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Introducción 

 

El objetivo de la presente investigación es describir a grandes rasgos la teoría 

de las distribuciones estables multivariadas, con el objetivo de estimar un 

modelo GARCH multivariado estable sub-Gaussiano, que posteriormente se 

aplica en la estimación del VaR de un portafolio. 

 

El creciente interés en el uso de las distribuciones α-estable o estables ha sido 

motivado por sus diversas aplicaciones a problemas prácticos, entre ellos, su 

aplicación en el modelo de portafolios financieros.  A partir de los trabajos 

seminales de Mandelbrot (1963) y Fama (1965), los modelos estables que 

describen los rendimientos de activos financieros han ido ocupando un lugar 

prominente tanto en estadística como en la literatura financiera (por ejemplo: 

Rachev y Han, 2000; Mittnik y Rachev, 1989, Rachev y Mittnik, 2000; 

Panorska, Mittnik y Rachev, 1995; Mittnik, Rachev y Paolella, 1997). 

 

Las distribuciones estables son de interés, debido a que el Teorema del 

Límite Central Generalizado afirma que el único límite no trivial de sumas de 

variables aleatorias normalizadas independientes e idénticamente distribuidas 

(i.i.d.), es estable. Es decir, los vectores aleatorios estables poseen la 

propiedad que cualquier combinación lineal de sus componentes es  α-

estable,  lo cual es una característica muy útil en la teoría de portafolios, ya 

que bajo el supuesto de que los rendimientos de los activos siguen una 

distribución estable conjunta, entonces el rendimiento de cualquier portafolio 

de estos activos también sigue una distribución α-estable.  
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Por otro lado, en el manejo de riesgos, el principal interés es modelar el caso 

extremo de las posibles pérdidas.  A partir de las investigaciones empíricas, 

sabemos que una pérdida extrema en un activo, muy a menudo conduce a 

altas pérdidas en muchos otros activos. Este comportamiento del mercado no 

puede ser modelado por la distribución normal, pero con ciertas 

distribuciones elípticas, como por ejemplo, la distribución α-estable sub-

Gaussiana, podemos capturar este comportamiento. 

 

Sin embargo, y aunque el problema de estimación de los parámetros en el 

caso univariado ha sido resuelto satisfactoriamente (ver McCulloch, 1986; 

Nolan, 2001), hasta ahora, la literatura sobre la distribución estable 

multivariada es escasa. 

 

El principal obstáculo en la implementación de modelos estables es la 

ausencia de expresiones analíticas explícitas para la función de densidad de 

probabilidad (excepto las distribuciones de Gauss, Cauchy y Levy).  En el 

caso univariado, es posible utilizar la fórmula de inversión para recuperar la 

función de densidad de probabilidad (pdf, por sus siglas en inglés).  En este 

contexto, el método basado en la transformada rápida de Fourier (FFT, por 

sus siglas en inglés) ha demostrado tener un buen desempeño en el cálculo de 

la densidad para un gran número de datos (ver Nolan, 1997; Mittnik, 

Doganoglu y Chenyao, 1999; Khindanova, Rachev y Schwartz, 2001).  

Desafortunadamente, en el caso multivariado, el cálculo de la pdf es aún más 

complicado.  La función característica conjunta general implica el cálculo de 

una integral con respecto a la llamada medida espectral, es decir, una medida 

de Borel finita sobre la esfera unitaria  
dS  dR , donde d representa la 

dimensión del vector estable multivariado.    

 

Hasta hoy, algunos casos específicos dentro del caso general han sido 

resueltos.  Un método para estimar los parámetros de un portafolio estable se 

describe en Press (1972).  Modarres y Nolan (1994) presentan un método 

para simular vectores aleatorios estables multivariados.  Byczkowski, Nolan, 

y Rajput (1993) y Nolan y Rajput (1997) describen un método para 

aproximar medidas espectrales estables mediante una medida discreta, 

además del cálculo numérico de la densidad estable multivariada. Por otro 

lado, Nolan, Panorska y McCulloch (2001) presentan dos métodos de 

estimación de las medidas espectrales, uno basado en la función característica 

empírica y otro en las proyecciones unidimensionales de los datos. 

 

Además, Mittnik y Rachev (1993) sugieren un método para estimar el 

exponente característico y la medida espectral de una distribución estable 

bivariada generalizada, empleando solo un pequeño subconjunto de datos 

extraídos de las colas extremas.  McCulloch (2000) presenta un método para 

estimar la medida espectral de una distribución estable bivariada 
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generalizada, basada en la serie de estimaciones de los parámetros estable de 

las proyecciones univariadas de todo el conjunto de datos, obtenidas por 

máxima verosimilitud.  La correspondiente densidad espectral estable es 

obtenida mediante programación cuadrática. 

 

El primer objetivo de esta investigación es proponer un modelo de volatilidad 

multivariable, el cual combina la propiedad de la distribución α-estable para 

modelar colas pesadas con el modelo GARCH para capturar clúster de 

volatilidad.  El supuesto inicial es que condicionalmente los rendimientos 

siguen una distribución sub-Gaussiana, la cual es un caso particular de las 

distribuciones estables multivariadas.   

 

Esta opción permite trabajar con una expresión de la función característica 

multivariada manejable.  A diferencia de Bonato (2012), quien emplea un 

modelo GARCH multivariado bajo la hipótesis sub-Gaussiana restringido a 

dos dimensiones, en la presente investigación, el modelo propuesto se aplica 

a un portafolio compuesto por 5 activos pertenecientes a la Bolsa Mexicana 

de Valores (BMV). 

 

El segundo objetivo es aplicar el modelo GARCH, propuesto en la 

estimación del VaR bajo la hipótesis α-estable sub-Gaussiana, a un portafolio 

compuesto por 5 activos que cotizan en la BMV. 

