wt1 crude
oil price levels, although with a lower occurrence probability than that estimated
for different crude oil price ranges.

The classification described above is based on empirical data, and the deter-
mination on how the crude oil price ranges must be partitioned will vary depending
on the behavior of the crude oil and refined product spread to be analyzed. Quanti-
tative risk management analysts must perform a similar type of statistical analysis
when working with the price spread between crude oil and other refined petroleum
products. The goal here is to be able to identify the crude oil price levels where spread
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behavior presents different distribution, in order to be able to carry out the steps of
the procedure that will be described below.

Hence, we will initially work with two transition probability matrices corre-
sponding to each of the aforementioned wTI crude oil price ranges. As commonly
done, the values of the RBOB-wTI Spread must be discretized to use the first-order
discrete-time Markov chain methodology. In this particular case of study, the values
of the spread were divided into 21 equally spaced ranges, and one probability transi-
tion matrix was obtained for each of the two different wtt crude oil price ranges, as
described above.

At this stage, it is important to recall that the first-order discrete-time Markov
chain with m states satisfies the following relationship:

PTOb[Yt+1 =kir1lYo = ko, Yt = kt] = Prob[yei1 = kealye = kel (vii)

with m possible states for each value k. Thus, the form of the original probabil-
ity transition matrices is as follows:

) ® @ @ 7

Pk,  Pkyky  Praky = Pipky
® ® @ @
" Prik,  Pryky  Pisk, = Pk,
MO =] _@© 0 0) ) (viii)
Priks  Pryks  Pisks = Prpks
GG G )
(Pkikm  Prokm  Phskm 7 Pk

for i equals to 1 or 2, according to each one of the ranges of prices of w1 crude
oil described above. Thus, M) is the matrix resulting from the RBoB-wTI Spread
behavior observed when the crude oil price is below U.S. 60 dollars per barrel; and
M@ is the one resulting from the RBoB-wTI Spread behavior observed when the
crude oil price is above U.S. 60 per barrel.

These two probability matrices will be the starting point for modeling the RBOB-
wrI Spread value. As we will see shortly, these matrices will only be the input for the
final probability matrices driving the movements on the RBOB-wTI Spread.

The methodology proposed here aims to enable switching the Markov chain
driving the RBOB-wTI Spread movement, S, based on the simulated price of wrr
crude oil at time ¢, denoted as X, from here on. Thus, the probability matrix driving
the movements of the RBOB-wTI Spread from state to state will depend on an addi-
tional parameter, 6, that will be a function of the value of the w1 crude oil price
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at time ¢. To this end, in the model proposed herein, the value of the RBOB-wTI
Spread in each simulation will be obtained through the following equation:

Se =St (M (60(X,), M¢_1),5¢-1) + awy — %a (ix)

where S; is the value of the simulation of the RBoB-wTI Spread obtained
from Markov chain Monte Carlo simulations, coming from what shall be called
the Ruling Matrix at time t, M B which is, in turn, a function of 6(X t) and M,_;;
w,’s are independent random variables uniformly distributed [0,1]; and a is the
length of the equally spaced RBOB-wTI Spread ranges.

The main objective of including parameter a and the random variables w, is to
be able to obtain values for the RBoB-wTI Spread all along each range where the
spread has taken values. A slight variation for this random variable corresponding
to the states at the tails of the spread distribution can be proposed; however that
would require further analysis to determine an adequate distribution for the tails.
For the purposes of this study, extreme value analysis was not carried out to describe
the potential behavior of the tails. In further analysis, a proposal for this distribution
will be presented.

Thus, the form of the Markov chain probability matrix driving the value of the
discrete value of the RBOB-wTI Spread at time ¢, S¢, is a function of the Ruling Matrix,
M, defined above, given the value of S;_, as is common practice.

We will then describe the way in which the Ruling Matrix, M, will be con-
structed based on matrices M and M®, the smoothing parameter 6(X,) and the
value of the Ruling Matrix at time t — 1, M;_, at a particular point in time. We must
first point out that the value of M, will be different for each simulation, since it will
be path dependent and it is a function of the value the crude oil, X,, takes at any
particular time. The adjustments performed to get to on each path lead us to proba-
bility matrices as described below.

Now, as can be inferred, the initial value of the Ruling Matrix M, will depend on
the value the wrt crude oil price takes at time zero, X, that is, if the value of X is
below U.S. 60 dollars per barrel then M "= M; otherwise, M "= M®. Hence, we now
have the value of M, based on which the following values of M, will depend.

To describe the next step in the methodology to build M,, it is relevant to
notice that the range of crude oil values where more observations were obtained
is the higher range, where the w1 crude oil price has taken values above U.S. 60
dollars per barrel.

