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Article information Abstract

Received The purpose of this investigation is to propose a

29 November 2016 multivariate volatility model that takes into

Accented consideration time varying volatility and the
ccepte _ _ . . . .

21 February 2018 property of the a-stable sub-Gaussian distribution

to model heavy tails. The principal assumption is

JEL Classification:

G17: 22 C13; C51 that returns follow a sub-Gaussian distribution,

which is a particular multivariate stable
distribution. The proposed GARCH model is

O'L(_i%,:gfergib_eaussian applied to a Value at Risk (VAR) estimation of a
distribution; portfolio composed by 5 companies listed in the
multivariate stable Sub- Mexican Stock Exchange Index (IPC) and
Gaussian GARCH compared with the one obtained using the normal
model; Value at Risk multivariate distribution, t-Student and Cauchy.

In particular, we examine performances during
the financial crisis of 2008.

Introduccion

El objetivo de la presente investigacion es describir a grandes rasgos la teoria
de las distribuciones estables multivariadas, con el objetivo de estimar un
modelo GARCH multivariado estable sub-Gaussiano, que posteriormente se
aplica en la estimacion del VaR de un portafolio.

El creciente interés en el uso de las distribuciones a-estable o estables ha sido
motivado por sus diversas aplicaciones a problemas practicos, entre ellos, su
aplicacion en el modelo de portafolios financieros. A partir de los trabajos
seminales de Mandelbrot (1963) y Fama (1965), los modelos estables que
describen los rendimientos de activos financieros han ido ocupando un lugar
prominente tanto en estadistica como en la literatura financiera (por ejemplo:
Rachev y Han, 2000; Mittnik y Rachev, 1989, Rachev y Mittnik, 2000;
Panorska, Mittnik y Rachev, 1995; Mittnik, Rachev y Paolella, 1997).

Las distribuciones estables son de interés, debido a que el Teorema del
Limite Central Generalizado afirma que el Unico limite no trivial de sumas de
variables aleatorias normalizadas independientes e idénticamente distribuidas
(i.i.d.), es estable. Es decir, los vectores aleatorios estables poseen la
propiedad que cualquier combinaciéon lineal de sus componentes es a-
estable, lo cual es una caracteristica muy Util en la teoria de portafolios, ya
que bajo el supuesto de que los rendimientos de los activos siguen una
distribucion estable conjunta, entonces el rendimiento de cualquier portafolio
de estos activos también sigue una distribucion a-estable.



Serrano y Mata / Ensayos Revista de Economia, 37(1), 43-76 45

Por otro lado, en el manejo de riesgos, el principal interés es modelar el caso
extremo de las posibles pérdidas. A partir de las investigaciones empiricas,
sabemos que una pérdida extrema en un activo, muy a menudo conduce a
altas pérdidas en muchos otros activos. Este comportamiento del mercado no
puede ser modelado por la distribucion normal, pero con ciertas
distribuciones elipticas, como por ejemplo, la distribucion a-estable sub-
Gaussiana, podemos capturar este comportamiento.

Sin embargo, y aunque el problema de estimacion de los parametros en el
caso univariado ha sido resuelto satisfactoriamente (ver McCulloch, 1986;
Nolan, 2001), hasta ahora, la literatura sobre la distribucién estable
multivariada es escasa.

El principal obstaculo en la implementacion de modelos estables es la
ausencia de expresiones analiticas explicitas para la funcién de densidad de
probabilidad (excepto las distribuciones de Gauss, Cauchy y Levy). En el
caso univariado, es posible utilizar la férmula de inversién para recuperar la
funcion de densidad de probabilidad (pdf, por sus siglas en inglés). En este
contexto, el método basado en la transformada rapida de Fourier (FFT, por
sus siglas en inglés) ha demostrado tener un buen desempefio en el calculo de
la densidad para un gran numero de datos (ver Nolan, 1997; Mittnik,
Doganoglu y Chenyao, 1999; Khindanova, Rachev y Schwartz, 2001).
Desafortunadamente, en el caso multivariado, el calculo de la pdf es ain méas
complicado. La funcidn caracteristica conjunta general implica el célculo de
una integral con respecto a la llamada medida espectral, es decir, una medida
de Borel finita sobre la esfera unitaria S, € R?, donde d representa la

dimension del vector estable multivariado.

Hasta hoy, algunos casos especificos dentro del caso general han sido
resueltos. Un método para estimar los parametros de un portafolio estable se
describe en Press (1972). Modarres y Nolan (1994) presentan un método
para simular vectores aleatorios estables multivariados. Byczkowski, Nolan,
y Rajput (1993) y Nolan y Rajput (1997) describen un método para
aproximar medidas espectrales estables mediante una medida discreta,
ademas del calculo numérico de la densidad estable multivariada. Por otro
lado, Nolan, Panorska y McCulloch (2001) presentan dos métodos de
estimacion de las medidas espectrales, uno basado en la funcion caracteristica
empirica y otro en las proyecciones unidimensionales de los datos.

Ademas, Mittnik y Rachev (1993) sugieren un método para estimar el
exponente caracteristico y la medida espectral de una distribucién estable
bivariada generalizada, empleando solo un pequefio subconjunto de datos
extraidos de las colas extremas. McCulloch (2000) presenta un método para
estimar la medida espectral de wuna distribucion estable bivariada
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generalizada, basada en la serie de estimaciones de los parametros estable de
las proyecciones univariadas de todo el conjunto de datos, obtenidas por
maxima verosimilitud. La correspondiente densidad espectral estable es
obtenida mediante programacion cuadratica.

El primer objetivo de esta investigacion es proponer un modelo de volatilidad
multivariable, el cual combina la propiedad de la distribucion a-estable para
modelar colas pesadas con el modelo GARCH para capturar clister de
volatilidad. EI supuesto inicial es que condicionalmente los rendimientos
siguen una distribucion sub-Gaussiana, la cual es un caso particular de las
distribuciones estables multivariadas.

