EMERGENCIA Y CRECIMIENTO DE PLÁNTULAS DE VARIEDADES DE ALBAHACA (Ocimum basilicum L.) SOMETIDAS A ESTRÉS HÍDRICO

Seedling emergence and growth of basil varieties under water stress

1 Carlos Michel Ojeda-Silva, 1+Bernardo Murillo-Amador, 1Alejandra Nieto-Garibay, 1Enrique Troyo-Diéguez, 2Inés Maria Reynaldo-Escobar, 3Francisco Higinio Ruiz-Espinoza, 4José Luis García-Hernández

1 Centro de Investigaciones Biológicas del Noroeste, S.C, Instituto Politécnico Nacional Núm. 195, Colonia Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, México.
2 Instituto Nacional de Ciencias Agrícolas, Mayabeque, Cuba.
3 Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, México.
4 Universidad Juárez del Estado de Durango, Venecia, Durango.

Artículo científico recibido: 11 de julio de 2013, aceptado: 06 de octubre de 2014

RESUMEN. La poca disponibilidad de agua para la agricultura en las zonas áridas del mundo, y en especial en México, debido a la demanda cada vez mayor de la población en constante aumento, exige realizar estudios encaminados a lograr producciones agrícolas mayores con menos recursos hídricos. Este estudio se realizó con el objetivo de determinar el efecto del estrés hídrico en 20 variedades de albahaca, sometidas a tres niveles de potencial hídrico (0, -0,75 y -1,50 MPa) en un diseño completamente al azar con cuatro repeticiones. Las variables medidas fueron porcentaje y tasa de emergencia, longitud de radícula, altura de plántula, biomasa fresca y seca de radícula, y de la parte aérea. Los resultados mostraron que la variedad con mayor porcentaje y tasa de emergencia bajo estrés fue Red Rubin, en tanto que Mrs Burns no logró la emergencia a un nivel de estrés severo (-1,50 MPa). Thai, Dark Opal, Emily, Dolly y Napoletano presentaron mayor longitud de radícula cuando se les aplicó estrés hídrico; por su parte, Cinnamon, Purple Ruffles, Genovese, Genovese Italian, Dolce Vita y Napoletano no lograron desarrollarse cuando el potencial hídrico se igualó a -1,50 MPa, mientras que Sweet Dani presentó mayor biomasa fresca de parte aérea y radícula. Las variedades de mayor biomasa seca en estrés severo (-1,50 MPa) fueron Siam Queen y Thai en parte aérea; Emily y Thai para radícula en estrés moderado (-0,75 MPa).

Palabras clave: Sequía, semilla, tasa de emergencia, hierbas aromáticas

ABSTRACT. The limited availability of water for agriculture in arid areas of the world and especially in Mexico, caused by an increasing demand of a growing population, forced to do studies to achieve higher agricultural production with less water. This study was conducted in order to determine the effect of water stress on 20 varieties of basil, subject to three levels of water potential (0, -0,75 and -1,50 MPa) in a completely randomized design with four replications. The variables measured were percentage and emergence rate, radicle length, seedling height, fresh and dry biomass of radicle and aerial part. The results showed that Red Rubin had the higher percentage and rate of emergence under stress, while Mrs Burns not emerged under severe stress level (-1,50 MPa). Thai, Dark Opal, Emily, Dolly and Napoletano had higher radicle length when water stress was applied; meanwhile Cinnamon, Purple Ruffles, Genovese, Genovese Italian, Dolce Vita and Napoletano failed to develop when water potential was equal a -1,50 Mpa, while Sweet Dani had higher fresh biomass of root and shoot. Siam Queen and Thai showed higher shoot biomass under higher stress (-1,50 MPa); Emily and Thai for root biomass under moderate stress (-0,75 MPa).

Key words: Drought, seeds, emergence rate, aromatic herbs
INTRODUCCIÓN

Las alteraciones del clima en los últimos años afecta de forma considerable el régimen pluviométrico en muchos países, teniendo como consecuencia una mayor frecuencia de eventos de sequías severas y prolongadas, lo que ha provocado cuantiosos daños en la agricultura actual (PNUD 2000). El estrés hídrico asociado con altas temperaturas y la radiación es el proceso ambiental más importante que puede detener el crecimiento, desarrollo y la supervivencia de los cultivos, poniendo en riesgo su productividad (Chaves et al. 2003, Fereres y Sornano 2007, Nieto-Garibay et al. 2010).