 

Finalmente, dado que no hay evidencia empírica sobre el desempeño de los 

modelos VaR en la medición de riesgo durante períodos de alta volatilidad en 

los precios de los activos en el mercado financiero mexicano, se realiza una 

prueba de desempeño del VaR (backtesting), la cual permite analizar y 

comparar el desempeño del modelo propuesto con la estimación del VaR 

obtenida bajo la hipótesis multivariada Gaussiana, t-Student y Cauchy 

durante el período de la crisis financiera de 2008. 

 

La principal contribución de este trabajo es que proporciona evidencia acerca 

de que las estimaciones del VaR mediante el modelo GARCH multivariado, 

bajo la hipótesis α-estable sub-Gaussiana, muestran un mejor desempeño 

durante períodos de turbulencias financieras. 

 

El resto del documento se organiza de la siguiente forma: en la sección 2, se 

presenta una breve descripción teórica de las distribuciones estables 

multivariadas. La sección 3 proporciona una descripción de la distribución 

multivariada α-estable sub-Gaussiana y su respectiva estimación.  El modelo 

GARCH multivariado sub-Gaussiano propuesto es descrito en la sección 4.  

En la sección 5, se presenta el análisis del comportamiento elíptico de los 

datos, la estimación de la matriz de dispersión, los resultados del modelo 

GARCH multivariado estable sub-Gaussiano y su respectiva aplicación, en el 
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cálculo del VaR —por lo que se sabe, por primera vez— a un portafolio 

compuesto por acciones de la BMVM, y la valuación de su desempeño se 

describe en la sección 6.  El documento finaliza con las conclusiones y 

sugerencias de posibles líneas de investigación. 

 

1. Distribuciones estables multivariadas 

 

Definición. Un vector aleatorio d-dimensional   dXXX ,, ,21 X   es 

estable si, para todo  2n  , existe una constante  nA   y un vector  nB ,  tal 

que: 
     

nn

dn A BXXXX  21  , 

donde  
     n

XXX ,,, 21    son copias i.i.d. de .X   La constante debe ser 

de la forma /1nAn  , donde  20    es el índice de estabilidad. 

 

Algunas veces es utilizado el término conjuntamente estable para subrayar el 

hecho de que todas las componentes  
jX   del vector estable  X   deben ser  

α-estable univariadas
1
, bajo un mismo índice de estabilidad  .   Esto se 

deduce del siguiente teorema, y justifica el uso del término vector aleatorio α-

estable.    

 

Teorema.  i) Sea  X   un vector aleatorio estable.  Entonces toda proyección 

unidimensional  ii XuXu    es una variable aleatoria estable 

unidimensional, con el mismo índice     para todo  .d
Ru   

 

ii) Inversamente, supongamos que  X   es un vector aleatorio con la 

propiedad de que toda proyección unidimensional  Xu    es estable, lo cual 

se denota como  Xu             .,,, uuuu S    Entonces, existe 

un único    , el cual es el índice de estabilidad de todas las proyecciones, es 

decir,     u   es constante.  Si  ,1   entonces  X   es estable.  Si  

1 , y la función   u   y el vector de parámetros de localización o 

                                                           
1
 Una distribución α-estable univariada es descrita por cuatro parámetros: 20    es el 

índice de estabilidad o exponente característico que refleja el tamaño de las colas de la 

distribución,  11     es el parámetro de asimetría que índica la simetría de la 

distribución,  0   es un parámetro de escala también denominado dispersión, y  

R   es el parámetro de posición. 
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posición   d ,,1    de los componentes         (todos en la 1-

parametrización) están relacionados por: 

                                                           

  uu   

entonces,  X   es estable. 

 

La demostración de la primera parte de este teorema es la demostración del 

Teorema 2.1.2 de Samorodnitsky y Taqqu (1994), la segunda es la 

demostración del Teorema 2.1.5 (c) de Samorodnitsky y Taqqu (1994) 

cuando  ,1   la demostración del caso  1   se encuentra en Nolan 

(1999). 

 

Una ventaja del teorema anterior es que proporciona una forma de 

parametrizar las distribuciones estables multivariadas en términos de 

proyecciones unidimensionales.  Es decir, conociendo la función 

característica de  Xu    para todo u , es posible conocer la función 

característica de  .X    Por lo cual,     y las funciones         ,,   

caracterizan completamente la distribución conjunta.  De hecho, conociendo 

estas funciones sobre la esfera unitaria  }1:{  uRu
d

dS  ,  es 

posible caracterizar la distribución. 

 

Otra ventaja del teorema, es que proporciona una forma de evaluar si un 

conjunto de datos multivariables es estable, examinando solo las 

proyecciones unidimensionales de los datos.  Se realizan proyecciones en 

múltiples direcciones, y se observa si estas son bien descritas por 

distribuciones estables univariadas.  Si es así, y el índice de estabilidad es el 

mismo para todas las direcciones (si  ,1   el parámetro de posición, 

satisface (1)), entonces un modelo estable multivariado es apropiado. 

 

1.1. Medida espectral 

 

Una alternativa para describir vectores aleatorios α-estable es su medida 

espectral    (una medida de Borel finita sobre la esfera unitaria en  

}1:{:R  uRu
d

d

d S   ) y un vector de localización  

  .R,,1

d

d      

 

La demostración del siguiente resultado, el cual se le atribuye a Feldheim 

(1937), aparece en la sección 2.3 de Samorodnitsky y Taqqu (1994), en él se 
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escriben las funciones       ,  y   , en términos de la medida 

espectral. 

Teorema. Sea   dXXX ,, ,21 X   un vector aleatorio conjuntamente 

estable, tal que:  

       1,0  ,;,,,  kkS uuuXu   

para todo .d
Ru  Entonces, existe una medida finita     sobre  dS   y un 

vector de localización  
dR  , en términos de los cuales es posible 

reescribir los parámetros de escala   t  , de asimetría   t   y de posición  

 t   cuando  1d      

   

     

 
 



















1 ,,ln,,

1   ,,

,,

,,

2 














ssusuu

u
u

ssusuuu

ssuu

d

dsign

d

d

d

d

S

S

S





 

 

Para todo  
du R  , la proyección  Xu,   es una variable aleatoria estable 

uno dimensional. 