Esta opcién permite trabajar con una expresion de la funcién caracteristica
multivariada manejable. A diferencia de Bonato (2012), quien emplea un
modelo GARCH multivariado bajo la hipétesis sub-Gaussiana restringido a
dos dimensiones, en la presente investigacion, el modelo propuesto se aplica
a un portafolio compuesto por 5 activos pertenecientes a la Bolsa Mexicana
de Valores (BMV).

El segundo objetivo es aplicar el modelo GARCH, propuesto en la
estimacion del VaR bajo la hipotesis a-estable sub-Gaussiana, a un portafolio
compuesto por 5 activos que cotizan en la BMV.

Finalmente, dado que no hay evidencia empirica sobre el desempefio de los
modelos VaR en la medicion de riesgo durante periodos de alta volatilidad en
los precios de los activos en el mercado financiero mexicano, se realiza una
prueba de desempefio del VaR (backtesting), la cual permite analizar y
comparar el desempefio del modelo propuesto con la estimacién del VaR
obtenida bajo la hipdtesis multivariada Gaussiana, t-Student y Cauchy
durante el periodo de la crisis financiera de 2008.

La principal contribucion de este trabajo es que proporciona evidencia acerca
de que las estimaciones del VaR mediante el modelo GARCH multivariado,
bajo la hipotesis a-estable sub-Gaussiana, muestran un mejor desempefio
durante periodos de turbulencias financieras.

El resto del documento se organiza de la siguiente forma: en la seccion 2, se
presenta una breve descripcion tedrica de las distribuciones estables
multivariadas. La seccion 3 proporciona una descripcion de la distribucion
multivariada a-estable sub-Gaussiana y su respectiva estimacion. El modelo
GARCH multivariado sub-Gaussiano propuesto es descrito en la seccion 4.
En la seccion 5, se presenta el andlisis del comportamiento eliptico de los
datos, la estimacion de la matriz de dispersion, los resultados del modelo
GARCH multivariado estable sub-Gaussiano y su respectiva aplicacion, en el
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calculo del VaR —por lo que se sabe, por primera vez— a un portafolio
compuesto por acciones de la BMVM, y la valuacion de su desempefio se
describe en la seccion 6. EI documento finaliza con las conclusiones y
sugerencias de posibles lineas de investigacion.

1. Distribuciones estables multivariadas

Definicion. Un vector aleatorio d-dimensional X = (Xl, X, K, X, ) es

estable si, paratodo N> 2 , existe una constante A, y un vector B, tal
que:

XY X® A + XM =4 AX+B,,
donde X(l), X(Z),K ,X(") son copias i.i.d. de X. La constante debe ser
delaforma A, =n"“, donde O0<a <2 esel indice de estabilidad.

Algunas veces es utilizado el término conjuntamente estable para subrayar el
hecho de que todas las componentes X i del vector estable X deben ser

a-estable univariadas®, bajo un mismo indice de estabilidad ¢. Esto se
deduce del siguiente teorema, y justifica el uso del término vector aleatorio a-
estable.

Teorema. i) Sea X un vector aleatorio estable. Entonces toda proyeccion
unidimensional u-X:z:uiXi es una variable aleatoria estable

unidimensional, con el mismo indice & paratodo U e Re.

ii) Inversamente, supongamos que X es un vector aleatorio con la
propiedad de que toda proyeccion unidimensional U - X es estable, lo cual
se denota como U-X ~ S(a(u), ﬁ(u), y(u), 5(u)). Entonces, existe
un Gnico « , el cual es el indice de estabilidad de todas las proyecciones, es
decir, a(u) = esconstante. Si a =1, entonces X es estable. Si

a <1,y la funcién 5(u) y el vector de pardmetros de localizacion o

! Una distribucion a-estable univariada es descrita por cuatro parametros: 0 < o <2 es el
indice de estabilidad o exponente caracteristico que refleja el tamafio de las colas de la
distribucion, —1< <1 es el parametro de asimetria que indica la simetria de la

distribucion, >0 es un parametro de escala también denominado dispersion, y
O € R es el parametro de posicion.
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posicion 0 = (51,K ,5d) de los componentes Xj, ..., X, (todos en la 1-
parametrizacion) estan relacionados por:

su)=u-8 (1)

entonces, X es estable.

La demostracion de la primera parte de este teorema es la demostracion del
Teorema 2.1.2 de Samorodnitsky y Taqqu (1994), la segunda es la
demostracién del Teorema 2.1.5 (c) de Samorodnitsky y Taqqu (1994)

cuando a >1, la demostracion del caso & <1 se encuentra en Nolan
(1999).

Una ventaja del teorema anterior es que proporciona una forma de
parametrizar las distribuciones estables multivariadas en términos de
proyecciones unidimensionales. Es decir, conociendo la funcién

caracteristica de U-X para todo U, es posible conocer la funcion
caracteristica de X. Por lo cual, « y las funciones ﬂ(),y(),5()
caracterizan completamente la distribucion conjunta. De hecho, conociendo
estas funciones sobre la esfera unitaria S, ={U € RY : |u| =1}, es
posible caracterizar la distribucion.

Otra ventaja del teorema, es que proporciona una forma de evaluar si un
conjunto de datos multivariables es estable, examinando solo las
proyecciones unidimensionales de los datos. Se realizan proyecciones en
multiples direcciones, y se observa si estas son bien descritas por
distribuciones estables univariadas. Si es asi, y el indice de estabilidad es el

mismo para todas las direcciones (si o« <1, el pardmetro de posicion,
satisface (1)), entonces un modelo estable multivariado es apropiado.

1.1. Medida espectral

Una alternativa para describir vectores aleatorios a-estable es su medida
espectral A (una medida de Borel finita sobre la esfera unitaria en

Rd:Sd ={ueR’ :|u|:1} ) y un vector de localizacion
8=(5,,K,5,)eR".