Desde las etapas tempranas, las plantas cultivadas deben enfrentar condiciones de estrés abiótico como la sequía y los procesos que se presentan en la germinación, emergencia y el crecimiento de la plantula para su adaptación a condiciones ambientales y edáficas adversas (Mokhberdoran et al. 2009). Se han realizado diversos estudios acerca de la respuesta de las plantas cultivadas en estrés hídrico en etapas tempranas con el fin de conocer los mecanismos de adaptación a esta condición, obteniéndose progresos en la interpretación de las relaciones hídricas entre las diferentes estructuras de las plantas y sus funciones, lo cual es esencial para el entendimiento de la habilidad competitiva de las plantas para sobrevivir en diferentes ambientes (Heidari y Golpayegani 2012, Jackson et al. 2000, Maggio et al. 2001, Valladares y Pearcy 1997). A pesar de que esta temática ha sido ampliamente estudiada por la comunidad científica internacional, todavía existen cultivos como la albahaca, de gran importancia por su uso medicinal, alimenticio y principalmente por su contenido de aceites esenciales (Bemstein et al. 2010, El-Beshbishy y Bahashwan 2012, Yesilova y cit 2012), en la que existe poco conocimiento sobre su respuesta al estrés hídrico en las etapas tempranas de su ciclo, germinación y emergencia, así como la adaptación a las zonas áridas y semiáridas (Ojeda-Silvera et al. 2013).

El objetivo del presente trabajo fue evaluar el efecto del estrés hídrico en condiciones semi-controladas, sobre la emergencia y crecimiento de plantulas de 20 variedades de albahaca, con el propósito de establecer posibles diferencias entre ellas que permitan considerarlas como criterio para la selección de variedades tolerantes y sensibles al déficit hídrico.

MATERIALES Y MÉTODOS

Sitio de estudio

El experimento se realizó en una estructura de malla sombra del Centro de Investigaciones Biológicas del Noroeste, México, localizado al norte de la ciudad de La Paz, Baja California Sur, México, a los 24° 08’ 10.03” LN y 110° 25’ 35.3” LO, a 7 msnm.

Material genético

Se utilizaron semillas de veinte variedades de albahaca provenientes de la empresa Vé Seed Company, Inc., las cuales son, Lemon, Sweet Dani, Sweet Genovese, Siam Queen, Red Rubin, Thai, Dark Opal, Spicy Glove, Licorice, Cinnamon, Mrs Bums, Purple Ruffles, Lettuce Leaf, Italian Large Leaf, Genovese, Dolly, Emily, Genovese Italian, Dolce Vita Blend y Napoletano, cuyo origen es los Estados Unidos de América, de las cuales no existe información sobre su tolerancia o sensibilidad al estrés hídrico. Con el fin de evaluar la calidad de las semillas de las variedades en estudio, previo al experimento se realizó una prueba de germinación sin aplicar estrés hídrico, utilizando la metodología del ISTA (1999).

Diseño experimental y tratamientos

El experimento se estableció en un diseño completamente al azar con arreglo factorial, considerando las variedades como el primer factor y los tratamientos de sequía como el segundo factor, con cuatro repeticiones de 25 semillas cada una. Las semillas se sembraron en charolas de poliestireno de 200 cavidades, las cuales contenían sogemix PMMR como sustrato. Los tratamientos aplicados consistieron en mantener el potencial hídrico del sustrato a -0.75 MPa (estrés moderado); -1.50 MPa (estrés severo) y un control a capacidad de campo (sin estrés), mismos que se determinaron mediante la curva de la pérdida de humedad del
sustrato empleado y corroborados diariamente con el medidor de potencial hídrico (Dewpoint Potential Meter modelo WP4-T). La emergencia se registró todos los días y el porcentaje final se determinó a los 14 d. La tasa de emergencia se calculó utilizando la ecuación de Maguire (1962), \[M = n_1/t_1 + n_2/t_2 + n_25/t_14; \] donde \(n_1, n_2, n_25 \) son el número de semillas germinadas en los tiempos \(t_1, t_2, t_{14} \) en d.

Variables morfológicas

A los 14 d después de la siembra, se seleccionaron al azar 10 plantulas por repetición, a las cuales se les midió la longitud de raíz (cm), altura de planta (cm), biomasa fresca (mg) y seca de raíz (mg) y de parte aérea (mg), que se determinaron por el método destructivo. Estas variables se determinaron al dividir cada planta en tallos, hojas y raíz, para pesar cada parte por separado, con una balanza analítica (Mettler Toledo, AG204) en mg de biomasa fresca. Una vez que se obtuvo el peso fresco de cada parte, éstas se colocaron en una estufa de secado (Shell-Lab, FX-5, serie-1000203) a una temperatura de 70 °C por 72 h. Para luego pesar cada parte y obtener el peso de materia seca en mg.