 

2. Distribuciones multivariadas  α-estable Sub-Gaussianas o Elípticas  

 

Desafortunadamente, ajustar distribuciones α-estable multivariadas a los 

datos en el caso de dimensiones mayores a 2 aún no es factible, dado que la 

medida espectral de la función característica es extremadamente difícil de 

estimar (ver Cheng y Rachev, 1995; Nolan, Panorska y McCulloch, 2001); 

pero algunos casos especiales son computacionalmente accesibles.   

En esta investigación, son tomadas en cuenta las distribuciones multivariadas  

α-estable sub-Gaussianas o Elípticas, las cuales son una subclase del caso 

general, por lo cual satisfacen el Teorema del Límite Central generalizado, lo 

cual las hace atractivas en la teoría financiera.   

 

2.1. Vectores aleatorios α-estable sub-Gaussianos 

 

Si  X   es un vector α-estable sub-Gaussiano o simplemente elíptico, 

entonces tiene la función característica 
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     (2)                                    ,exp,exp
2/

uuuuX iiE T 


 

y parámetros de proyección:  

        ,  ,0  ,
2/1

uuuuuu   T
, 

donde     es una matriz definida positiva y  
d

R   es el vector de 

localización.  En este caso, la medida espectral es complicada (Proposición 

2.5.8 de Samorodnitsky y Taqqu, 1994). 

 

Sea   ,0NG   un vector aleatorio multivariado normal  d

dimensional con media nula y matriz de varianza-covarianza     

independiente de  ,A   una variable aleatoria  α/2-estable  totalmente sesgada 

a la derecha   0,,1,2/ SA   con  .20     Entonces,  

                          

es un vector multivariado α-estable sub-Gaussiano con función característica 

conjunta 

 

                            . 

 

En particular, si  ,20       0,4/cos2,1,2/
/22

0


SA    y  

 ,,0 NG   entonces 

 

 GX
2/1A  tiene función característica (2).  

 

El vector multivariado α-estable sub-Gaussiano  X   hereda su estructura de 

dependencia del vector subyacente aleatorio multivariado normal  ,G   la 

cual es descrita por la matriz de varianza-covarianza   ,  también llamada 

matriz de dispersión.  

 

2.2. Estimación de la distribución α-estable sub-Gaussiana multivariada  

 

Como se mencionó anteriormente, la estimación de los parámetros de la 

distribución α-estable sub-Gaussiana es posible. Sea 

 dXXX ,, ,21 X   un vector multivariado α-estable sub-Gaussiano, se 

propone el siguiente algoritmo para estimar los parámetros que lo describen: 

1) Para cada una de las componentes  iX   del vector α-estable sub-

Gaussiano  X ,  estimar el vector de parámetros   ,ˆ,ˆ,ˆ,ˆˆ
iiiii      
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.,...,1 di    

2) Estimar el índice de estabilidad de la distribución multivariada de la 

siguiente forma: 

                                                    

(3)                                          /ˆˆ
1

di

d

i








 



  

3) Centrar la distribución substrayéndole a  X   el parámetro de posición 

estimado                                

4) Estimar la matriz de dispersión  ., ji   

 

2.2.1. Estimación de la matriz de dispersión  

 

En el caso multivariado, es de suma importancia modelar la estructura de 

dependencia entre los activos que conforman el portafolio, 

desafortunadamente, la matriz de varianza-covarianza de los rendimientos no 

está definida en el caso de las distribuciones estables cuando  2 . En 

cambio, bajo la hipótesis sub-gaussiana, el parámetro de escala del vector 

multivariado   dXXX ,, ,21 X   se puede escribir como una 

combinación lineal de la matriz de covarianza de los vectores gaussianos 

subyacentes, lo cual nos permite estimar la matriz de dispersión  
ji,  . 

 

En esta investigación, se estima la matriz de dispersión siguiendo el método 

de la proyección propuesto por Nolan (2013), en el que los parámetros de la 

distribución estable multivariada son funciones explícitas de los parámetros 

de cada una de las series univariadas, los cuales son estimados vía máxima 

verosimilitud.  A continuación, se hace una breve descripción de este 

método: 

 

Dado  X ,  un vector aleatorio α-estable sub-Gaussiano  d dimensional, se 

tiene que para cualquier vector  ,u   la proyección  Xu
T

  es α-estable 

univariada con parámetro de escala                .   Por lo cual, 

  ijji

ji

iii

i

T uuu  


 222 uuu  

 

En particular, los elementos de la diagonal     de la matriz de dispersión son 

el cuadrado del parámetro de escala del i-ésimo componente de  X ; es decir, 

 iiii e
2  ,  donde  ie   representa la base canónica; y  
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   2/2

jjiijiiij   ee ,  donde   jii ee    es el parámetro 

de escala de la proyección        .,1,1 jiji

TT

ji XXXX  Xee    

Esto implica estimar    2/1dd   parámetros de escala unidimensionales. 

Dado que el vector multivariado α-estable sub-Gaussiano  X   hereda su 

estructura de dependencia del vector subyacente aleatorio multivariado 

normal  ,G   Kring, Rachev, Markus y Fabozzi (2009) señalan que es posible 

interpretar       como la cuasi-varianza del componente  iX ,  y  
ij   como la 

cuasi-varianza entre los componentes  iX   y  .jX   

 

3. Modelo GARCH multivariado elíptico o sub-Gaussiano estable 

 

La extensión del caso multivariado de los modelos Autorregresivo con 

Heterocedasticidad Condicional (ARCH), introducido por Engle (1982), y el 

modelo ARCH generalizado o GARCH, propuesto por Bollerslev (1986) para 

describir la heteroscedasticidad de las variables financieras, ha sido prolífico.  

Sin embargo, la mayoría de estos modelos descansan en el supuesto de que 

los datos siguen una distribución normal multivariada o t-student, por lo cual 

es posible describir la estructura de dependencia de los activos mediante la 

matriz de varianza-covarianza. 