La demostracion del siguiente resultado, el cual se le atribuye a Feldheim
(1937), aparece en la seccién 2.3 de Samorodnitsky y Tagqu (1994), en él se
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escriben las funciones ,B(), 7/() y 5() en términos de la medida
espectral.
Teorema. Sea X = (Xl, X, K, Xd) un vector aleatorio conjuntamente

estable, tal que:
u-X~S(e, Au) y(u)s(u)k), k=01
para todo U € R?. Entonces, existe una medida finita [ sobre Sy yun

vector de localizacion & € R® | en términos de los cuales es posible
reescribir los parametros de escala 7/(’[) , de asimetria ,B(t) y de posicion

S(t) cuando d >1
()= [ s (e

Blu)= (U)Ld sign(u,s)|(u,s)| T(ds)

<u,8>, a+1

s(u)= (u,8) =2 (u,s)Inf(u,s)T(ds), & =1

Paratodo UeR?,la proyeccion <u, X> es una variable aleatoria estable
uno dimensional.

2. Distribuciones multivariadas a-estable Sub-Gaussianas o Elipticas

Desafortunadamente, ajustar distribuciones o-estable multivariadas a los
datos en el caso de dimensiones mayores a 2 aun no es factible, dado que la
medida espectral de la funcion caracteristica es extremadamente dificil de
estimar (ver Cheng y Rachev, 1995; Nolan, Panorska y McCulloch, 2001);
pero algunos casos especiales son computacionalmente accesibles.

En esta investigacion, son tomadas en cuenta las distribuciones multivariadas
a-estable sub-Gaussianas o Elipticas, las cuales son una subclase del caso
general, por lo cual satisfacen el Teorema del Limite Central generalizado, lo
cual las hace atractivas en la teoria financiera.

2.1. Vectores aleatorios a-estable sub-Gaussianos

Si X esun vector a-estable sub-Gaussiano o simplemente eliptico,
entonces tiene la funcion caracteristica
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Eexp(i(X,u)):exp(— (uTZU)C”2 +i<u,8>) 2

y parametros de proyeccion:

y(u)= (uTZu)UZ, pu)=0, &(u)=(u,s),

donde X es una matriz definida positivay &€ R? es el vector de
localizacion. En este caso, la medida espectral es complicada (Proposicion
2.5.8 de Samorodnitsky y Taqqu, 1994).

Sea G~ N(O,Z) un vector aleatorio multivariado normal O —
dimensional con media nula y matriz de varianza-covarianza X
independiente de A, una variable aleatoria o/2-estable totalmente sesgada
a la derecha A~S(a/2,],7/,0) con O<a<?2. Entonces,

X = AV?2G = (AY?%G,, ..., AY?Gy)
es un vector multivariado a-estable sub-Gaussiano con funcion caracteristica
conjunta

Eexp(i(X,u)) = exp(—(uTzu)*?).

En particular,si O0<a <2, A~ S(a/Z,l, Zy(f(cos 7ra/4)2/“,0) y
G~ N(O, Z), entonces

X = AY2G + § tiene funcion caracteristica (2).

El vector multivariado a-estable sub-Gaussiano X hereda su estructura de
dependencia del vector subyacente aleatorio multivariado normal G, la

cual es descrita por la matriz de varianza-covarianza X, también llamada
matriz de dispersion.

2.2. Estimacion de la distribucion a-estable sub-Gaussiana multivariada

Como se menciond anteriormente, la estimacion de los parametros de la
distribucion a-estable sub-Gaussiana es posible. Sea

X= (Xl, X, K, X, ) un vector multivariado a-estable sub-Gaussiano, se
propone el siguiente algoritmo para estimar los parametros que lo describen:

1) Para cada una de las componentes X; del vector a-estable sub-

A

Gaussiano X, estimar el vector de parametros 6, = (di N ) ),
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i=1..,d.

2) Estimar el indice de estabilidad de la distribucién multivariada de la
siguiente forma:

d
a=Y¢a |/d ©
i=1
3) Centrar la distribucion substrayéndole a X el pardmetro de posicion
estimado §=(8y,...82).

4) Estimar la matriz de dispersion X = o, ;.

2.2.1. Estimacion de la matriz de dispersién

En el caso multivariado, es de suma importancia modelar la estructura de
dependencia entre los activos que conforman el portafolio,
desafortunadamente, la matriz de varianza-covarianza de los rendimientos no
esta definida en el caso de las distribuciones estables cuando ¢ < 2. En
cambio, bajo la hip6tesis sub-gaussiana, el parametro de escala del vector
multivariado X = (Xl, X, K, Xd) se puede escribir como una

combinacion lineal de la matriz de covarianza de los vectores gaussianos
subyacentes, lo cual nos permite estimar la matriz de dispersion X = o i

En esta investigacién, se estima la matriz de dispersion siguiendo el método
de la proyeccion propuesto por Nolan (2013), en el que los parametros de la
distribucion estable multivariada son funciones explicitas de los parametros
de cada una de las series univariadas, los cuales son estimados via maxima
verosimilitud. A continuacion, se hace una breve descripcion de este
método:

Dado X, un vector aleatorio a-estable sub-Gaussiano d —dimensional, se
tiene que para cualquier vector U, la proyeccion u' X es o-estable
univariada con parametro de escala y(u) = (u"Zu)'/2. Por lo cual,
2 T 2
yi(u)=u"zu=>"ulc; +2> uu;o,
i

i<j

En particular, los elementos de la diagonal o;; de la matriz de dispersion son
el cuadrado del parametro de escala del i-ésimo componente de X ; es decir,

aii:yiz(ei), donde €, representa la base candnica; y
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o = (;/f(ei +ej)— O — 0 )/2, donde 7, (e, +ej) es el parametro
de escala de la proyeccion (ei +ej)TX:(],1)T(Xi,Xj): X, +Xj.

Esto implica estimar d(d +1)/ 2 parametros de escala unidimensionales.

Dado que el vector multivariado o-estable sub-Gaussiano X hereda su
estructura de dependencia del vector subyacente aleatorio multivariado

normal G, Kring, Rachev, Markus y Fabozzi (2009) sefialan que es posible

interpretar o;; como la cuasi-varianza del componente Xi, y o como la

cuasi-varianza entre los componentes X, y X

3. Modelo GARCH multivariado eliptico o sub-Gaussiano estable

La extension del caso multivariado de los modelos Autorregresivo con
Heterocedasticidad Condicional (ARCH), introducido por Engle (1982), vy el
modelo ARCH generalizado o GARCH, propuesto por Bollerslev (1986) para
describir la heteroscedasticidad de las variables financieras, ha sido prolifico.
Sin embargo, la mayoria de estos modelos descansan en el supuesto de que
los datos siguen una distribucién normal multivariada o t-student, por lo cual
es posible describir la estructura de dependencia de los activos mediante la
matriz de varianza-covarianza.