Análisis estadísticos

Se realizaron análisis de varianza y comparaciones múltiples de medias (Tukey \(p = 0.05 \)). Previo al análisis de varianza, los datos de porcentaje de emergencia se transformaron mediante arcoseno (Little y Hills 1989, Steel y Torrie 1995), los cuales se realizaron con el programa Statistica v. 10.0 para Windows (StatSoft, 2011).

RESULTADOS

Porcentaje y tasa de emergencia

Para el porcentaje de emergencia, los resultados mostraron diferencias significativas entre variedades (\(F_{19, 120} = 8.15, p \leq 0.001 \)), entre niveles de potencial hídrico (\(F_{2, 120} = 934.53, p \leq 0.001 \)) así como en la interacción de variedades × niveles de potencial hídrico (\(F_{38, 120} = 6.04, p \leq 0.001 \)).

Large Leaf fueron las que mostraron el mayor porcentaje de emergencia en el tratamiento control (0 MPa), mientras que la variedad Red Rubin logró más de 73 % de emergencia con el estrés moderado y más del 53 % con el estrés severo. Las otras variedades mostraron sensibilidad al estrés hídrico, ya que el porcentaje de emergencia fue menor a 50 % con el estrés moderado, obteniendo un valor de cero en la variedad Mrs Burns en el tratamiento de -1.50 MPa. El porcentaje de emergencia disminuyó en todas las variedades con el incremento de los niveles de estrés hídrico (Tabla 1). Para la tasa de emergencia se observaron diferencias significativas entre variedades (\(F_{19, 120} = 17.29, p \leq 0.001 \)), entre niveles de potencial hídrico (\(F_{2, 120} = 2213.29, p \leq 0.001 \)), así como entre la interacción de variedades × niveles de potencial hídrico (\(F_{38, 120} = 10.69, p \leq 0.001 \)).

La variedad Italian Large Leaf mostró la tasa de emergencia mayor en el tratamiento control, mientras que Siam Queen mostró la tasa menor. La variedad Red Rubin logró una tasa de emergencia de 2.08 en -0.75 MPa, mientras que las variedades Spicy Glove y Napoliotano mostraron la tasa menor. En el nivel de potencial hídrico de -1.50 MPa, la variedad Thai mostró la tasa mayor con un valor de 1.40, mientras que la variedad Mrs Burns obtuvo un valor de cero en la tasa de emergencia, seguida por las variedades Cinnamon y Purple Ruffles, ambas con una tasa de 0.57 (Tabla 1).

Variables morfológicas

Los resultados mostraron diferencias significativas entre variedades (\(F_{19, 120} = 144.18, p \leq 0.001 \)), así como en la interacción de variedades × niveles de potencial hídrico para la longitud de la raíz (\(F_{28, 120} = 81.08, p \leq 0.001 \)). Al analizar las interacciones para esta variable, se observó que las variedades Sweet Genovese, Sweet Dani, Siam Queen, Red Rubin y Emily, mostraron mayor longitud de raíz en el tratamiento control, mientras que en el potencial hídrico de -0.75 MPa, las variedades Emily, Dolly, Dark Opal, Thai, Napoliotano, y Dolce Vita superaron el tratamiento control. A medida que el potencial hídrico fue más negativo, con excepción de Sweet Dani y Dolly, las variedades disminuyeron el crecimiento de raíz, con respecto a...
tratamiento control, llegando a ser nulo con el estrés de -1.50 MPa en las variedades Cinnamon, Purple Ruffles, Genovese, Genovese Italian, Dolce Vita y Napoli, lo que denota la sensibilidad de estas variedades al déficit hídrico.

Para biomasa fresca de raíz, se encontraron diferencias significativas entre variedades (F₁₉,₁₂₀ = 151.105, p ≤ 0.001) y en la interacción de variedades x niveles de potencial hídrico para biomasa fresca de raíz (F₃₈,₃,₁₂₀ = 21.797, p ≤ 0.001). Los mayores valores para esta variable los presentó la variedad Sweet Dani, tanto en el tratamiento control como en los niveles de potencial hídrico de -0.75 y -1.50, seguido de la variedad Lemon. Conforme el potencial hídrico fue más negativo, la biomasa fresca de raíz disminuyó en todas las variedades (Tabla 2).