Based on the data we selected to work with, we observe that throughout our
sample, the proportion of times wTI crude oil has fallen below U.S. 60 dollars per
barrel corresponds to around 61% of the proportion of times it has risen above it.
Based on this, when X, < U.S. 60 dollars per barrel we will have that 6(X)) = 61%/161%;
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conversely, when X > U.S. 60 dollars per barrel 6(X,) = 100%/161%. Thereon, the
probability Ruling Matrix driving the value of the RBOB-wTI Spread will be set up as:

M, = 0(X){I(X, < 60)MD + (1 —1(X, < 60)MP)} + (1 — 0(X))M,_; (%)

where I(X, < 60) = 1, when X, < U.S. 60 dollars per barrel, and I(X, < 60) = 0,
otherwise.

It is important to bear in mind that there can be as many matrices M as
different distributions are observed in the exploratory data analysis described at
the beginning of this section and therefore as many values of M® as the number
of distributions found.

We have now presented a model to simulate the value of the RBOB-wTI Spread
that agrees with the historical behavior of this differential of prices through first-
order Markov chains. As an additional feature for the model, we integrated the
dependence of this spread behavior with the different w1 crude oil price levels.
In our next section, we will introduce one of the most popular one-factor models to
simulate commodity prices. This model was used to simulate both the w1 crude
oil price used to run the spread modeling methodology presented in this section,
and the RBOB gasoline value, in order to compare a two-factor model simulation of
the spread with the model proposed here. The results of carrying out risk quantifi-
cation analysis with both models are shown and compared in section 4.

IV. EMPIRICAL ESTIMATION: MODEL COMPARISON
FOR RISK QUANTIFICATION ANALYSIS

So far, we have introduced a model to simulate the value of the RBOB-wTI Spread
based on a switching Markov chain. As we have seen in the previous section, the
feasible values that the RBOB-wTI Spread can take can be assumed to depend on
the observed value of the w1 crude oil price and were modeled accordingly.

In this sense, a model for simulating the prices of w1 crude oil must be selected.
For this section, we have chosen to model the future prices of wr1 crude oil through
one of the most popular models used by practitioners, the One Factor Model pro-
posed by Clewlow and Strickland (1999).

As proposed in the Clewlow and Strickland article, this model is adjusted by
using the stochastic evolution of the energy forward curve of the wt1 crude oil.
The model is based on the assumption that the forward price curve, F(¢, T), has
a negative exponential form and thus follows the stochastic differential equation
shown below.

dF(tT)

—a(T-t) .
rer) — 0¢ dz(t) (xi)

129



ECONOMIA TEORIA Y PRACTICA [ISSN: 2448-7481] = Nueva Epoca, aflo 29, niimero 54, enero-junio 2021
Antonio Lopez Velarde Loera, José Antonio Nufiez Mora and M. Beatriz Mota Aragén

As can be observed, the model has two parameters for volatility: parameter o
determines the level of spot and forward price return volatility, while « determines
the declining rate for the increments of volatility in maturity forward prices and is
also the speed of mean reversion of the spot price. The importance of parameter «
is that it also represents the speed of mean reversion of the spot price, which is the
variable we will be simulating for the purposes of this paper.

As explained in their article, Clewlow and Strickland’s model for the forward
price curve implies that the spot price process follows the stochastic differential
equation shown below:

_ [aan(o 9 1 a(InF(0,£) — InX,) +—(1 _ e—zat)] dt + odz, (xii)

The equation (xii) is consistent with the initial forward curve F(0, T); in other
words, through this equation the expected value of X, at time s is F(s, f) maintaining
the behavior of the forward curve rate, and makes the long term risk adjusted drift,
u(t), a function of time as follows:

alnF(O t)

u(t) = + InF(0,t) +—(1 e~2at) (xiii)

From the equation shown above, it can easily be shown that [nX is normally
distributed with the parameters specified below:

2 2
InX;~N [InF(0,T) — ;’—a [1- e—Z“T],‘z’—a [1—e~2aT] (xiv)

In order to calibrate the one-factor model presented above based on forward
curve prices, the following methodology can be implemented.

(i) Obtain the historical series of data on future prices F(0, T) for different
maturities. (Data sources such as Bloomberg or Platts can be used).

(i) The volatility of logarithmic changes for each maturity of futures must be
calculated.

Finally, parameters « and o can be obtained by adjusting a linear regression of
the logarithm of the equation shown below using the different volatility maturities
found in step (ii).

o(t,T) = ge24T-1) (xv)

130



MODELING CRUDE OIL AND REFINED PETROLEUM PRODUCT SPREADS:
AN ALTERNATIVE TOOL FOR RISK QUANTIFICATION

The value of ¢ for the equation (xv) is zero at all times, since the data we count
on correspond to the value of the future prices that we can obtain is equal to F(0, T)
for the different maturities selected.

At this point, it is important to highlight that after finding the value of the
parameters « and o the expected value of the spot price process does not necessarily
need to be centered at the future price curve current level, which means it no
longer has to agree with the risk-neutral prices usually used for valuating com-
modity derivatives.