La aplicacion de las distribuciones estables en los modelos GARCH es
relativamente nueva. Panorska, Mittnik y Rachev (1995); Mittnik, Paolella y
Rachev (2002); Curto, Pinto y Tavares (2009); Bonato (2012), Naka y Oral
(2013); y Mohammadi (2017) emplean modelos GARCH con distribuciones
estables para examinar la volatilidad de los rendimientos financieros. En esta
investigacion, se propone un modelo GARCH multivariado eliptico o sub-
Gaussiano, donde la estructura de dependencia de los activos es descrita
mediante la matriz de dispersion, lo cual nos permite reducir los calculos
numéricos. El modelo se describe a continuacion.

Definamos &, =1, — 4, como el vector de las innovaciones de los
rendimientos. Supongamos que &; es un vector a-estable sub-Gaussiano, es
decir g, = AY?G, donde A~S(a/2,1, 7, O) es una variable
aleatoria o/2-estable, totalmente sesgada a la derecha con O<a<?2 y
G~ N(O, Z), un vector aleatorio multivariado normal 0 —dimensional

con media nula y matriz de varianza-covarianza X independiente de A.
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d

Por lo cual, el vector de rendimientos del portafolio R, =2 a@,r;,, donde
i=1 '

o= (a)l,K y Wy ) representa los pesos del portafolio, es un vector a-estable

/12
sub-Gaussiano con parametros de proyeccion y(m):(mTZco)L .

,6’((0)=O, 5(m)=<0),8>. Lo cual, es consecuencia directa del
Teorema del Limite Central Generalizado.

El indice de estabilidad del portafolio & no se estimara directamente de la
distribucion de los rendimientos del mismo, pues hacerlo de esta forma no
seria adecuado, dado que no se consideraria la estructura de dependencia y la
heterocedasticidad condicional de los rendimientos. Por lo tanto, para
considerar estas dos caracteristicas previamente mencionadas, se propone
introducir un modelo GARCH multivariante y estimar o de la distribucién
de los rendimientos condicionales.

Siguiendo a Bonato (2012), optamos por el modelo GARCH multivariante
con correlaciones condicionales dinamicas (DCC), propuesto por Engle
(2002), debido a que su estimacién es computacionalmente accesible y
ademas es un modelo flexible que permite especificaciones distintas en los

GARCH univariados, utilizados para calcular la matriz diagonal Dt. En esta
investigacidn, la estimacion de los GARCH univariados se realiza segin el
método descrito en Serrano y Mata (2018).

Engle (2002) define el modelo de la siguiente forma:
=44 +Z%/22t
2, = D,R,D,
D, = diag(o;,)

R = diag( t‘l)Qtdiag( t‘l)
donde g, es el vector de medias condicionales, R, es la matriz de

correlaciones condicionales, o.. es la desviacion estandar condicional de

it
los GARCH univariados y Q,(d xd) es una matriz definida positiva
Q =@-a-b)R+au,,u’, +bQ,_,, donde U, son los residuos
estandarizados obtenidos de los GARCH univariados, R es la matriz de
covarianzas no condicionales de los residuos U,y @ y b son constantes
positivas; el proceso presenta reversion a la media, siempre y cuando
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a+b<l.

En el modelo propuesto por Engle (2002), la hipotesis es que I, sigue una

distribucion gaussiana con matriz de covarianza X, , sin embargo, nuestra
hipétesis es que los rendimientos siguen una distribucién sub-Gaussiana
estable, por lo cual en nuestro modelo propuesto, X, es reemplazada por la
matriz de dispersion.

Como se menciono previamente, la estimacién de la matriz diagonal D, se
efectla empleando los modelos GARCH estable univariados, es decir o, , es

el pardmetro de escala condicional del i-ésimo componente de X y los
elementos de la matriz R se estiman usando el método de la proyeccién
propuesto por Nolan (2013).

De acuerdo con los trabajos de Mittnik, Paolella y Rachev (2002), y mas
recientemente  Mohammadi (2017), lo anterior nos permite asegurar que
nuestro modelo GARCH multivariado satisface las condiciones de
estacionariedad.

Ademéds, para estimar la matriz de dispersiébn empleamos el modelo
propuesto por Nolan (2013), que se describe en la seccion anterior, lo cual
nos permite reducir los calculos numeéricos y por ende aumentar la rapidez de
ejecucion del algoritmo computacional. Esto nos da una ventaja sobre el
modelo GARCH estable, propuesto por Bonato (2012), donde los célculos
numeéricos son intensos, por lo cual su modelo solo se aplica a un portafolio
bivariado; a diferencia de este, nuestro modelo es aplicado a un portafolio
compuesto por 5 activos financieros.

4. Aplicacién a la estimacién del VaR de un portafolio compuesto por
activos financieros que cotizan en la BMV
4.1. Descripcion de los datos

Un portafolio es una combinacion lineal de activos financieros (acciones,
commodities, etc.). Considere un inversor que tiene una cantidad fija de

dinero para invertir en d activos: @, enelactivol, @, en elactivo

2,..., @, enelactivod. Las tasas de rendimiento, X, X,,K, X, son
aleatorias. Al concluir el periodo de inversion, el portafolio compuesto por
estos activos tiene un rendimiento

R =wX; +w X, + -+ wzXy
La distribucién de R depende de la distribucién del vector de rendimientos
X =(X, X, K, X,)
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Este trabajo propone el uso de distribuciones estables multivariadas, en
particular el caso sub-Gaussiano, para estimar el VaR de un portafolio
equiponderado; es decir, se asume que los componentes del portafolio siguen
una distribucion a-estable sub-Gaussiana. Algunos trabajos pioneros en esta
area son Press (1972) y Cheng y Rachev (1995).