Los resultados revelaron diferencias significativas entre variedades para la biomasa seca de raíz (F₁₉,₁₂₀ = 96.35, p ≤ 0.001) y para la interacción de variedades x niveles de potencial hídrico (F₃₈,₃,₁₂₀ = 20.49, p ≤ 0.001), siendo las variedades Emily en el control y en -0.75 MPa, Thai en -0.75 y -1.50 MPa las que mostraron la mayor biomasa seca de raíz.

Para la altura de la planta se encontraron diferencias significativas entre variedades (F₁₉,₁₂₀ = 185.82, p ≤ 0.001), así como en la interacción de variedades x niveles de potencial hídrico (F₃₈,₃,₁₂₀ = 51.65, p ≤ 0.001), siendo las variedades Sweet Dani y Red Rubin las que alcanzaron la mayor altura en condiciones de estrés moderado, mientras que en la condición de estrés más severo, las variedades Sweet Dani, Dark Opal y Dolly, mostraron los valores mayores; otro grupo de variedades como Cinnamon, Purple Ruffles, Genovese, Genovese Italian, Dolce Vita y Napoli mostraron un crecimiento nulo cuando la condición de estrés hídrico fue de -1.50 MPa (Tabla 3).

Se encontraron diferencias significativas entre
variedades \((F_{19, 120} = 203.94, p \leq 0.001) \) y en la interacción de variedades \(\times \) niveles de potencial hídrico \((F_{38, 120} = 37.05, p \leq 0.001) \) para la biomasa fresca de la parte aérea. Los mayores valores en el control y en -1.50 MPa correspondieron a la variedad Sweet Dani, mientras que en -0.75 el valor mayor lo mostró la variedad Thai, seguida por Sweet Dani; sin embargo, conforme el potencial hídrico fue más negativo, la producción de biomasa disminuyó en todas las variedades (Tabla 3). Para la biomasa seca de la parte aérea se observaron diferencias significativas, tanto entre variedades \((F_{19, 120} = 157.57, p \leq 0.001) \) como en la interacción de variedades \(\times \) niveles de potencial hídrico \((F_{38, 120} = 25.64, p \leq 0.001) \), siendo las variedades Emily y Thai las que presentaron mayores valores en condiciones de estrés moderado y las variedades Thai y Siam Queen mostraron valores mayores en -1.50MPa, inclusive, Siam Queen mostró un valor superior al que presentó en -0.75MPa.

DISCUSIÓN

Efectos del estrés hídrico en el porcentaje y tasa de emergencia

Los resultados obtenidos mostraron que el estrés hídrico puede considerarse un síndrome complejo, integrado por una numerosa serie de procesos, algunos de los cuales son deleterios y otros adaptativos (Chaves et al. 2003), por lo tanto, es muy difícil describir la totalidad de los procesos que son afectados por el estrés hídrico, pudiendo afectar prácticamente a todas las variables morfológicas y fisiológicas de los cultivos, que pueden variar en función de la especie y del grado de tolerancia, pero también en función de la magnitud de la falta de agua y de la rapidez con que se experimente su carencia (Martin de Santa Olalla et al. 2005). La identificación de caracteres que permitan seleccionar materiales tolerantes a determinadas condiciones de estrés es de gran importancia, más si se realiza en etapas tempranas del desarrollo del cultivo para minimizar los costos (González et al. 2005, Gutiérrez-Rodríguez et al. 1998). El efecto de los diferentes niveles de potencial hídrico sobre la emergencia y tasa de emergencia de las variedades estudiadas mostraron que el porcentaje de emergencia disminuyó en todas las variedades a medida que el estrés hídrico fue más negativo. Esta tendencia indica que el porcentaje de emergencia es altamente dependiente de las condiciones estresantes en las que se desarrolló el experimento, convirtiéndolo en un carácter con valor en la clasificación de una variedad como potencialmente tolerante al estrés por sequía, cuando es capaz de alcanzar porcentaje de emergencia alto en condiciones de déficit hídrico. Al respecto, Aparecida y Zambillo (2003) indican que uno de los métodos más difundidos para determinar la tolerancia de las plantas al estrés hídrico, es la observación de la capacidad de germinar y emerge de las semillas en condiciones de sequía simulada, ya que esto limita la absorción de agua y puede retardar y/o afectar los diferentes procesos fisiológicos (Fanti y Pérez 2004). Resulta evidente que la disponibilidad de agua es una condición esencial para la germinación y emergencia de las semillas (Dubrenq et al. 2000), debido a que determina la inbibición y la posterior activación de los procesos metabólicos, rehidratación, mecanismos de reparación, elongación celular y aparición de la radícula. En este trabajo se encontraron variedades de albahaca sensibles al estrés hídrico en la etapa de emergencia y variedades que lograron superponerse a las condiciones de estrés mostrando tolerancia. Autores como Morgan (1983) y González et al. (2005) al trabajar con trigo, encontraron efectos similares en la respuesta diferencial de las variedades ante los tratamientos de estrés. También Barros (1998) y Maldonado et al. (2002) en el cultivo de tomate señalaron que los potenciales hídricos muy negativos afectan las secuencias de eventos involucrados en la etapa de germinación y emergencia, debido a una acción directa en los procesos fisiológicos. Resultados similares fueron reportados por Mohammadiani y Haydari (2008) al estudiar la respuesta de la germinación y emergencia en dos cultivares de maíz bajo estrés hídrico inducido (-0.15, -0.49, -1.3 y -1.76 MPa). Mientras que Gholami et al. (2010) encontraron respuestas similares al evaluar el efecto del estrés hídrico inducido sobre la germinación y emergencia de cuatro especies de Prunus, señalando un efecto directo y severo, debido a que...
Tabla 2. Efecto de los diferentes niveles de potencial hídrico en la longitud de la raíz y biomasa fresca y seca de raíz de plantulas de variedades de alfalfa en la etapa de emergencia.