The reason for this is simple. Given that we are aiming to carry out risk quanti-
fication analyses, the expected values employed must be those that the analyst con-
siders most adequate for risk management purposes. Thus, the equation for the
adjusted drift, u(f), can be rewritten as:

7 _ 2
u(t) = al;‘f‘ + X, +Z (1 - e72) (xvi)

where X, is the expected value at time ¢ of the commodity that the risk analyst
estimates as the most adequate to perform risk quantification analyses. Thus, X,
denotes the curve of expected values estimated by the analyst for the different
maturities to be considered in the analysis.

The one-factor model presented above can clearly be used to simulate the
prices of more than one commodity at a time by incorporating the correlation of
the commodities to be analyzed. This is done by calculating the variance-covariance
matrix of the commodities while simulating commodity prices. The variance pa-
rameter employed in this variance-covariance matrix is the one obtained during
the calibration of the model, while the correlation parameter is estimated from the
logarithmic changes of the prices of the commodities to be analyzed.

It is important to introduce this methodology for modeling the future prices of
a commodities portfolio, since the results coming from the model proposed in our
previous section will be compared with those obtained from the two-factor model
simulation of the spread obtained from modeling the prices of wt1 crude oil and
RBOB gasoline through this methodology.

For the example of risk quantification we will present in this section, we will
assume a company is managing a portfolio conformed of a short position of crude oil
0f 10,000 barrels per day and a long position of RBOB gasoline of exactly the same
amount.

This is by far an unrealistic assumption, since as we know, crude oil can be
broken down in refineries into several components among which, aside from
gasoline, diesel, jet fuel and fuel oil can be obtained. We decided, however, to
keep it simple for the purpose of the analysis.

First, the model for simulating the value of the crude oil price for a period of one
year was calibrated using the methodology presented above. The values of parame-
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ters o and o obtained were 0.37 and 28%, respectively, while those of & and ¢ for the
RBOB gasoline used in the two-factor model were 0.8 and 31%, respectively.

For this particular analysis, the value of crude oil and the RBOB gasoline for
the year of analysis were centered on the future curves, in order to be able to
compare the results of the proposed model with the two-factor model using the
usual calibration. The values considered for these scenarios are shown in the graph
below (figure 18).

Figure 18. w1l and RBOB Future Prices.
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By using this scenario and the model proposed in the previous section based on
the switching Markov chains, the value of the RBOB-wTI Spread and therefore the
value of RBOB gasoline were obtained for each simulation of the wr crude oil price.
The same values were obtained with the two-factor model resulting from simulating
the prices of wri crude oil and RBOB gasoline through the methodology explained
above. The results of the risk quantification analysis are described below.

Cash flow distributions corresponding to one year of operations with each of
the two methodologies are shown in the following graph (figure 19).

Figure 19. Probability Distribution.
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The two-factor model overestimates company cash-flow volatility compared
with the one given by the Markov chain model. The volatility of the two-factor
model (in dollars per barrel) is equal to U.S. 10.40 whereas the volatility of the
Markov chain model equals U.S. 3.90.

Assuming that net operating costs, the minimum value that the proposed
portfolio could take for the company not to have losses, was U.S. 35 million (the
breakeven value), we calculated the probability of company net cash flow being
below this value. Whereas calculated with the two-factor model, the probability of
having losses is 25%, with the proposed model it is barely 0.7%. From these figures
we can easily see this probability is highly overestimated.

Also, with both methodologies, we calculated cash flows at risk with 90% and
95% significance levels. The two-factor model estimation of this value is of U.S. 20.2
and U.S. 32.5 million dollars respectively, while the proposed methodology yields
values of U.S. 0.38 and U.S. 3.09 million dollars.

Finally, the expected shortfall with 95% confidence for the two-factor model
equals U.S. 45.4 million dollars, whereas the proposed method produced an expect-
ed shortfall of U.S. 6.4 million dollars.

CONCLUSIONS

The model proposed here outperforms existing one-factor models, since it ena-
bles the existence of negative price differential values and makes it possible to
maintain the asymmetry observed empirically by these price spreads, avoiding mis-
quantification of risk.

Also, it was shown that the assumption of equal distributions for the price
differential in two different ranges of the wI crude oil price was not rejected, based
on the results of the Kolmogorov-Smirnov tests. From these results, it was con-
cluded that it was appropriate to model the RBOB-wTI Spread price differential
based on the values that the wrr crude would take.

On the other hand, while comparing the results obtained by the proposed
model and the Clewlow and Strickland two-factor model (csm), it was found that
significantly higher volatility was generated by the csm than by the one Transition
Matrix Model.

In addition, the risk metrics presented above demonstrate that the two-factor
model, which is one of the most commonly used to simulate the value of spreads,
tends to overestimate the risk embedded in cash flows. This is a common character-
istic of most models aimed at derivative pricing and not risk quantification. This
overestimation can be misleading when wanting to make decisions based on the risk
quantification analysis. While we are well aware that fine-tuning the proposed mod-
el to deal with the tails of the empirical distribution would be desirable, the model
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presented here is considered more appropriate to be used as a risk management tool
for decision-making by companies in the oil industry, either for investment in new
projects or for the evaluation of their potential results.
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