Para el analisis empirico, se han elegido 5 cinco activos con diferente
volumen de operacién que cotizan en la Bolsa Mexicana de Valores (BMV),
pertenecientes a 5 diferentes industrias. Estos activos corresponden a las
siguientes empresas: Consorcio ARA, S.A. de C.V. (ARA), lider en venta y
construccién de inmuebles residenciales y que también opera como
contratista para clientes no afiliados en la construccién, promocién y
comercializacion de proyectos comerciales e industriales; Controladora
Comercial Mexicana (COMER), compafiia controladora que opera en el
sector detallista en México y cuenta con 199 tiendas y también con una
cadena de 74 restaurantes familiares; Fomento Econdmico Mexicano, S.A.B.
de C.V. (FEMSA), empresa que participa en la industria de refrescos, a través
de Coca-Cola FEMSA, el embotellador independiente mas grande de
productos Coca-Cola en el mundo y también dispone de otras operaciones,
como logistica y equipo de refrigeracion; Grupo Carso (GCARSO), uno de
los conglomerados méas importantes de América Latina que controla y opera
empresas del sector industrial, comercial e infraestructura y construccion y
Grupo Televisa, S.A.B. (TELEVISA), lider en la produccion y transmision
de contenido de entretenimiento televisivo en México, involucrada en la
produccion de sefiales de televisién restringida, en servicios de televisién
directa al hogar via satélite, y en servicios de television por cable y
telecomunicaciones. Se encarga también de la publicacion y distribucién de
revistas, produccion y transmision de programas de radio, operacion de un
portal de Internet y en la industria de juegos y sorteos.

La moneda de referencia a utilizar en nuestro modelo es el peso mexicano, ya
que es la moneda de cotizacion de las empresas. Las cinco series que
conforman el portafolio de la aplicacion, contienen informacion de los
precios diarios de cierre de cada activo, excluyendo fines de semana y
festivos.

La muestra total inicia el 2 de enero de 2003 y finaliza el 31 de diciembre de
2009, por lo cual se tienen 1767 observaciones, para cada uno de los activos.
Esto con la finalidad de evaluar el desempefio de la estimacion del modelo
VaR a-estable durante periodos de alta volatilidad, como la crisis financiera
de 2008. Ademds, para cada serie, se consideran los rendimientos
logaritmicos diarios.



56 Serrano y Mata / Ensayos Revista de Economia, 37(1), 43-76

4.2. Andlisis del comportamiento eliptico de los datos y estimacion del
indice de estabilidad

Primero determinemos si el portafolio puede ser descrito por una distribucién
a-estable sub-Gaussiana. Esto es de fundamental importancia, dado que
cualquier portafolio bajo la hipotesis sub-Gaussiana es descrito por una
distribucion estable cuyo pardmetro de escala es una combinacion lineal de

los elementos de la matriz de dispersion <=0, ; .

Lo anterior sera analizado empleando el método propuesto por Nolan (2013),
el cual se describe a continuacion:

A

1) Estimar el vector de pardmetros éi = (ai ) ﬁi 7, ,5}) , para cada accion
X, i=1..,d.

2) Verificar que los indices de estabilidad estimados univariados &i no

sean significativamente diferentes, dado que si esto ocurre, entonces los
datos no son a-estable, conjuntamente, por lo cual no pueden ser
modelados por una distribucién sub-Gaussiana.

3) Verificar que los parametros de asimetria estimados ,Bi sean cercanos

a cero, de lo contrario la distribucion es no simétrica, por lo cual no
podria ser sub-Gaussiana.

4) Utilizar gréaficas de dispersion a pares para visualizar el comportamiento
eliptico de los datos.

5) Si los datos cumplen los criterios 2-4, entonces el uso de un modelo sub-
Gaussiano esta justificado. En caso contrario, la hipotesis sub-Gaussiana
se rechaza.

En este estudio, primero se filtraron los rendimientos logaritmicos empleando
el modelo GARCH(1,1) multivariado sub-Gaussiano descrito anteriormente.
Con lo cual se introdujo la heterocedasticidad de los rendimientos en el
modelo multivariado. Posteriormente, se ajustaron los residuos condicionales
al modelo sub-Gaussiano.

El modelo se describe a continuacion:
Ri=u#,+5, 1=1.,5
Eit = 0Ly (4)
_ 2 2
Oi1=8,1+a,5 4,1 bi,lo-i,t—l

2 2 2
it = 1011011
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En la tabla 1, se presentan la estimaciones del modelo GARCH(1,1)
obtenidas por maxima verosimilitud.

Tabla 1
Parametros GARCH(1,1)

Coeficiente Error Estandar

al,0 1.33E-05 2.32E-06
all 0.075442 0.008208
b1,1 0.901551 0.010157
a2,0 5.25E-05 3.79E-06
az2,1 0.271988 0.019281
b2,1 0.661237 0.01651
a3,0 6.44E-06 1.11E-06
a3,1 0.057992 0.006801
b3,1 0.921818 0.007951
a4,0 1.05E-05 1.45E-06
ad,1 0.096457 0.008634
b4,1 0.882154 0.009303
as5,0 4.46E-06 1.05E-06
a5,1 0.027889 0.0035
b5,1 0.956723 0.006194
al,2 0.326957 0.016374
al,3 0.285542 0.019708
ald 0.33223 0.019936
al,5 0.378393 0.018723
a2,3 0.288504 0.020656
a2,4 0.321715 0.019525
az2,5 0.321014 0.021931
a3 4 0.294448 0.019991
a3,5 0.449027 0.017903
a4,5 0.360646 0.02082

Fuente: Elaboracion propia con datos de Bloomberg.
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En la tabla 2, se presentan los parametros estimados de la distribucion a-
estable para cada uno de los componentes del portafolio, los cuales son
estimados por maxima verosimilitud mediante el programa STABLE,
descrito en Nolan (1997).