 

La aplicación de las distribuciones estables en los modelos GARCH es 

relativamente nueva.  Panorska, Mittnik y Rachev (1995); Mittnik, Paolella y 

Rachev (2002); Curto, Pinto y Tavares (2009); Bonato (2012), Naka y Oral 

(2013); y Mohammadi (2017) emplean modelos GARCH con distribuciones 

estables para examinar la volatilidad de los rendimientos financieros.  En esta 

investigación, se propone un modelo GARCH multivariado elíptico o sub-

Gaussiano, donde la estructura de dependencia de los activos es descrita 

mediante la matriz de dispersión, lo cual nos permite reducir los cálculos 

numéricos.   El modelo se describe a continuación. 

 

Definamos ttt r    como el vector de las innovaciones de los 

rendimientos.  Supongamos que    es un vector α-estable sub-Gaussiano, es 

decir G
2/1At  , donde   0,,1,2/ SA   es  una variable 

aleatoria  α/2-estable, totalmente sesgada a la derecha con  20    y  

 ,0NG , un vector aleatorio multivariado normal  d dimensional 

con media nula y matriz de varianza-covarianza     independiente de  .A   
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Por lo cual, el vector de rendimientos del portafolio  tii

d

i
t rR ,

1




 ,  donde  

 d ,,1    representa los pesos del portafolio, es un vector α-estable 

sub-Gaussiano con parámetros de proyección      ,
2/1

  T     

  ,0       .,     Lo cual, es consecuencia directa del 

Teorema del Límite Central Generalizado. 

 

El índice de estabilidad del portafolio     no se estimará directamente de la 

distribución de los rendimientos del mismo, pues hacerlo de esta forma no 

sería adecuado, dado que no se consideraría la estructura de dependencia y la 

heterocedasticidad condicional de los rendimientos.  Por lo tanto, para 

considerar estas dos características previamente mencionadas, se propone 

introducir un modelo GARCH multivariante y estimar     de la distribución 

de los rendimientos condicionales. 

 

Siguiendo a Bonato (2012), optamos por el modelo GARCH multivariante 

con correlaciones condicionales dinámicas (DCC), propuesto por Engle 

(2002), debido a que su estimación es computacionalmente accesible y 

además es un modelo flexible que permite especificaciones distintas en los 

GARCH univariados, utilizados para calcular la matriz diagonal  Dt.  En esta 

investigación, la estimación de los GARCH univariados se realiza según el 

método descrito en Serrano y Mata (2018). 

 

Engle (2002) define el modelo de la siguiente forma: 

   11

,

2/1

)(









tttt

tit

tttt

tttt

QdiagQQdiagR

diagD

DRD

zr





 

donde  t   es el vector de medias condicionales,  tR   es la matriz de 

correlaciones condicionales,  
ti,   es la desviación estándar condicional de 

los GARCH univariados y  )( ddQt    es una matriz definida positiva  

  1111   t

T

ttt bQuauRbaQ , donde  tu   son los residuos 

estandarizados obtenidos de los GARCH univariados,  R   es la matriz de 

covarianzas no condicionales de los residuos  tu , y  a   y  b   son constantes 

positivas; el proceso presenta reversión a la media, siempre y cuando  
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.1ba   

 

En el modelo propuesto por Engle (2002), la hipótesis es que  tr   sigue una 

distribución gaussiana con matriz de covarianza    , sin embargo, nuestra 

hipótesis es que los rendimientos siguen una distribución sub-Gaussiana 

estable, por lo cual en nuestro modelo propuesto,      es reemplazada por la 

matriz de dispersión. 

 

Como se mencionó previamente, la estimación de la matriz diagonal Dt  se 

efectúa empleando los modelos GARCH estable univariados, es decir 
ti,  es 

el parámetro de escala condicional del i-ésimo componente de  X  y los 

elementos de la matriz R se estiman usando el método de la proyección 

propuesto por Nolan (2013). 

 

De acuerdo con los trabajos de Mittnik, Paolella y Rachev (2002), y más 

recientemente  Mohammadi (2017), lo anterior nos permite asegurar que 

nuestro modelo GARCH multivariado satisface las condiciones de 

estacionariedad. 

 

Además,  para estimar la matriz de dispersión empleamos el modelo 

propuesto por Nolan (2013), que se describe en la sección anterior, lo cual 

nos permite reducir los cálculos numéricos y por ende aumentar la rapidez de 

ejecución del algoritmo computacional.  Esto nos da una ventaja sobre el 

modelo GARCH estable, propuesto por Bonato (2012), donde los cálculos 

numéricos son intensos, por lo cual su modelo solo se aplica a un portafolio 

bivariado; a diferencia de este, nuestro modelo es aplicado a un portafolio 

compuesto por 5 activos financieros. 

 

4. Aplicación a la estimación del VaR de un portafolio compuesto por 

activos financieros que cotizan en la BMV 

4.1. Descripción de los datos 

 

Un portafolio es una combinación lineal de activos financieros (acciones, 

commodities, etc.). Considere un inversor que tiene una cantidad fija de 

dinero para invertir en  d   activos:  1   en el activo 1,  2   en el activo 

2,…,  d   en el activo d.  Las tasas de rendimiento,  dXXX ,,, 21    son 

aleatorias.  Al concluir el período de inversión, el portafolio compuesto por 

estos activos tiene un rendimiento 

                   

La distribución de R  depende de la distribución del vector de rendimientos  

 .,,, 21 dXXX X     
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Este trabajo propone el uso de distribuciones estables multivariadas, en 

particular el caso sub-Gaussiano, para estimar el VaR de un portafolio 

equiponderado; es decir, se asume que los componentes del portafolio siguen 

una distribución α-estable sub-Gaussiana.  Algunos trabajos pioneros en esta 

área son Press (1972) y Cheng y Rachev (1995). 