<table>
<thead>
<tr>
<th>Variedades</th>
<th>Longitud de raíz (cm)</th>
<th>Biomasa fresca de raíz (mg)</th>
<th>Biomasa seca de raíz (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>-0.75</td>
<td>-1.50</td>
</tr>
<tr>
<td>Lemon</td>
<td>4.07</td>
<td>3.04</td>
<td>1.84</td>
</tr>
<tr>
<td>Sweet Dani</td>
<td>4.19</td>
<td>4.12</td>
<td>4.15</td>
</tr>
<tr>
<td>Sweet Genovese</td>
<td>4.43</td>
<td>3.08</td>
<td>1.84</td>
</tr>
<tr>
<td>Sam Queen</td>
<td>4.07</td>
<td>3.04</td>
<td>1.84</td>
</tr>
<tr>
<td>Red Rubin</td>
<td>4.05</td>
<td>3.02</td>
<td>1.84</td>
</tr>
<tr>
<td>Thai</td>
<td>4.05</td>
<td>3.02</td>
<td>1.84</td>
</tr>
<tr>
<td>Dark Opal</td>
<td>4.05</td>
<td>3.02</td>
<td>1.84</td>
</tr>
<tr>
<td>Spicy Glove</td>
<td>4.05</td>
<td>3.02</td>
<td>1.84</td>
</tr>
<tr>
<td>Mrs Burns</td>
<td>4.05</td>
<td>3.02</td>
<td>1.84</td>
</tr>
<tr>
<td>Cinnamon</td>
<td>4.05</td>
<td>3.02</td>
<td>1.84</td>
</tr>
<tr>
<td>Licorice</td>
<td>4.05</td>
<td>3.02</td>
<td>1.84</td>
</tr>
<tr>
<td>Purple Ruffles</td>
<td>4.05</td>
<td>3.02</td>
<td>1.84</td>
</tr>
<tr>
<td>Italian Large Leaf</td>
<td>4.05</td>
<td>3.02</td>
<td>1.84</td>
</tr>
<tr>
<td>Lectuce Leaf</td>
<td>4.05</td>
<td>3.02</td>
<td>1.84</td>
</tr>
<tr>
<td>Emily</td>
<td>4.05</td>
<td>3.02</td>
<td>1.84</td>
</tr>
<tr>
<td>Genovese</td>
<td>4.05</td>
<td>3.02</td>
<td>1.84</td>
</tr>
<tr>
<td>Genovese Italian</td>
<td>4.05</td>
<td>3.02</td>
<td>1.84</td>
</tr>
<tr>
<td>Dolce Vita</td>
<td>4.05</td>
<td>3.02</td>
<td>1.84</td>
</tr>
<tr>
<td>Napoleano</td>
<td>4.05</td>
<td>3.02</td>
<td>1.84</td>
</tr>
</tbody>
</table>

Medias con letras distintas en una misma columna diferencian estadísticamente (Tukey, p = 0.05).

en todas las especies, las semillas en el control (0 MPa), mostraron los mayores porcentajes de germinación y emergencia, pero éstos disminuyeron de forma significativa al disminuir el potencial hídrico.