Tabla 2
Parametros de la distribucion a-estable sub-Gaussiana.
Series a B Y o
ARA 1.60981544  -0.00000001  0.01203195 -0.00065309
(1.03792098) (-0.000000003) (0.00625361) (-0.00037213)
[1.55] [1.52] [1.92] [1.76]

COMER 157662669  0.12080045  0.01221827 -0.00111243
(0.85732827) (0.073035337) (0.00711606) (-0.00071401)

[1.84] [1.65] [1.72] [1.56]
FEMSA 1.61899336  0.09202455  0.01002487 -0.00061161
(0.84986528) (0.053784072) (0.00508877) (-0.00034889)

[1.91] [1.71] [1.97] [1.75]
GCARSO 153388814  0.00000000  0.01121064 -0.00063818
(0.97143011) (0.000000002) (0.00590656) (-0.00039986)

[1.58] [1.68] [1.93] [1.62]
TELEVISA 173406170  0.09254939  0.01081221 -0.00088694
(1.06123727) (0.059517296) (0.00643584) (-0.00045461)

[1.63] [1.56] [1.68] [1.95]
Nota. Entre paréntesis se tiene el error estdndar y entre corchetes el estadistico t. Fuente:
Elaboracidn propia.

En la tabla 2, se observa que los indices de estabilidad ¢;, 1=1...5,
son significativamente inferiores a 2, lo cual indica que los datos son
leptocdrticos. Ademas, los indices de asimetria /3; son cercanos a cero,

excepto para la serie COMER y FEMSA, que resultan estadisticamente
diferentes de cero seguin la metodologia de Barndorff-Nielsen, Mikosch y
Resnick (2012), ver apéndice A. Sin embargo, siguiendo la justificacion
presentada en Nolan (2013), pagina 2078, se justifica el uso de la
distribucion a-estable sub-Gaussiana.

Adicionalmente, se estiman los parametros para las distribuciones
multivariadas t-Student y Cauchy, con fines de comparacién. Los resultados
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se encuentran en el apéndice B, donde cada estimador se acompafia de su
error estandar y su estadistico de prueba t.

En las figuras 1 a 5, se muestran las graficas de dispersion a pares de las
acciones que componen el portafolio y se visualiza el comportamiento
eliptico de los datos.

Dado que los datos cumplen los criterios 2-4, se concluye que estos siguen
una distribucion sub-Gaussiano multivariada. Por lo tanto, se procede a
estimar el indice de estabilidad de la distribucién multivariada usando (3)
a =1.61468 .

4.3. Estimacion de matriz de dispersion

En esta seccion, se muestra la matriz de dispersion estimada de la
distribucion a-estable sub-Gaussiana. Para estimarla se emple6 el modelo
descrito en la seccion 2.2.1.

Antes de aplicar este modelo, se centra cada serie Xi, substrayéndole el

parametro de posicion estimado O = (51,..., é'd) La matriz de dispersion
estimada se muestra a continuacion:

[0.000145 7.52e—-05 4.44e-05 6.40e—-05 6.17e—05]
7.52e—-05 0.000149 5.48e—05 5.81e—05 6.19e—-05
444e—-05 548e—-05 0.0001 5.38e—05 5.49e-05
6.40e—-05 5.8le—05 5.38e—05 0.000126 6.46e—-05
16.17e—-05 6.19e—-05 5.49e-05 6.46e—05 0.000117 |
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4.4. Estimaciones del VaR

En esta seccion, se estima el VaR del portafolio mediante simulacién
Montecarlo, empleando el modelo GARCH multivariado sub-Gaussiano
propuesto bajo la hipdtesis de que: condicionalmente, los rendimientos
siguen una distribucién a-estable sub-Gaussiana.

El VaR se calcula considerando el horizonte de tiempo de un dia (r = 1), y

un nivel de confianza 1—(, para lo cual se sigue el siguiente algoritmo:

1) Estimar los parametros del modelo GARCH multivariado sub-
Gaussiano, empleando el método de maxima verosimilitud y obtener los
residuos condicionales.

2) Dados los residuos condicionales obtenidos en el paso anterior, estimar

el indice de estabilidad & de la distribucién a-estable sub-Gaussiana.
3) Estimar la matriz de dispersion X = o ;.

4) Realizar S simulaciones de vectores aleatorios a-estable sub-
Gaussianos 2j, j=1..,S.

5) Aplicar descomposicion de Cholesky a 2 = AAT.

6) Generar los posibles escenarios P,,; = F’OeA2j :

, J=1...,S.

8) Estimar el VaR como el negativo del g-esimo cuartil de la distribucion
de probabilidad simulada.

7) Estimar los posibles rendimientos fmyj

En la presente investigacion, el VaR se estima a un nivel de confianza de
95%, 99% y 99.5%. En la tabla 3, se muestran los VaR estimados.

En las estimaciones del VaR, se observa que el modelo a-estable sub-
Gaussiano proporciona valores mayores a las estimaciones basadas en la
distribucion normal, t-Student y Cauchy, es decir, el modelo del VaR a-
estable sub-Gaussiano proporciona estimaciones de las pérdidas potenciales
mas conservadoras, lo cual es preferido por las instituciones financieras. Es
importante sefialar que este resultado corresponde al periodo 2008-2009.
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Tabla 3
Estimaciones del VaR
Nivel de Confianza Distribucion VaR
99.5% Normal -6.176
99.5% a-estable sub-Gaussiana -16.624
99.5% t-Student -10.646
99.5% Cauchy -9.623
99.0% Normal -5.776
99.0% a -estable sub-Gaussiana -12.191
99.5% t-Student -9.176
99.5% Cauchy -7-896
95.0% Normal -3.873
95.0% a -estable sub-Gaussiana -5.824
99.5% t-Student -4.875
99.5% Cauchy -4.367

Fuente: Elaboracion propia.

5. Evaluacién del desempefio del VaR
5.1. Backtesting

En esta seccion, se emplea la prueba llamada backtesting, para evaluar el
desempefio del modelo VaR bajo el supuesto de que condicionalmente los
rendimientos siguen una distribucion a-estable sub-Gaussiana, t-Student,
Cauchy y normal, respectivamente.

Sea 1—q el nivel de confianza para el calculo del VaR y K, el ntimero de

observaciones histdricas mas recientes empleadas para pronosticar el VaR
actual. En este trabajo, k=502, es decir, utilizamos los datos histéricos de los
ultimos dos afios de la respectiva muestra para predecir el VaR.
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El rango para el cual el nimero de veces Nl_q que se ha excedido el VaR es

. . N . T .
aceptable y sus respectivas frecuencias %, a un nivel significativo del
1%, se muestran en la tabla 4.