 

Para el análisis empírico, se han elegido 5 cinco activos con diferente 

volumen de operación que cotizan en la Bolsa Mexicana de Valores (BMV), 

pertenecientes a 5 diferentes industrias.  Estos activos corresponden a las 

siguientes empresas: Consorcio ARA, S.A. de C.V. (ARA), líder en venta y 

construcción de inmuebles residenciales y que también opera como 

contratista para clientes no afiliados en la construcción, promoción y 

comercialización de proyectos comerciales e industriales; Controladora 

Comercial Mexicana (COMER), compañía controladora que opera en el 

sector detallista en México y cuenta con 199 tiendas y también con una 

cadena de 74 restaurantes familiares; Fomento Económico Mexicano, S.A.B. 

de C.V. (FEMSA), empresa que participa en la industria de refrescos, a través 

de Coca-Cola FEMSA, el embotellador independiente más grande de 

productos Coca-Cola en el mundo y también dispone de otras operaciones, 

como logística y equipo de refrigeración; Grupo Carso (GCARSO), uno de 

los conglomerados más importantes de América Latina que controla y opera 

empresas del sector industrial, comercial e infraestructura y construcción y 

Grupo Televisa, S.A.B. (TELEVISA), líder en la producción y transmisión 

de contenido de entretenimiento televisivo en México, involucrada en la 

producción de señales de televisión restringida, en servicios de televisión 

directa al hogar vía satélite, y en servicios de televisión por cable y 

telecomunicaciones. Se encarga también de la publicación y distribución de 

revistas, producción y transmisión de programas de radio, operación de un 

portal de Internet y en la industria de juegos y sorteos. 

 

La moneda de referencia a utilizar en nuestro modelo es el peso mexicano, ya 

que es la moneda de cotización de las empresas. Las cinco series que 

conforman el portafolio de la aplicación, contienen información de los 

precios diarios de cierre de cada activo, excluyendo fines de semana y 

festivos. 

 

La muestra total inicia el 2 de enero de 2003 y finaliza el 31 de diciembre de 

2009, por lo cual se tienen 1767 observaciones, para cada uno de los activos. 

Esto con la finalidad de evaluar el desempeño de la estimación del modelo 

VaR  α-estable durante períodos de alta volatilidad, como la crisis financiera 

de 2008.  Además, para cada serie, se consideran los rendimientos 

logarítmicos diarios. 
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4.2. Análisis del comportamiento elíptico de los datos y estimación del 

índice de estabilidad 

 

Primero determinemos si el portafolio puede ser descrito por una distribución 

α-estable sub-Gaussiana.  Esto es de fundamental importancia, dado que 

cualquier portafolio bajo la hipótesis sub-Gaussiana es descrito por una 

distribución estable cuyo parámetro de escala es una combinación lineal de 

los elementos de la matriz de dispersión  
ji,  . 

 

Lo anterior será analizado empleando el método propuesto por Nolan (2013), 

el cual se describe a continuación: 

1) Estimar el vector de parámetros   iiiii  ˆ,ˆ,ˆ,ˆˆ   , para cada acción  

,iX .,...,1 di    

2) Verificar que los índices de estabilidad estimados univariados  i̂   no 

sean significativamente diferentes, dado que si esto ocurre, entonces los 

datos no son  α-estable,  conjuntamente, por lo cual no pueden ser 

modelados por una distribución sub-Gaussiana. 

3) Verificar que los parámetros de asimetría estimados  i̂   sean cercanos 

a cero, de lo contrario la distribución es no simétrica, por  lo cual no 

podría ser sub-Gaussiana. 

4) Utilizar gráficas de dispersión a pares para visualizar el comportamiento 

elíptico de los datos. 

5) Si los datos cumplen los criterios 2-4, entonces el uso de un modelo sub-

Gaussiano está justificado.  En caso contrario, la hipótesis sub-Gaussiana 

se rechaza. 

 

En este estudio, primero se filtraron los rendimientos logarítmicos empleando 

el modelo GARCH(1,1) multivariado sub-Gaussiano descrito anteriormente.  

Con lo cual se introdujo la heterocedasticidad de los rendimientos en el 

modelo multivariado.  Posteriormente, se ajustaron los residuos condicionales 

al modelo sub-Gaussiano. 

 

El modelo se describe a continuación:                                                  

2
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2
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En la tabla 1, se presentan la estimaciones del modelo GARCH(1,1) 

obtenidas por máxima verosimilitud. 

 

Tabla 1  

Parámetros GARCH(1,1) 

  Coeficiente Error Estándar 

a1,0 1.33E-05 2.32E-06 

a1,1 0.075442 0.008208 

b1,1 0.901551 0.010157 

a2,0 5.25E-05 3.79E-06 

a2,1 0.271988 0.019281 

b2,1 0.661237 0.01651 

a3,0 6.44E-06 1.11E-06 

a3,1 0.057992 0.006801 

b3,1 0.921818 0.007951 

a4,0 1.05E-05 1.45E-06 

a4,1 0.096457 0.008634 

b4,1 0.882154 0.009303 

a5,0 4.46E-06 1.05E-06 

a5,1 0.027889 0.0035 

b5,1 0.956723 0.006194 

a1,2 0.326957 0.016374 

a1,3 0.285542 0.019708 

a1,4 0.33223 0.019936 

a1,5 0.378393 0.018723 

a2,3 0.288504 0.020656 

a2,4 0.321715 0.019525 

a2,5 0.321014 0.021931 

a3,4 0.294448 0.019991 

a3,5 0.449027 0.017903 

a4,5 0.360646 0.02082 
Fuente: Elaboración propia con datos de Bloomberg. 
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En la tabla 2, se presentan los parámetros estimados de la distribución α-

estable para cada uno de los componentes del portafolio, los cuales son 

estimados por máxima verosimilitud mediante el programa STABLE, 

descrito en Nolan (1997). 

 

Tabla 2 

Parámetros de la distribución α-estable sub-Gaussiana. 