Los resultados revelaron diferencias significativas entre los niveles de potencial hídrico para porcentaje y tasa de emergencia. Esta última se redujo de forma significativa a medida que el estrés hídrico se incrementó, es decir, al ser más negativo, lo que demuestra que la velocidad de emergencia de las semillas depende de la eficiencia del proceso de germinación y de las condiciones en las que se desarrolla (Aparecida y Zambillo 2003; Maldonado et al. 2002). También se corroboró que existen variedades como Red Rubin, capaces de lograr valores superiores al 73% de emergencia en condiciones de estrés moderado y de 53% en estrés severo, mientras que otro grupo de variedades como Spicy Glove, Cinnamon, Lettuce Leaf, Purple Ruffles, Genovese, Dolce Vita y Napoleano se mostraron sensibles al déficit hídrico moderado con valores de emergencia inferiores a 50%; respuesta que puede estar determinada por la dotación genética, así como por la capacidad de las semillas de romper su periodo de latencia aun cuando las condiciones de humedad sean óptimas.

Los resultados obtenidos en las variables del crecimiento mostraron diferencias significativas entre los niveles de potencial hídrico, lo que puede estar influenciado por los cambios provocados por el déficit hídrico que inhibe la división celular y el crecimiento (Biasutti y Galíñanes 2001). En condiciones de déficit hídrico, el crecimiento de la raíz es menos sensible que el crecimiento de la parte aérea, lo que conduce a un aumento de la relación parte aérea/raíz (Enteshari y Hajbagheri 2011, Mullet y Whitssit 1996). De acuerdo con Blum (2005), la raíz puede incrementar su longitud y profundidad en eventos de secamiento moderado del suelo, característica que fue observada en el presente estudio cuando variedades como Thai, Dark Opal, Emily, Dolly, Dolce Vita y Napoleano superaron...
Tabla 3. Efecto de los diferentes niveles de potencial hídrico en la altura de la planta y biomasa fresca y seca de la parte aérea en plantulitas de variedades de albahaca en la etapa de emergencia.