Tabla 4
Rango y frecuencia de violaciones del VaR aceptables.

Rango de violaciones del VaR  Frecuencia de violaciones del VaR

VaR aceptable aceptable
99.5% [0,7] [0.00%,1.31%]
99.0% [0,11] [0.00%,2.14%)]
95.0% [13,38] [2.49%,7.51%]

Fuente: Elaboracion propia.

Los resultados del backtesting se muestran en la tabla 5. En esta tabla, se
puede observar que durante el periodo de la crisis financiera de 2008, el
nimero de violaciones del VaR bajo el supuesto de normalidad® se encuentra
muy por encima del intervalo admisible, lo que implica que el VaR, bajo este
supuesto, subestima significativamente las pérdidas potenciales durante
periodos de crisis.

Ademas, se observa que el nimero de violaciones del VaR, obtenida bajo la
hip6tesis multivariada t-Student y Cauchy, también exceden el rango
aceptable, excepto la distribucion multivariada t-Student para un nivel de
confianza del 95%. En contraste, el nimero de violaciones del modelo VaR
a-estable sub-Gaussiano se encuentra dentro del rango admisible de
excepciones, durante el periodo de crisis; lo cual sugiere que este modelo
tiene un mejor desempefio durante periodos de turbulencias financieras que
el modelo VaR bajo la hipotesis multivariada Gaussiana, t-Student y Cauchy.

2 En este caso, se hace referencia a que el modelo supone que condicionalmente los
retornos siguen una distribucién a-estable sub-Gaussiana, normal multivariada, t-Student o
Cauchy.
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Tabla 5
Backtesting del VaR.

Nivel de Confianza Distribucion Backtesting
99.5% Normal 23
99.5% a -estable sub-Gaussiana 2
99.5% t-Student 13
99.5% Cauchy 11
99.0% Normal 28
99.0% a -estable sub-Gaussiana 5
99.0% t-Student 19
99.0% Cauchy 17
95.0% Normal 56
95.0% a -estable sub-Gaussiana 28
95.0% t-Student 35
95.0% Cauchy 42

Fuente: Elaboracion propia.
5.2. Estadistico de Kupiec

Ademés, la evaluacion del desempefio del VaR se realiza en términos de su
probabilidad de cobertura empirica. Con este objetivo, se aplica la prueba de
la raz6n de verosimilitud de Kupiec dada en Kupiec (1995), la cual estima si
la proporcion esperada de violaciones es igual al nivel de significancia a.

El estadistico de Kupiec es una prueba incondicional porque cuenta el
nimero de violaciones durante todo el periodo. Ademdas, como indica
Kupiec (1995), las pruebas de cobertura incondicional tienen bajo poder con
respecto a la hipotesis alternativa, si el tamafio de la muestra es pequefio; sin
embargo, este problema no existe aqui, ya que en la presente investigacion, la
muestra seleccionada cubre un largo periodo de tiempo.

El estadistico de prueba de Kupiec para muestras grandes se distribuye como
una Ji-cuadrada con un grado de libertad, y esta dado por:



Serrano y Mata / Ensayos Revista de Economia, 37(1), 43-76 69

pr(1—-p)"

donde T representa el tamafio de la muestra, n el nimero de violaciones y
p=n/T es el porcentaje de violaciones. La hipdtesis nula se rechaza con un
nivel de significancia del 1% si LRy = 6.635, es decir, si el valor
del estadistico de Kupiec excede o es igual al valor critico de una distribucion
Ji-cuadrada, con un grado de libertad y un nivel de significancia del 1%.

a™(1l—a)T™m
LRUC=—21n[ d-a) ]

En la tabla 6, se presenta un resumen de los resultados de la prueba de la
razén de verosimilitud de Kupiec (1995). EI simbolo (X) se utiliza para
indicar que el modelo VaR analizado cumple con la hip6tesis de una
cobertura incondicional correcta, es decir, el modelo se acepta como un
modelo VaR bien especificado. Los modelos rechazados, debido a la
sobreestimacion o subestimacion del VaR, se indican con asterisco (*) y
signo menos (-), respectivamente.

Tabla 6
Estadistico de Kupiec
Nivel de confianza Distribucion Kupiec
99.5% Normal -
99.5% a -estable sub-Gaussiana X
99.5% t-Student *
99.5% Cauchy -
99.0% Normal -
99.0% a -estable sub-Gaussiana X
99.0% t-Student -
99.0% Cauchy -
95.0% Normal -
95.0% a -estable sub-Gaussiana X
95.0% t-Student -
95.0% Cauchy X

Fuente: Elaboracion propia.

En la tabla 6, se observa que el modelo VaR a-estable proporciona una
cobertura incondicional correcta durante el periodo de crisis sefialado. En
contraste, el modelo VaR bajo las distribuciones normal y t-Student
presentan un desempefio inferior durante el periodo de crisis, donde se
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sobrestima o subestima el VaR; salvo para el caso de la distribucion de
Cauchy al nivel de 95% de confianza.

Conclusiones

En esta investigacion, se propuso un modelo GARCH a-estable sub-
Gaussiano multivariado, el cual combina la propiedad de la distribucion a-
estable para modelar colas pesadas con el modelo GARCH, para capturar
clister de volatilidad. La finalidad fue comparar el desempefio de esta
especificacion, en relacion con los casos de la distribucion normal, Cauchy y
t-Student.

En particular, se realizé la estimacion del VaR bajo la hipotesis a-estable
sub-Gaussiana durante el periodo de la crisis financiera de 2008, a partir de
un portafolio compuesto por 5 activos financieros que cotizan en la BMV.

Los resultados estadisticos sugieren que el modelo VaR a-estable sub-
Gaussiano proporciona estimaciones del VaR cuyas pruebas de backtesting
tienen un mejor desempefio, en periodos de alta volatilidad; es decir, las
estimaciones del VaR son més eficientes bajo el supuesto de que los
rendimientos siguen una distribucion o-estable sub-Gaussiana durante
periodos de turbulencias financieras.