Series α β γ δ 

          

ARA 1.60981544 -0.00000001 0.01203195 -0.00065309 

  (1.03792098) (-0.000000003) (0.00625361) (-0.00037213) 

  [1.55] [1.52] [1.92] [1.76] 

COMER 1.57662669 0.12080045 0.01221827 -0.00111243 

  (0.85732827) (0.073035337) (0.00711606) (-0.00071401) 

  [1.84] [1.65] [1.72] [1.56] 

FEMSA 1.61899336 0.09202455 0.01002487 -0.00061161 

  (0.84986528) (0.053784072) (0.00508877) (-0.00034889) 

  [1.91] [1.71] [1.97] [1.75] 

GCARSO 1.53388814 0.00000000 0.01121064 -0.00063818 

  (0.97143011) (0.000000002) (0.00590656) (-0.00039986) 

  [1.58] [1.68] [1.93] [1.62] 

TELEVISA 1.73406170 0.09254939 0.01081221 -0.00088694 

  (1.06123727) (0.059517296) (0.00643584) (-0.00045461) 

  [1.63] [1.56] [1.68] [1.95] 
Nota. Entre paréntesis se tiene el error estándar y entre corchetes el estadístico t. Fuente: 

Elaboración propia. 

 

En la tabla 2, se observa que los índices de estabilidad  ,i    5,. . . ,1i  , 

son significativamente inferiores a 2, lo cual indica que los datos son 

leptocúrticos.  Además, los índices de asimetría  i   son cercanos a cero, 

excepto para la serie COMER y FEMSA, que resultan estadísticamente 

diferentes de cero según la metodología de Barndorff-Nielsen, Mikosch y 

Resnick (2012), ver apéndice A.  Sin embargo, siguiendo la justificación 

presentada en  Nolan (2013), página 2078, se justifica el uso de la 

distribución α-estable sub-Gaussiana. 

 

Adicionalmente, se estiman los parámetros para las distribuciones 

multivariadas t-Student y Cauchy, con fines de comparación. Los resultados 
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se encuentran en el apéndice B, donde cada estimador se acompaña de su 

error estándar y su estadístico de prueba t. 

 

En las figuras 1 a 5, se muestran las gráficas de dispersión a pares de las 

acciones que componen el portafolio y se visualiza el comportamiento 

elíptico de los datos. 

 

Dado que los datos cumplen los criterios 2-4, se concluye que estos siguen 

una distribución sub-Gaussiano multivariada.  Por lo tanto, se procede a 

estimar el índice de estabilidad de la distribución multivariada usando (3) 

61468.1ˆ  . 

 

4.3. Estimación de matriz de dispersión 

 

En esta sección, se muestra la matriz de dispersión estimada de la 

distribución α-estable sub-Gaussiana.  Para estimarla se empleó el modelo 

descrito en la sección 2.2.1. 

 

Antes de aplicar este modelo, se centra cada serie  iX , substrayéndole el 

parámetro de posición estimado   .ˆ,...,ˆˆ
1 d     La matriz de dispersión 

estimada se muestra a continuación: 
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4.4. Estimaciones del VaR 

 

En esta sección, se estima el VaR del portafolio mediante simulación 

Montecarlo, empleando el modelo GARCH multivariado sub-Gaussiano 

propuesto bajo la hipótesis de que: condicionalmente, los rendimientos 

siguen una distribución  α-estable sub-Gaussiana. 

 

El VaR se calcula considerando el horizonte de tiempo de un día   ,1   y 

un nivel de confianza  ,1 q   para lo cual se sigue el siguiente algoritmo: 

1) Estimar los parámetros del modelo GARCH multivariado sub-

Gaussiano, empleando el método de máxima verosimilitud y obtener los 

residuos condicionales. 

2) Dados los residuos condicionales obtenidos en el paso anterior, estimar 

el índice de estabilidad  ̂   de la distribución  α-estable sub-Gaussiana. 

3) Estimar la matriz de dispersión  ., ji   

4) Realizar  S   simulaciones de vectores aleatorios α-estable sub-

Gaussianos  ,ˆ jz    .,...,1 Sj    

5) Aplicar descomposición de Cholesky a  .TAA   

6) Generar los posibles escenarios  
jzA

t ePP
ˆ

01  .  

7) Estimar los posibles rendimientos  jtr ,1
ˆ
   ,  .,...,1 Sj    

8) Estimar el VaR como el negativo del q-esimo cuartil de la distribución 

de probabilidad simulada. 

 

En la presente investigación, el VaR se estima a un nivel de confianza de 

95%, 99% y 99.5%.  En la tabla 3, se muestran los VaR estimados. 

 

En las estimaciones del VaR, se observa que el modelo α-estable sub-

Gaussiano proporciona valores mayores a las estimaciones basadas en la 

distribución normal, t-Student y Cauchy, es decir, el modelo del VaR α-

estable sub-Gaussiano proporciona estimaciones de las pérdidas potenciales 

más conservadoras, lo cual es preferido por las instituciones financieras. Es 

importante señalar que este resultado corresponde al periodo 2008-2009. 
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Tabla 3 

Estimaciones del VaR 

Nivel de Confianza Distribución VaR 

99.5% Normal -6.176 

99.5%  -estable sub-Gaussiana -16.624 

99.5% t-Student  -10.646 

99.5% Cauchy -9.623 

   

99.0% Normal -5.776 

99.0%   -estable sub-Gaussiana -12.191 

99.5% t-Student -9.176 

99.5% Cauchy -7-896 

   

95.0% Normal -3.873 

95.0%   -estable sub-Gaussiana -5.824 

99.5% t-Student -4.875 

99.5% Cauchy -4.367 

   
Fuente: Elaboración propia. 

 

5. Evaluación del desempeño del VaR 

5.1. Backtesting 

 

En esta sección, se emplea la prueba llamada backtesting, para evaluar el 

desempeño del modelo VaR bajo el supuesto de que condicionalmente los 

rendimientos siguen una distribución  α-estable sub-Gaussiana, t-Student, 

Cauchy y normal, respectivamente. 