<table>
<thead>
<tr>
<th>Variedades</th>
<th>Altura de planta (cm)</th>
<th>Biomasa fresca de parte aérea (mg)</th>
<th>Biomasa seca de parte aérea (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>-0.75</td>
<td>-1.50</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>-0.75</td>
<td>-1.50</td>
</tr>
<tr>
<td>Lemon</td>
<td>1.84<sup>a</sup></td>
<td>0.86<sup>def</sup></td>
<td>0.66<sup>ab</sup></td>
</tr>
<tr>
<td>Sweet Dani</td>
<td>1.95<sup>b</sup></td>
<td>1.45<sup>c</sup></td>
<td>0.85<sup>de</sup></td>
</tr>
<tr>
<td>Sweet Genovese</td>
<td>1.05<sup>de</sup></td>
<td>0.70<sup>ef</sup></td>
<td>0.67<sup>cd</sup></td>
</tr>
<tr>
<td>Siam Queen</td>
<td>1.08<sup>de</sup></td>
<td>0.76<sup>fg</sup></td>
<td>0.66<sup>de</sup></td>
</tr>
<tr>
<td>Red Rubin</td>
<td>1.15<sup>cd</sup></td>
<td>1.14<sup>c</sup></td>
<td>0.71<sup>bc</sup></td>
</tr>
<tr>
<td>Thai</td>
<td>1.21<sup>c</sup></td>
<td>0.95<sup>cd</sup></td>
<td>0.77<sup>bde</sup></td>
</tr>
<tr>
<td>Dark Opal</td>
<td>1.23<sup>c</sup></td>
<td>0.97<sup>cd</sup></td>
<td>0.86<sup>ef</sup></td>
</tr>
<tr>
<td>Spicy Globe</td>
<td>1.06<sup>de</sup></td>
<td>0.82<sup>ef</sup></td>
<td>0.60<sup>def</sup></td>
</tr>
<tr>
<td>Mrs Bums</td>
<td>1.10<sup>de</sup></td>
<td>0.87<sup>def</sup></td>
<td>0.83<sup>bde</sup></td>
</tr>
<tr>
<td>Cinnamon</td>
<td>1.01<sup>e</sup></td>
<td>0.74<sup>gh</sup></td>
<td>0.00<sup>h</sup></td>
</tr>
<tr>
<td>Licorice</td>
<td>1.03<sup>e</sup></td>
<td>0.65<sup>gh</sup></td>
<td>0.50<sup>f</sup></td>
</tr>
<tr>
<td>Purple Ruffles</td>
<td>1.04<sup>e</sup></td>
<td>0.75<sup>gh</sup></td>
<td>0.00<sup>h</sup></td>
</tr>
<tr>
<td>Italian Large Leaf</td>
<td>1.07<sup>de</sup></td>
<td>0.57<sup>h</sup></td>
<td>0.47<sup>h</sup></td>
</tr>
<tr>
<td>Lecture Leaf</td>
<td>1.09<sup>de</sup></td>
<td>0.95<sup>cd</sup></td>
<td>0.72<sup>bcd</sup></td>
</tr>
<tr>
<td>Emily</td>
<td>1.06<sup>de</sup></td>
<td>0.96<sup>de</sup></td>
<td>0.74<sup>b</sup></td>
</tr>
<tr>
<td>Dolly</td>
<td>1.01<sup>e</sup></td>
<td>0.94<sup>de</sup></td>
<td>0.86<sup>cd</sup></td>
</tr>
<tr>
<td>Genovese</td>
<td>1.05<sup>e</sup></td>
<td>0.76<sup>gh</sup></td>
<td>0.00<sup>h</sup></td>
</tr>
<tr>
<td>Genovese Italian</td>
<td>1.03<sup>e</sup></td>
<td>0.72<sup>gh</sup></td>
<td>0.00<sup>h</sup></td>
</tr>
<tr>
<td>Dolce Vita</td>
<td>1.01<sup>e</sup></td>
<td>0.75<sup>gh</sup></td>
<td>0.00<sup>h</sup></td>
</tr>
<tr>
<td>Napoleoniano</td>
<td>1.02<sup>e</sup></td>
<td>0.78<sup>fg</sup></td>
<td>0.00<sup>h</sup></td>
</tr>
</tbody>
</table>

Medias con letras distintas en una misma columna difieren estadísticamente (Tukey, p = 0.05)

el tratamiento control cuando el potencial hídrico fue de -0.75 MPa; esta respuesta biológica inducida por el estrés le permite a la planta una mayor zona de exploración en el suelo en busca del agua para desarrollar sus procesos fisiológicos de forma eficiente (Blum 2005, Bray et al. 2000), siendo éste un elemento a tomar en cuenta para la selección de variedades tolerantes al estrés hídrico. Un estrés moderado puede ser la causa de una disminución notable en la productividad de los cultivos, debido a la relación entre estrés hídrico y la disminución del crecimiento, la reducción del tamaño de las células que da lugar a un desarrollo menor de las hojas y como resultado un menor desarrollo de la superficie fotosintética, sobre todo cuando el déficit ocurre en las primeras etapas del crecimiento vegetativo.

Los elementos anteriores probablemente se deban a que el estrés por sequía retrasa la división y elongación celular, aspectos señalados por Heydari y Heydarižadeh (2002) al trabajar con trigo, así como Dell’Amico et al. (2006) y Quintero et al. (2002) en tomate. Estos antecedentes permiten explicar los resultados mostrados por las variedades de albahaca en altura de la planta, ya que el déficit hídrico que se produce en los tejidos en crecimiento disminuye la turgencia de la célula, y por ende inhibe la elongación celular, así como la división celular, aspectos corroborados por autores como Martín de Santa Olalla et al. (2005) quienes señalan que el proceso más sensible al déficit hídrico es el crecimiento celular, siendo especialmente sensible la división y la elongación celular y, como consecuencia, se observa una disminución en el crecimiento de las plantulitas.