Sin embargo, es necesaria investigacion adicional. Por ejemplo, seria
conveniente considerar un conjunto mayor de distribuciones de probabilidad
gue también capturen las caracteristicas empiricas de las series de datos
financieros y comparar su desempefio con el modelo a-estable sub-Gaussiano
aqui propuesto. Ademas, se podrian emplear funciones cépula para describir
las correlaciones entre los rendimientos de las acciones, empleando tanto la
distribucion estable como la distribucion marginal de los activos que
conforman el portafolio.
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Apéndice A: Distribuciones multivariadas

Distribucion estable
Dado un vector estable X ~ S(a,ﬂ, Vs 5;0), su funcioén caracteristica y de
maxima verosimilitud estan dadas por:

el exp(— 7t b+ iAsgn(t) tan(”—;’)w_“ —1)]+ iét)si a#1
Elexp(ixt)]= exp(— ;/|t|[l+ i32sgn(t)In (y|t|)]+ iét), sia=1

Funcién de maxima verosimilitud
n
1(6) = ) togf (x,|6)
i=1

Donde 6 = S(a, B,v,8), el espacio de parametros es © = (0,2] x [—1,1] X
(0,0) X (—o0,00) Yy f(Xi|5) es la funcién de densidad, cuya dificultad para
evaluar radica en la ausencia de expresiones analiticas para la funcion de
densidad de probabilidad. Sin embargo, el caso univariado ha sido resuelto
(Nolan, 1997; Mittnik, Doganoglu y Chenyao, 1999; Khindanova, Rachev y
Schwartz, 2001), y también algunos casos multivariados (Press, 1972;
Modarres y Nolan, 1994; Nolan y Rajput, 1997; Nolan, Panorska vy
McCulloch, 2001).

Funcién de densidad multivariada t-Student

al'[(v + p)/2] _ e
tOouX) =— [1+v7'x =B (x - B)]
r(3) @vyr2ips?
Donde Q es una matriz de forma positiva definida, v son los grados de
libertad, B, @ son vectores de localizacién y T" es la funcién gamma clasica
en p variables.

-(v+p)/2

Funcidn de densidad multivariada Cauchy
or (M) @+
fa) =——2

(a'a+ |Bx|) @D/

Donde Q es una matriz de forma positiva definida, d son los grados de
libertad, B, « son vectores de localizacién.

Funcién de maxima verosimilitud

En el caso de las distribuciones t-Student, Cauchy y normal se emplea la
funcidn de log-verosimilitud usual
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L=) In(f(x;©))
2

Donde f(x;; ®) es la funcion de densidad de probabilidad que depende del
conjunto de parametros ©, y x4, ..., x,,, son los elementos de la muestra.
Luego, para el estimador ®, se tiene que para cada elemento del vector se
cumple, que:

Vm(®; - ©;) » N(0,I"%)
Donde
I = Cov(S;)
¢ .9 In[f(x;8,)]
' 90,

Por tanto, el intervalo de confianza y/o la prueba de significancia estadistica
se puede llevar a cabo (Barndorff-Nielsen, Mikosch y Resnick, 2012), con
las expresiones siguientes ©;:

~ 1
O ttap [— (I Ys.8,

.
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Apéndice B
Tabla B.1
Parametros estimados para la distribucién multivariada t-Student
Parametros Coeficientes estimados
B 0.00072 0.00075 0.00069 0.00083 0.00064
(0.00043)  (0.00046)  (0.00039)  (0.00053)  (0.00042)
[1.67] [1.66] [1.79] [1.57] [1.54]
a 0.00030 0.00061 0.00043 0.00040 0.00022
(0.00018) (0.0004) (0.00022)  (0.00023)  (0.00012)
[1.61] [1.53] [1.96] [1.72] [1.78]
v 3.76523
(2.06881)
[1.82]
Q ARA COMER FEMSA GCARSO TELEVISA
0.00027
(0.00015)
[1.79]

0.00009 0.00029
(0.00005)  (0.00017)

[1.94] [1.75]

0.00007 0.00007 0.00018

(0.00004)  (0.00004)  (0.0001)

[1.51] [1.59] [1.89]

0.00009 0.00009 0.00006 0.00024

(0.00006)  (0.00005)  (0.00004)  (0.00013)

[1.55] [1.66] [1.61] [1.87]

0.00009 0.00008 0.00009 0.00008 0.00019
(0.00005)  (0.00004)  (0.00004)  (0.00004)  (0.00012)
[1.69] [1.8] [1.93] [1.92] [1.56]

Nota. Entre paréntesis se tiene el error estandar y entre corchetes el estadistico t. Fuente:
Elaboracién propia.
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Tabla B.2
Parametros estimados para la distribucion multivariada Cauchy

Parametros Coeficientes estimados
B 0.00057 0.00062 0.00047 0.00060 0.00066
(0.00029) (0.0004) (0.00027)  (0.00031)  (0.00041)
[1.95] [1.54] [1.72] [1.93] [1.59]
a 0.00101 0.00219 0.00193 0.00198 0.00054
(0.00065) (0.00122) (0.00112) (0.00114) (0.00034)
[1.55] [1.79] [1.73] [1.74] [1.57]
Q ARA COMER FEMSA GCARSO TELEVISA
0.00020
(0.00013)
[1.49]
0.00007 0.00022
(0.00004) (0.00015)
[1.88] [1.44]
0.00005 0.00005 0.00014
(0.00002) (0.00004) (0.00008)
[1.97] [1.42] [1.71]
0.00006 0.00007 0.00005 0.00018
(0.00004) (0.00005) (0.00002) (0.00013)
[1.44] [1.43] [1.95] [1.44]
0.00007 0.00006 0.00007 0.00006 0.00015
(0.00005)  (0.00004)  (0.00004)  (0.00004)  (0.00012)
[1.42] [1.98] [1.62] [1.74] [1.91]

Nota. Entre paréntesis se tiene el error estdndar y entre corchetes el estadistico t. Fuente:

Elaboracién propia.