 

Sea  q1   el nivel de confianza para el cálculo del VaR y  k , el número de 

observaciones históricas más recientes empleadas para pronosticar el VaR 

actual. En este trabajo, k=502, es decir, utilizamos los datos históricos de los 

últimos dos años de la respectiva muestra para predecir el VaR. 
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El rango para el cual el número de veces qN 1  que se ha excedido el VaR es 

aceptable y sus respectivas frecuencias  ,1

k

N q
  a un nivel significativo del  

1%,  se muestran en la tabla 4. 

 

Tabla 4 

Rango y frecuencia de violaciones del VaR aceptables. 

VaR 
Rango de violaciones del VaR 

aceptable 

Frecuencia de violaciones del VaR 

aceptable 

99.5% [0,7] [0.00%,1.31%] 

99.0% [0,11] [0.00%,2.14%] 

95.0% [13,38] [2.49%,7.51%] 

   Fuente: Elaboración propia. 

 

Los resultados del backtesting se muestran en la tabla 5.  En esta tabla, se 

puede observar que durante el período de la crisis financiera de 2008, el 

número de violaciones del VaR bajo el supuesto de normalidad
2
 se encuentra 

muy por encima del intervalo admisible, lo que implica que el VaR, bajo este 

supuesto, subestima significativamente las pérdidas potenciales durante 

períodos de crisis. 

 

Además, se observa que el número de violaciones del VaR, obtenida bajo la 

hipótesis multivariada t-Student y Cauchy, también exceden el rango 

aceptable, excepto la distribución multivariada t-Student para un nivel de 

confianza del 95%.  En contraste, el número de violaciones del modelo VaR 

α-estable sub-Gaussiano se encuentra dentro del rango admisible de 

excepciones, durante el período de crisis; lo cual sugiere que este modelo 

tiene un  mejor desempeño durante períodos de turbulencias financieras que 

el modelo VaR bajo la hipótesis multivariada Gaussiana, t-Student y Cauchy. 

 

 

 

 

 

 

 

                                                           
2
 En este caso, se hace referencia a que el modelo supone que condicionalmente los 

retornos siguen una distribución  -estable sub-Gaussiana, normal multivariada, t-Student o 

Cauchy. 
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Tabla 5 

Backtesting del VaR. 

Nivel de Confianza Distribución Backtesting 

99.5% Normal 23 

99.5%   -estable sub-Gaussiana 2 

99.5% t-Student  13 

99.5% Cauchy 11 

   

99.0% Normal 28 

99.0%   -estable sub-Gaussiana 5 

99.0% t-Student 19 

99.0% Cauchy 17 

   

95.0% Normal 56 

95.0%   -estable sub-Gaussiana 28 

95.0% t-Student 35 

95.0% Cauchy 42 

   
Fuente: Elaboración propia. 

 

5.2. Estadístico de Kupiec 

 

Además, la evaluación del desempeño del VaR se realiza en términos de su 

probabilidad de cobertura empírica.  Con este objetivo, se aplica la prueba de 

la razón de verosimilitud de Kupiec dada en Kupiec (1995), la cual estima si 

la proporción esperada de violaciones es igual al nivel de significancia α.   

 

El estadístico de Kupiec es una prueba incondicional porque cuenta el 

número de violaciones durante todo el período.  Además, como indica 

Kupiec (1995), las pruebas de cobertura incondicional tienen bajo poder con 

respecto a la hipótesis alternativa, si el tamaño de la muestra es pequeño; sin 

embargo, este problema no existe aquí, ya que en la presente investigación, la 

muestra seleccionada cubre un largo período de tiempo. 

 

El estadístico de prueba de Kupiec para muestras grandes se distribuye como 

una Ji-cuadrada con un grado de libertad, y está dado por: 
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donde T representa el tamaño de la muestra, n el número de violaciones y 

p=n/T es el porcentaje de violaciones.  La hipótesis nula se rechaza con un 

nivel de significancia del 1% si                          , es decir, si el valor 

del estadístico de Kupiec excede o es igual al valor crítico de una distribución 

Ji-cuadrada, con un grado de libertad y un nivel de significancia del 1%. 

 

En la tabla 6, se presenta un resumen de los resultados de la prueba de la 

razón de verosimilitud de Kupiec (1995).  El símbolo (X) se utiliza para 

indicar que el modelo VaR analizado cumple con la hipótesis de una 

cobertura incondicional correcta, es decir, el modelo se acepta como un 

modelo VaR bien especificado.  Los modelos rechazados, debido a la 

sobreestimación o subestimación del VaR, se indican con asterisco (*) y 

signo menos (-), respectivamente. 

 

Tabla 6 

Estadístico de Kupiec 

Nivel de confianza Distribución Kupiec 

99.5% Normal - 

99.5%   -estable sub-Gaussiana X 

99.5% t-Student * 

 99.5% Cauchy - 

      

99.0% Normal - 

99.0%   -estable sub-Gaussiana X 

99.0% t-Student - 

99.0% Cauchy - 

   

95.0% Normal - 

95.0%   -estable sub-Gaussiana X 

95.0% t-Student - 

95.0% Cauchy X 

   
Fuente: Elaboración propia. 

 

En la tabla 6, se observa que el modelo VaR α-estable proporciona una 

cobertura incondicional correcta durante el período de crisis señalado. En 

contraste, el modelo VaR bajo las distribuciones normal y t-Student 

presentan un desempeño inferior durante el período de crisis, donde se 
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sobrestima o subestima el VaR; salvo para el caso de la distribución de 

Cauchy al nivel de 95% de confianza. 

 

Conclusiones 

 

En esta investigación, se propuso un modelo GARCH α-estable sub-

Gaussiano multivariado, el cual combina la propiedad de la distribución α-

estable para modelar colas pesadas con el modelo GARCH, para capturar 

clúster de volatilidad. La finalidad fue comparar el desempeño de esta 

especificación, en relación con los casos de la distribución normal, Cauchy y 

t-Student.  

 

En particular, se realizó la estimación del VaR bajo la hipótesis α-estable 

sub-Gaussiana durante el período de la crisis financiera de 2008, a partir de 

un portafolio compuesto por 5 activos financieros que cotizan en la BMV. 