Se han observado afectaciones en el crecimiento de las plantulitas en estrés hídrico, debido a la disminución significativa de la turgencia de las células y a los cambios en la permeabilidad de las membranas (González et al. 2005). Mientras que Méndez et al. (2010) demostraron que el proceso de elongación y de síntesis de la pared celular es altamente sensible a la deficiencia de agua, por lo que reduce el crecimiento al disminuir la turgencia de las

www.ujat.mx/cra
células. En investigaciones realizadas en albahaca por Jerez y Barroso (2002), al reducir el riego en las diferentes fases de desarrollo, observaron una disminución del crecimiento a medida que incrementaba el déficit hídrico, debido a que afecta la elongación y la división celular. Otra hipótesis puede ser la propuesta por Hamayun et al. (2010), quienes indican que la disminución del crecimiento bajo estrés hídrico puede deberse a una posible disminución de la actividad enzimática (enzimas hidrolíticas), tales como la α-amilasa, proteasas y lipasas responsables de hidrolizar las reservas de los cotiledones, las cuales son requeridas para proveer energía en las primeras etapas del crecimiento. Los tratamientos de estrés hídrico afectaron de forma significativa la producción de biomasa fresca de la parte aérea y la biomasa fresca de la raíz, a medida que el estrés se incrementó. Esto pudo ocurrir debido a la afectación que origina el estrés hídrico en la división y elongación celular (Singh 2003). De acuerdo con los resultados, una vez que las variedades se sometieron al tratamiento de deficiencia hídrica, la respuesta entre éstas es diferente, lo que sugiere un posible carácter tolerante al mostrar la variedad Sweet Dani los mayores valores en la condición de estrés severo en longitud y biomasa seca de raíz y la variedad Siam Queen en la variable biomasa seca de la parte aérea. Al respecto, Pastenes et al. (2000) plantearon que el déficit hídrico en el suelo afecta algunos procesos fisiológicos, que disminuyen la producción y la acumulación de biomasa en los cultivos. Estos resultados coinciden con lo expresado por Jerez (1998), quien señaló que los efectos del déficit hídrico en el suelo pueden manifestarse mediante la producción de biomasa. En el presente estudio, los resultados mostraron diferencias estadísticas manifestando una disminución en la biomasa fresca y seca de raíz y la parte aérea en la mayoría de las variedades, a medida que el estrés hídrico se incrementó. Esto se sostiene en los principios expresados por Jones et al. (2002), quienes plantearon que la acumulación de la biomasa en las plantas está relacionada con el grado de humedad del suelo debido al desencadenamiento de procesos adaptativos que traen una disminución marcada en la misma. En el análisis de las interacciones se observó que variedades como Thai, Cinnamon y Emily lograron una mayor acumulación de biomasa seca de raíz cuando el estrés fue moderado, y la variedad Sweet Dani cuando el estrés fue severo, poniendo en evidencia la existencia de mecanismos adaptativos expresados por dichas variedades capaces de lograr acumulación de biomasa seca de raíz en condiciones de estrés hídrico. Todo lo anterior proporciona una alternativa para caracterizar variedades tolerantes a la sequía basadas en pruebas de ambientes controlados, como plantean Biasutti y Galiñanes (2001).

CONCLUSIONES

La variedad con mayor porcentaje y tasa de emergencia bajo estrés fue Red Rubin, en tanto que Mrs Burns no logró la emergencia a un nivel de estrés severo (-1.50 MPa). Thai, Dark Opal, Emily, Dolly y Napoleton presentaron mayor longitud de radícula cuando se aplicó estrés hídrico; por su parte, Cinnamon, Purple Ruffles, Genovese, Genovese Italian, Dolce Vita y Napoleton no lograron desarrollarse cuando el potencial hídrico se igualó a -1.50 MPa, mientras que Sweet Dani presentó mayor biomasa fresca de parte aérea y radícula. Las variedades de mayor biomasa seca en estrés severo (-1.50 MPa) fueron Siam Queen y Thai en parte aérea; Emily y Thai, para radícula en estrés moderado (-0.75 MPa). Thai, Cinnamon y Emily lograron mayor acumulación de biomasa seca de raíz cuando el estrés fue moderado, y la variedad Sweet Dani cuando el estrés fue severo.

AGRADECIMIENTOS

El presente trabajo se realizó con recursos del proyecto "Innovación tecnológica de sistemas de producción y comercialización de especies aromáticas y cultivos élite en agricultura orgánica protegida con energías alternativas de bajo costo", financiado por "SAGARPA-CONACYT". Se agradece el apoyo técnico de Carmen Mercado-Guido y Lidia Hiraies-Lucero.
LITERATURA CITADA

Biasutti CA, Galiñanes VA (2001) Influencia del ambiente de selección sobre la germinación de semillas de maíz (Zea mays L.) bajo estrés hídrico. Relaciones entre caracteres de plántula con el rendimiento a campo. Agricciencia 18: 37-44.

www.uat.mx/era