 

Los resultados estadísticos sugieren que el modelo VaR α-estable sub-

Gaussiano proporciona estimaciones del VaR cuyas pruebas de backtesting 

tienen un mejor desempeño, en períodos de alta volatilidad; es decir, las 

estimaciones del VaR son más eficientes bajo el supuesto de que los 

rendimientos siguen una distribución α-estable sub-Gaussiana durante 

períodos de turbulencias financieras.   

 

Sin embargo, es necesaria investigación adicional. Por ejemplo, sería 

conveniente considerar un conjunto mayor de distribuciones de probabilidad 

que también capturen las características empíricas de las series de datos 

financieros y comparar su desempeño con el modelo α-estable sub-Gaussiano 

aquí propuesto. Además, se podrían emplear funciones cópula para describir 

las correlaciones entre los rendimientos de las acciones, empleando tanto la 

distribución estable como la distribución marginal de los activos que 

conforman el portafolio. 
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Apéndice A: Distribuciones multivariadas 

 

Distribución estable 

Dado un vector estable X  0;,,, S , su función característica y de 

máxima verosimilitud están dadas por: 

  
    

   












1 si  ,ln)sgn(1exp

1 si,1tan)sgn(1exp
exp

2

1

2









tittit

tittit
iXtE

 

Función de máxima verosimilitud 

                  

 

   

 

Donde              , el espacio de parámetros es                

             y          es la función de densidad, cuya dificultad para 

evaluar radica en la ausencia de expresiones analíticas para la función de 

densidad de probabilidad. Sin embargo, el caso univariado ha sido resuelto 

(Nolan, 1997; Mittnik, Doganoglu y Chenyao, 1999; Khindanova, Rachev y 

Schwartz, 2001), y también algunos casos multivariados (Press, 1972; 

Modarres y Nolan, 1994; Nolan y Rajput, 1997; Nolan, Panorska y 

McCulloch, 2001). 

 

Función de densidad multivariada t-Student 

         
α          

  
 
 
              

                     
        

 

Donde   es una matriz de forma positiva definida,   son los grados de 

libertad,      son vectores de localización y   es la función gamma clásica 

en   variables.  

 

Función de densidad multivariada Cauchy 

     
   

   
 

          

                 
 

Donde   es una matriz de forma positiva definida,   son los grados de 

libertad,      son vectores de localización. 

 

Función de máxima verosimilitud 

 

En el caso de las distribuciones t-Student, Cauchy y normal se emplea la 

función de log-verosimilitud usual 
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Donde          es la función de densidad de probabilidad que depende del 

conjunto de parámetros    y         son los elementos de la muestra.  

Luego, para el estimador    , se tiene que para cada elemento del vector se 

cumple, que: 

 

                    

Donde  

          

   
              

    

 

Por tanto, el intervalo de confianza y/o la prueba de significancia estadística 

se puede llevar a cabo (Barndorff-Nielsen, Mikosch y Resnick, 2012),  con 

las expresiones siguientes    : 
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Apéndice B 

Tabla B.1 

Parámetros estimados para la distribución multivariada t-Student 

Parámetros Coeficientes estimados 

  0.00072 0.00075 0.00069 0.00083 0.00064 

  (0.00043) (0.00046) (0.00039) (0.00053) (0.00042) 

  [1.67] [1.66] [1.79] [1.57] [1.54] 

  0.00030 0.00061 0.00043 0.00040 0.00022 

  (0.00018) (0.0004) (0.00022) (0.00023) (0.00012) 

  [1.61] [1.53] [1.96] [1.72] [1.78] 

  3.76523         

  (2.06881)         

  [1.82]         

  ARA COMER FEMSA GCARSO TELEVISA 

 
0.00027         

  (0.00015)         

  [1.79]         

  0.00009 0.00029       

  (0.00005) (0.00017)       

  [1.94] [1.75]       

  0.00007 0.00007 0.00018     

  (0.00004) (0.00004) (0.0001)     

  [1.51] [1.59] [1.89]     

  0.00009 0.00009 0.00006 0.00024   

  (0.00006) (0.00005) (0.00004) (0.00013)   

  [1.55] [1.66] [1.61] [1.87]   

  0.00009 0.00008 0.00009 0.00008 0.00019 

  (0.00005) (0.00004) (0.00004) (0.00004) (0.00012) 

  [1.69] [1.8] [1.93] [1.92] [1.56] 

Nota. Entre paréntesis se tiene el error estándar y entre corchetes el estadístico t. Fuente: 

Elaboración propia. 
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Tabla B.2 

Parámetros estimados para la distribución multivariada Cauchy 

Parámetros Coeficientes estimados 

  0.00057 0.00062 0.00047 0.00060 0.00066 

  (0.00029) (0.0004) (0.00027) (0.00031) (0.00041) 

  [1.95] [1.54] [1.72] [1.93] [1.59] 

  0.00101 0.00219 0.00193 0.00198 0.00054 

  (0.00065) (0.00122) (0.00112) (0.00114) (0.00034) 

  [1.55] [1.79] [1.73] [1.74] [1.57] 

  ARA COMER FEMSA GCARSO TELEVISA 

 
0.00020         

  (0.00013)         

  [1.49]         

  0.00007 0.00022       

  (0.00004) (0.00015)       

  [1.88] [1.44]       

  0.00005 0.00005 0.00014     

  (0.00002) (0.00004) (0.00008)     

  [1.97] [1.42] [1.71]     

  0.00006 0.00007 0.00005 0.00018   

  (0.00004) (0.00005) (0.00002) (0.00013)   

  [1.44] [1.43] [1.95] [1.44]   

  0.00007 0.00006 0.00007 0.00006 0.00015 

  (0.00005) (0.00004) (0.00004) (0.00004) (0.00012) 

  [1.42] [1.98] [1.62] [1.74] [1.91] 

Nota. Entre paréntesis se tiene el error estándar y entre corchetes el estadístico t. Fuente: 

Elaboración propia. 

 

 


